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Here we propose a mathematical framework for studying word order optimization. The
framework relies on the well-known positive correlation between cognitive cost and the
Euclidean distance between the elements (e.g. words) involved in a syntactic link. We
study the conditions under which a certain word order is more economical than an alter-
native word order by proposing a mathematical approach. We apply our methodology to
two different cases: (a) the ordering of subject (S), verb (V ) and object (O) and (b) the
covering of a root word by a syntactic link. As for the former, we find that SV O and its
symmetric, OV S, are more economical than OV S, SOV , V OS and V SO at least 2/3 of
the times. As for the latter, we find that uncovering the root word is more economical
than covering it at least 1/2 of the times. With the help of our framework, one can ex-
plain some Greenbergian universals. Our findings provide further theoretical support for
the hypothesis that the limited resources of the brain introduce biases towards certain
word orders. Our theoretical findings could inspire or illuminate future psycholinguistics
or corpus linguistics studies.

Keywords: word order, cognitive cost, syntactic dependency, linguistic universals, human
language.

1. Introduction

Word order has been the subject of a large amount of research within various

fields: typology of language universals [15, 5], psycholinguistics [24, 12] and the

evolution of language [22]. A paradigmatic example of word order problem is the

sequential arrangement of subject (S), verb (V ) and object (O). Hereafter, S, V

and O stand for subject, verb and object, respectively. Work on the intersection

among generative syntax, typology of linguistics universals and psycholinguistics

has placed considerations about the limited resources of our brain [24], at the core

syntactic theory [20]. It has been argued that at least some of the basic grammar
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conventions of languages ease the processing of sentences [20] or that the ease with

which a sentence is processed depends on the distance between syntactically related

elements [12, 20]

The focus of this article is surface word order [15, 5], namely, the word order

that real sentences show. In particular, we will study the word orders that are in

overall more economical, i.e. consume less brain resources. The emphasis of this

article is on using a simple but powerful mathematical approach.

Word order has been studied from a mathematical and a computational per-

spective. The literature is large and disperse so we just review some representative

works from different perspectives. Quantitative linguistics studies suggest that the

most frequent items tend to appear first in the sentence [7]. Computational experi-

ments suggest that word orders may naturally emerge in a population of interacting

agents without the need of selection of the fittest orders [22, 23]. The ordering of

the triple (S, V, O) that emerges differs from run to run. Besides, the contribution

of word order to grammar efficiency [30] or the number of unambiguous word or-

ders that can be generated [29] has also been studied mathematically. In none of

these works, the cost derived from the distance between syntactically related items

is considered.

The remainder of the article is organized as follows. Section 2 introduces the

syntactic formalism that we will use for studying word order (i.e. dependency gram-

mar). Section 3 presents the factor that determines word order in our word order

idealization (i.e. the Euclidean distance minimization between syntactically related

words). Section 4 presents the kind of mathematical approach we will use for de-

termining the best word order according to the factor mentioned above. Two appli-

cations of our mathematical approach to the bias for SV O order and the tendency

to not cover the root of a sentence with a syntactic link are provided in Section 5.

Section 6 shows how the mathematical framework could be applied to research on

linguistic universals. The article ends with a discussion in Section 7.

2. Dependency grammar

Dependency grammar is a class of grammatical formalisms [26, 21, 28] specifying

how pairs of words link in sentences. Typically, two words are linked if one syn-

tactically depends on the other. Links are syntactic dependencies. Most links are

directed and the arc goes from the head word to its modifier or vice versa de-

pending on the convention used. Head and modifier are primitive concepts in the

dependency grammar formalism (Fig. 1). The dependency grammar formalism dis-

tinguishes some cases, such as coordination, where there is no clear direction [27].

In the examples used here arcs go from the head to its modifier, but link direction is

not relevant here because we are only concerned about the distance between linked

words.
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lovedShe me for the dangers I had passed

Fig. 1. The syntactic structure of the sentence ’She loved me for the dangers I had passed’ following
the conventions in [26]. Vertices are words and the arcs stand for syntactic dependencies. Following
the conventions in [26], arcs go from a head to its modifier. The pronoun ’she’ and the verb ’loved’
are syntactically dependent in the sentence. ’she’ is the modifier of the verbal form ’loved’, which
is its head. Similarly, the action of ’loved’ is modified by its object ’me’. ’loved’ is the root vertex.

3. Euclidean distance minimization

The distance between syntactically related items in sentences is a basic ingredient

of the cost of a sentence [18, 13, 20] and has been used for explaining surface word

order tendencies [20]. Here we focus on the Euclidean distance between syntactically

linked words in sentences. Now we are going to explain our definition of distance

precisely. Here we assume that words are placed on a straight line following the

order of a sentence (as in Fig. 1). Our convention consists of assigning position one

to the first word of the sentence and adding one after every word for calculating the

positions of the next word (hence ’she’ has position 1, ’loved’ has position 2 and so

on). We define π(v) as the position of word v and the Euclidean distance between two

words, u and v, is defined as d(u, v) = |π(u)− π(v)|, so d(u, v) = d(v, u). The units

of distance measure are words (notice that we could have calculated the distance

in syllables, for instance). We are only interested in the distance between directly

connected words. Table 1 lists the positions of every word and the distance to the

sender of the arc for the sentence in Fig. 1 (the dependency grammar formalism

generally assumes that every vertex receives one arc except for the root word, that

receives no arc). If the word ’she’ was moved to the end of the sentence, then all

distances in Table 1 would remain the same except for d(’she’, ’loved’) = 8 (words).

Hereafter we assume that distance in measured in words by default.

It has been shown that the distance between syntactically related words is sig-

nificantly small and that constraining the distance between syntactically related

words while maximizing the occupation of all possible distances can explain the ex-

ponential trend of that distance [8]. Cost minimization, or equivalently least effort,

is a key principle for explaining universals in quantitative linguistics. For instance,

Zipf’s law [31] for word frequencies can be explained by minimizing the cost of word

use and maximizing the information conveyed by words [11, 9]. Another example is

the fact that the rarity of syntactic dependency crossings can be explained by min-

imizing the cost of syntactic dependency links [10]. Here we assume that distance

minimization is a key factor for understanding word order tendencies as in [20].
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word π(word) sender d(word, sender)

she 1 loved 1

loved 2 − −

me 3 loved 1

for 4 loved 2

the 5 dangers 2

dangers 6 for 2

I 7 had 1

had 8 dangers 2

passed 9 had 1

Table 1. Every word or the sentence ’She loved me for the dangers I had passed’, the posi-
tion of every word (π(word)) and the distance (in words) of every word to the sender of arc
(d(word, sender)).

4. Minimum linear arrangement

Minimizing the sum of the Euclidean distances between linked vertices on a net-

work where vertices follow a sequence is known as the minimum linear arrangement

(m.l.a.) problem in computer science [4]. More formally, suppose that we have a

network whose set of vertices is V and its set of arcs is A (a directed graph). In our

case, V contains the words of a sentence and A the syntactic dependency links of

this sentence. π defines a minimum linear arrangement if

Ω(π,A) =
∑

(u,v)∈A

d(u, v) (1)

is minimum.

The fact that human utterances are linear (i.e. a sequence of basic units) was

early emphasized by the French linguist Ferdinand de Saussure [3]. Speaking im-

plies transforming commonly multidimensional thoughts into the single dimension

of speech. The memory expenditure of this process depends on the word order

chosen [24]. Linearization implies solving an optimization problem.

Before we proceed we need to warn the reader. The mathematical framework we

will introduce here is an idealization of the real surface word order problem. Our

strategy is similar to that followed in physics for gases. One imagines an ideal gas

(where collisions between molecules can be neglected to some extent) and then one

studies how much can be predicted by this idealization. The idealized gas turns out

to have a satisfactory predictive power in many applications. The point is starting

from a simple model and then moving towards a more complicated one, not in the

opposite way. This is important because our model does not consider all the factors

possible involved in the word order problem. Eventually, the success of our selected

idealization can only be supported by the successful predictions it can make, as in

the case of gases in physics. First, our framework assumes an ideal speaker whose

surface word order selections are not influenced by the order selections made by
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other individuals in his environment. Second, our framework assumes that the only

force involved in selecting a certain surface word order is minimizing the distance

between syntactically related words (this distance is explained in full detail later

on), which is equivalent to saying that there maybe other factors, e.g., the tendency

of topical information to generally occur early in a sentence [25, 14], but they can be

neglected. This idealization is congenial with the hypothesis that free word order is

not driven by pragmatic considerations, as it is generally believed, but by the need

to recognize syntactic structures rapidly online [20]. More formally, we assume that

minimizing Ω(π,A) is the major force in determining π, the ordering of words of

a sentence. Indeed, we assume a particular case of m.l.a. where only constituents

at a certain level can be rearranged while keeping their internal ordering remains

the same. Third, our framework assumes that syntactic links do not cross. Indeed,

this is not a heavy assumption since this property is a natural consequence of

the minimization of the length of syntactic links [10]. The only simplification we

make with this regard is assuming that crossings never appear whereas they are

found rather exceptionally in actual sentences. Fourth, our framework assumes that

measuring Euclidean distance in words is precise enough at least for the purpose of

this article. One could measure this distance in syllables or phonemes (it would still

be a discrete number) or even in elapsed time (then it would become a continuous

amount). Finally, it is important to call the attention of the reader on the fact that

idealization is not unique to this article among studies of word order universals.

In recent studies of the ordering of S, V and O [5], the dominant word order of

a language is not defined as the most frequent word order globally but the most

frequent word order of declarative sentences (not interrogatives or exclamatives)

with the further constraint that S and the O cannot be a pronoun (our approach

to the ordering of S, V and O that we will introduce in this article is not limited

to these particular cases).

5. Case studies

We introduce some mathematical notation that will be used in the next subsections.

A constituent x is a set of vertices, x ⊆ V . For instance, S1 = {’she’} and S2 =

{’the’, ’dangers’} are, respectively, the subjects of the main clause and the secondary

clause of the sentence in Fig. 1. We define Ax as the set of all the edges formed

between vertices of the set x (x ⊆ V and Ax ⊆ A). Technically, Ax contains the

edges of the subtree induced by the vertices in x [1]. We define Ωx as the sum of

the Euclidean distances of the edges of Ax. Technically, Ωx is the abbreviation for

Ω(π, Ax). We define rx as the root of the tree (or subtree) formed by the vertices

of x (rx may not be defined if the vertices of x do not form a tree). For instance,

rS1
= ’she’ and rS2

= ’dangers’. Linguistically, rx is the head of constituent x. We

assume that constituents cannot be empty (there is at least a head). The length

in words of a constituent x can be written as |x| = Lx + 1 + Rx, where |...| is the

cardinality operator and Lx and Rx are, respectively, the number of vertices to the
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O S V O V S

S VO S

V O S V S O

V O

Fig. 2. All the possible orderings of subject (S), verb (V ) and and object (O). We assume that the
length of the sentence (in words) is n = 3 (and there are no empty constituents) or equivalently,
that S, V and O contain a single word, represented by a filled black circle as in Fig. 1. The cost
of each ordering is Ω = 3, except for SV O and OV S, whose cost is Ω = 2.

left and to the right of rx within x. More formally,

Rx = |{v|π(v) > π(rx) and v ∈ x| (2)

Lx = |{v|π(v) < π(rx) and v ∈ x|. (3)

Therefore, LS1
= RS1

= 0 and |S1| = 1 while LS2
= 1, RS2

= 0 and |S2| = 2. We

define n as the length in words of the sentence (n = 9 in Fig. 1). We have n = |V|.

5.1. Case study I: ordering of S, V , and O.

.

Here we focus on the particular problem of minimizing Ω for the triple (S, V, O).

Here S, V and O stand for the set of words (or vertices) in the subject, verb and

object constituents. An m.l.a. can very easily explain why SV O or its symmetric,

i.e. OV S, should be preferred as surface word order when S, V and O are formed

by just one word each, namely, |S| = |V | = |O| = 1 (see Fig. 2 for all the possible

orderings satisfying this condition). In this case, A = {(rV , rS), (rS , rO)}. We extend

the definition of Ω to allow it to take w, a permutation of S, V and O instead of

the argument π. If the permutation is the sequence x, y, z (where x ∈ {S, V, O} and

x 6= y 6= z), π(rx) = 1, π(ry) = 2 and π(rz) = 3. Given a certain permutation one

can derive a unique π. Thus, we define Ω′(w,A) as the value of Ω(π,A) for the π

that derives from w. |S| = |V | = |O| = 1 gives

Ω′(w,A) =

{

2 if w ∈ {SV O, OV S}

3 otherwise.
(4)

The proportion of orders of S, V , O where the order SV O or OV S gives the smallest

Ω (including SV O themselves) is 2/3 and the proportion of orders where the orders

SV O or OV S give the smallest Ω including SV O and OV S themselves) is one.
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Fig. 3. Scheme of a sentence made of object (O), subject (S) and verb (V ). rx is the root of
the subtree x, where x ∈ {O, S, V }. Lx and Rx are, respectively, the number of words of x to
the left and the right of rx within x. Again, x ∈ {O, S, V }. If the sentence has n words then
LS + RS + LV + RV + LO + RO + 3 = n.

We want to consider the general case where S, V and O can be made of more

than one word, i.e. |S|, |V |, |O| ≥ 1. The whole sentence is formed by linking rV

with rS and rO as in Fig. 3. Assuming that ΩS , ΩV and ΩO do not depend on the

type of (S, V, O) arrangement, we may write

δx = Ωx − ΩS − ΩV − ΩO, (5)

where x is whatever (S, V, O) arrangement, i.e.

x ∈ {OSV, OV S, SOV, SV O, V OS, V SO}. It can be easily seen from Eq. 3 that

SV O is more economical than a word order x if ΩSV O < Ωx.

The condition ΩSV O < Ωx becomes δSV O < δx for x 6= SV O. We have

δSV O = RS + LV + RV + LO + 2

δSOV = 2LV + 2RO + LO + RS + 3

δV SO = 2RV + 2LS + LO + RS + 3

δOSV = 2RS + 2LV + RO + LS + 3

δV OS = 2RV + 2LO + R0 + LS + 3

δOV S = RO + LV + RV + LS + 2.

(6)
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We define ∆x = Rx − Lx with x ∈ {S, V, O}. The condition δSV O < δSOV leads to

∆V < 2RO + 1. (7)

The condition δSV O < δV SO leads to

−∆V < 2LS + 1. (8)

The condition δSV O < δOSV leads to

∆V < ∆O + LS + 1. (9)

The condition δSV O < δV OS leads to

∆S < ∆V + RO + 1. (10)

Finally, the condition δSV O < δOV S leads to

∆S < ∆O. (11)

Notice that we are not studying a full m.l.a. of S, V and O because we treat S, V

and O as undecomposable blocks. We do not allow one to reorder the words within

a certain block, e.g., swapping the words before rS (the head of S) and the word

after rS . A full m.l.a. can only take place in our framework when n = 3 (recall that

n is the length of the sentence in words)

Eqs. 7, 8, 9, 10 and 11 suggest the existence of three classes of (S, V, O) orders

relative to SV O order:

Class I: SOV and V SO

This is the class of orders where O follows S immediately. Notice that Eq. 7 and

8 follow the same template. These equations differ only in the sign of ∆V and the

remaining parameter (RO or LS) involved in the right hand side (r.h.s). Class I

word orders have some interesting properties. First, in both Class I word orders,

∆V is a key quantity. SV O is more economical than SOV (i.e. Eq. 7 is satisfied)

when ∆V ≤ 0 since RO ≥ 0. In contrast, SV O is more economical than V SO (i.e.

Eq. 8 is satisfied) when ∆V ≥ 0 since LS ≥ 0. Moreover, the lower cost of SV O over

SOV implies, in some circumstances, the lower cost of SV O over V SO. Vice-versa,

the lower cost of SV O over V SO implies, in some circumstances, the lower cost of

SV O over SOV . To see it in detail, if Eq. 7 is satisfied with ∆V ≥ 0, then Eq. 8 is

trivially satisfied. Inversely, if Eq. 8 is satisfied with ∆V ≤ 0, then Eq. 7 is trivially

satisfied. A particular case is ∆V = 0, which implies that SV O is more economical

than any Class I word order. For this reason, if V is made of a single word (i.e. the

sentence has a single word verb and the remainder of the words fall in either S or

O) then SV O is more economical no mater how the other constituents are made.

Class II: OSV and V OS

This is the class of word orders where S follows O immediately. Notice that Eqs. 9

and 10 follow the same template. These equations differ only in the sign of ∆V , the
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Order Frequency

SOV 497

SV O 435

V SO 85

V OS 26

OV S 9

OSV 4

No dominant order 172

Total 1228

Table 2. Frequency of a word orders in world languages. Borrowed from [5].

constituent x involved in the ∆x of the l.h.s. and the remaining parameter (RO or

LS again) involved in the r.h.s. Within this class, ∆V is a key quantity but other pa-

rameters are need to get configurations where SV O is more economical with regard

to Class I. The condition ∆V = ∆S gives that SV O is more economical than V OS

(recall Eq. 10) whereas the condition ∆V = ∆O gives that SV O is more economical

than OSV (recall Eq. 9). In particular, if V and S are made of a single word then

the lower cost of SV O over V OS follows trivially regardless of how O is made of.

Similarly, if V and O are made of a single word (∆V = ∆S = 0) then the lower cost

of SV O over OSV follows trivially regardless of the composition of S.

Class III: OV S

This is the class of the reverse of SVO.

We investigate the relationship between the six possible orderings of S, V and

O and the three classes. Fig. 4 shows the network of permutations of S, V and O.

Two permutations are connected if one gives the other by swapping two consecutive

constituents or vice-versa. The network is a ring made of six vertices. Interestingly,

the two most frequent dominant word orders (Table 2), SV O and SOV are con-

secutive in the permutation network. We aim to study if the consecutive placement

of this pair of word orders can be explained by chance (the null hypothesis) or by

a special factor relying on the permutation ring (the alternative hypothesis). We

define k as the number of word orders of a ring. Assuming that the k orders are

equally likely, the probability that two randomly chosen orders are adjacent in the

permutation ring is

p =

(

k

2

)−1

=
2

k(k − 1)
. (12)

In the space of permutations of SV O (where k = 6), we obtain p = 1/15 ≈ 0.066.

At a significant level of 0.05, we cannot reject the null hypothesis although p is low.
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OSV

VOS

OVS

class I class II class III

VSO

SVO

SOV

Fig. 4. The permutation of space of S, V and O. A pair of permutations (x,y) is linked if x can
give y by swapping two consecutive constituents or vice-versa. Bold face is used for indicating the
two most frequent dominant word orders in world languages [5].

LS RS LV RV L0 R0 ∆S ∆V ∆O

0 0 0 0 0 1 0 0 1

0 0 0 0 1 0 0 0 -1

0 0 0 1 0 0 0 1 0

0 0 1 0 0 0 0 -1 0

0 1 0 0 0 0 1 0 0

1 0 0 0 0 0 -1 0 0

Table 3. All the possible configurations that can be formed in sentences of length n = 4. ∆x =
Rx − Lx.

We have seen above some special conditions making SV O more economical than

any other order. We define n as the length of the sentence in words. Hereafter, length

is measured in words. In order to investigate how much better SV O is in general

against the remaining orders, we generate all distinct possible configurations of

(LS , RS , LV , RV , LO, RO) obeying

LS + RS + LV + RV + LO + RO + 3 = n (13)

LS, RS , LV , RV , LO, RO ≥ 0 (14)

with the help of the computer while keeping n fix. When n = 3, there is only one

possible configuration, namely LS = RS = LV = RV = LO = RO = 0. When

n = 4, there are only 6 possible configurations characterized by LS + RS + LV +

RV + LO + RO = 1 (Fig. 3).

We define px
>(n) as the proportion of configurations of (LS , RS , LV , RV , LO, RO)

where SV O is better than a target word order x, (i.e. the proportion of configura-

tions where SV O has smaller Ω than x, with x ∈ {OSV, OV S, SOV, V OS, V SO})
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Class x px
>(3) px

≥(3) px
>(4) px

≥(4) px
≥(n → ∞) , px

≥(n → ∞)

I SOV 1 1 5/6 1 ≈ 0.81

I V SO 1 1 5/6 1 ≈ 0.81

II OSV 1 1 2/3 1 ≈ 0.68

II V OS 1 1 2/3 1 ≈ 0.68

III OV S 0 1 1/2 5/6 ≈ 0.5

Table 4. px
>(n) and px

≥
(n) for specific values of n. px

>(n) is the proportion of configurations where

SV O is more economical than the target word order x. px
≥

(n) is the proportion of configurations

where SV O is more or equally economical than the target word order x. The values of px
>(n) and

px
≥

(n) collapse when n → ∞.

in sentences of length n using Eq. 7,8,9,10 and 11. Similarly, we define px
≥(n) as

the proportion of configurations where SV O is better or equal than a target word

order x in sentences of length n (x ∈ {OSV, OV S, SOV, V OS, V SO}. Table 4 shows

px
>(n) and px

≥(n) for n ∈ {3, 4} and also approximate values for n → ∞. It is easy

to see that px
>(3) = px

≥(3) = 1 provided x 6∈ {OV S, SV O} when n = 3 as in Fig. 2.

If x ∈ {OV S, SV O} then px
>(3) = 0 and px

≥(3) = 1.

Fig. 5 shows px
>(n) and px

≥(n) for all target word orders x. The curves for

members of the same class are identical and differ from one class to another. These

results and Table 4 provide support for the a priori arbitrary classification we made

based on the algebraic form of the inequalities in Eqs. 7,8,9,10 and 11. In some

cases, px
≥(n) has always its maximum and its minimum in the extremes n = 3 and

n → ∞. In contrast, px
>(n) has minima far from the extremes for Class I and II. We

have that px
>(n) ≥ 2/3 if x is of Class I or II. In this case, the lower bound of px

>(n)

comes from px
>(4) = 2/3 when x is of Class II (recall Table 4). When x is of Class

I, px
>(n) is minimized for n ∈ {7, 8}. In this class, px

>(n) ≥ px
>(7) = px

>(8) ≈ 0.801.

In sum, all different configuration of (LS , RS , LV , RV , LO, RO) are equally likely

(roughly speaking, all these configurations have the same frequency or have the same

weight) then the complexity of the lower cost of SV O reduces from five alternative

word orders to just three classes.

So far have considered only the advantage of SV O over the remaining word

orders in sentences of arbitrary length. Being OV S the symmetric of SV O, positive

biases towards OV S (measured as the proportion of configurations where OV S is

more economical that a target word order) can also be obtained with the same

procedure used for SV O. Being OV S the order of only 0.95% of world languages

with a dominant word order (Table 2), we leave the translation of the mathemat-

ical framework from SV O to OV S for future work. In the discussion section, we

speculate about why OV S is rare despite being as advantageous as SV O.
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Fig. 5. The economy of SV O versus n, the sentence length. px
>(n) (solid line) is the proportion of

configurations where SV O is more economical than the target word order x. px
≥

(n) (dotted line)
is the proportion of configurations where SV O is more or equally economical than the target word
order x. Target word orders are grouped into tree classes: Class I for SOV and V SO (left), Class
II for OSV and V OS (center) and Class III for OV S. The curves for target word orders within
the same class are identical.

5.2. Case study II: government of the top node

Euclidean link distance minimization can shed light on the origins of projectivity

[26], a common property of the syntactic structure of sentences. A sentence is pro-

jective if and only if among the arcs of dependency linking its word forms (i) no

arc crosses another arc and (ii) no arc governs the top node [26] (the top node of

the sentence in Fig. 1 is ’loved’). In this section, we aim to quantify the advantage

of syntactic dependency trees that satisfy (ii) over those that do not satisfy it. The

structure of the sentence in Fig. 1 obeys (ii) but if we moved “I had passed” to

the beginning of the sentence then (ii) would be violated (of course, the sentence

would not be proper English; this modification is just made to show how the tree

of a sentence that violates (ii) would look like). It has been argued that (i) is a side

effect of minimizing the Euclidean distance between linked words [10]. Instead of

arguing that (ii) cannot be violated (strong projectivity), we will show that there

is a bias towards satisfying (ii) when Euclidean distance minimization works. We

will use the same methodology as in Section 5.1.

(ii) is a particular case of vertex covering. A vertex w is covered by the link

formed by the pair of vertices (u, v) (u 6= v) if and only if min(π(u), π(v)) <

π(w) < max(π(u), π(v)). (ii) is a particular case of a root that is not covered by

any edge (our concept of covering neglects arrow directions). Here we will focus on

a more general property than (ii). (ii) concerns the top node only), i.e. the covering

of a target vertex rA by an arc.

We assume that the whole tree is made of two subtrees induced by two partitions

of the sets of vertices A and B, with A ∪ B = V (Fig. 7 (a)) and whose roots are

rA and rB, respectively. The trees are connected by an arc from a vertex v in A

to rB . For simplicity, we assume that that the root rA can be covered by a single

edge formed between vertices v and rB . The edge formed by v and rB divides the

sentence structure into the two subtrees induced by A and B. rA is the root of the
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whole sentence. A is the subtree whose root can be covered by linking the vertex

pair (v, rB).

We define ΩCOV and ΩUNCOV as the cost of the whole tree when rA is covered

and when rA is uncovered, respectively. We could have four different cases depending

on whether the root is covered or not and also depending on whether v precedes rA

or follows it (Fig. 7). We define ΩA and ΩB as the cost of the subtrees induced by

A and B, respectively. We define δCOV and δUNCOV as the cost of the potentially

covering arc in the covered and the uncovered configuration, respectively. We have

ΩCOV = ΩA + ΩB + δCOV (15)

ΩUNCOV = ΩA + ΩB + δUNCOV (16)

Condition (ii) (that is, the higher economy of the uncovered configuration) is war-

ranted when ΩCOV > ΩUNCOV , that is when

δCOV > δUNCOV . (17)

If π(v) < π(rA) (Fig. 7 (a)-(b)) then

δCOV = RA + LB + π(rA) − π(v) + 1 (18)

δUNCOV = LA + RB + π(v) − π(rA) + 1 (19)

and thus Eq. 17 becomes

∆A − ∆B + 2(π(rA) − π(v)) > 0. (20)

Recall ∆x = Rx − Lx, where x is a tree (or subtree).

If π(v) > π(rA) (Fig. 7 (c)-(d)) then

δCOV = RB + LA + π(v) − π(rA) + 1 (21)

δUNCOV = LB + RA + π(rA) − π(v) + 1 (22)

and thus Eq. 17 becomes

∆B − ∆A + 2(π(v) − π(rA)) > 0. (23)

If the sentence length is n = 3, then we have ΩCOV = 3 for covered configu-

rations and ΩCOV = 2 for the uncovered configurations (Fig. 6). Thus, uncovered

configurations are more economical than covered configurations when n = 3.

Now we focus on the case π(v) < π(rA) (the following calculations yields iden-

tical results for the opposite case). If follows from Eq. 17 that the the cost of a tree

is fully specified by the quadruple (LA, RA, LB, RB), where

LA + RA + LB + RB + 2 = n (24)

and

LA ≥ π(rA) − π(v). (25)

We define a well-formed quadruple as a tuple (LA, RA, LB, RB) such that satis-

fies Eqs. 24 and 25. We define qx
> as the proportion of well-formed quadruples
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v rr r r v

r rrr v v

A B B A

B A BA

Fig. 6. All the possible configurations of a root rA and a link (v, rB) that may cover rA when the
sentence length is n = 3.

LA RA LB RB ∆A ∆B

1 0 0 1 −1 1

1 0 1 0 −1 −1

1 1 0 0 0 0

2 0 0 0 −2 1

Table 5. All the possible configurations that can be formed in sentences of length n = 4. ∆x =
Rx − Lx.

(LA, RA, LB, RB) where uncovering the root is more economical than covering it

with with x = π(rA)−π(v). We define qx
≥ as the proportion of well-formed quadru-

ples (LA, RA, LB, RB) where uncovering the root is more or equally economical than

covering the root with x = π(rA) − π(v). When n = 3, we have that the only well-

formed quadruple with π(rA) − π(v) = 1 is (1, 0, 0, 0), so q1
>(3) = q1

≥(3). If n = 4,

the only well-formed quadruples are shown in Table 5, giving q1
>(4) = 1/2 and

q1
≥(4) = 1. Fig. 8 shows qx

>(n) and qX
≥ (n) for 1 ≤ x ≤ 4. We have that qx

>(n) ≥ 1/2

(in the domain of n explored in Fig. 8). This means that uncovering the edge is more

advantageous at least in 1/2 of the cases. In Fig. 8, it can also be seen that qx
n(n)

tends to decrease as n grows, suggesting that uncovering configurations should ap-

pear more frequently in short sentences than in long sentences, and also that that

qx+1
> (n) > qx

≥(n) and qx+1
> (n) > qx

≥(n). Thus, separating v from rA more cannot

turn covering configurations more economical as one may intuitively expect.

6. Greenberg’s universals revisited

The aim of this section is illustrating how our framework could be employed for

research on linguistic universals. We will focus on two Greenbergian universals:

Universal 16. In languages with dominant order V SO, an inflected auxiliary al-

ways precedes the main verb. In languages with dominant order SOV , an

inflected auxiliary always follows the main verb [16].

Universal 17a With overwhelmingly more than chance frequency, languages with
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A B

AB B

v r rrr

r rr r

v

vv

B A

A

A

A A

AB B

BB

(a) (b)

(c) (d)

A ARL L RBB

Fig. 7. Scheme of a sentence where, rA, the root word of the sentence, is covered by an arc linking
words v and rB . The arc divides the sentence structure into two subtrees: A and B. rA has LA

words on the left and RA words on the right. Similarly, rB has LA words on the left and RA words
on the right. The sentence has n words so LA + RA + LB + RB + 2 = n.

dominant order SV O have the adjective after the noun and languages with

dominant order SOV have the adjective before the noun (Appendix). This

universal is inspired on Greenberg’s universal 17 [16] which is not supported

by recent studies (Appendix).

Notice that world Universal 16 and 17a concern word orders of Class I. Let us

start with Universal 16. If V SO is dominant then a necessary condition for V SO

begin more economical than SV O is the existence of a mechanism for reducing the

a priori chance that SV O is a more economical word order, that is, the chance that

−∆V < 2LS + 1 (Eq. 8) is satisfied. One way of achieving this is by introducing a

bias towards larger values of LV , which decreases ∆V . This can be made by putting

inflected auxiliaries before the main verb, as stated in Universal 16. Similarly, if

SOV is dominant then there must be a mechanism for reducing the a priori chance

that SV O is a more economical word order, that is, the chance that ∆V < 2RO +1

(Eq. 7) is satisfied. One way of achieving this is by introducing a bias towards larger

values of RV , which increases ∆V . This can be made by putting inflected auxiliaries

after the main verb, as stated in Universal 16.
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Fig. 8. The economy of uncovering the root versus n, the sentence length. qx
>(n) (solid line) is

the proportion of configurations where uncovering the root is more economical than covering it.
qx
≥

(n) (dotted line) is the proportion of configurations where uncovering the root is more or equally

economical than covering it. x is the distance (in words) between the vertex involved in the edge
that may cover the root and lays in the same connected component of the root after removing this
edge. (a) x = 1. (b) x = 2. (c). x = 3. (d) x = 4.

As for Universal 17a, the dominance of SOV needs that the a priori chance

that ∆V < 2RO + 1 (Eq. 7) is satisfied is reduced. One way of achieving it is

by introducing a bias towards smaller values of RO. Consistently, languages where

SOV is dominant tend to put adjectives before the noun, decreasing RO. Inversely,

keeping SV O more economical than SOV needs that the a priori chance that ∆V <

2RO +1 (Eq. 7) is satisfied is increased. One way of achieving it is by introducing a

bias towards larger values of RO. Consistently, languages where SV O is dominant

tend to put adjectives after the noun, increasing RO.

We need to be conservative and not interpret that Universal 16 and Universal 17a

constitute strong support for a distance minimization principle (even if one could

show that the involved p-values are 0). The kind of statistical test of correlation

used for Universal 16 and Universal 17a cannot determine the actual reason of the

correlation [6] . For instance, sharing a certain order could be due convergence from

a distance minimization principle or by other kind of factors such as inheritance
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from a common evolutionary ancestor or diffusion by contact between neighbouring

evolutionary unrelated (or distantly related) languages [6]. Therefore, Universals

16 and 17a are consistent with our mathematical framework based on distance

minimization but do not necessary imply strong support for it.

Besides, in order to improve this kind of analysis, one would have to address

various questions. For instance, knowing Eqs. 9 and 10, the arguments used for

explaining Universal 16 are not only valid for SOV and V SO but also for other

word orders placing V at the beginning or at the end: OSV and V OS. Why is

there not an equivalent universal for OSV and V OS? Is it just simply due to the

fact that OSV and V OS are rare word orders and thus no statistically significant

conclusions can be obtained?

7. Discusion

We have proposed a way of measuring the a priori bias towards towards SV O or-

der, or the a priori bias for not covering the root word of a sentence. In particular,

we have found that SV O is more economical than OV S, SOV , V OS and V SO

at least 2/3 of the times and that uncovering the root word is more economical

than covering it at least 1/2 of the times. We have also seen that our mathematical

framework could be used directly to explain some Greenbergian universals. Previous

mathematical approaches to word order based on Euclidean distance minimization

[8, 10] have not addressed the problem of the ordering of the triplet (S, V, O) and the

convering of the root in syntactic dependency trees studied in this article. [8] pro-

vides statistical evidence suggesting that distance minimization operates in actual

syntactic dependency trees and derives the distribution of the Euclidean distance

between syntactically linked words in sentences using both the maximum entropy

principle and the assumption that the mean distance between syntactically linked

words is constrained to a small value. [8] does not address problems that are rel-

evant to typology of word order universals, at least in the way the discipline is

traditionally understood. [10] addresses one of the two conditions of the property

of projectivity, i.e. the absence of link crossings in syntactic dependency trees [26].

Here we have studied the other necessary condition for projectivity: the uncovering

of the root. This article and [10] provide a complete view of projectivity (though

in a simplified way). Our novel findings provide further theoretical support for the

hypothesis that the limited resources of the brain introduce biases towards certain

word orders [20, 18, 13].

Our model predicts that a priori SV O should be prefereed over SOV , but SV O

is not the first but the second most frequent word order. This disagreement makes

obvious the limits of the model but should no be seen as a big mistake since SV O is

the second most frequent word order. Besides, our model predicts that both SV O

and OV S should be the most frequent word orders. If SV O and OV S are the most

economical a priori, why is OV S rare? This is apparently a big mistake since OV S

is disproportionally rare with regard to SV O. In order to address these questions,



March 27, 2008 10:3 WSPC/INSTRUCTION FILE
word˙order˙optimization

18 Ramon Ferrer-i-Cancho

we speculate on a very simplified version of the adaptative landscape on which

evolution of languages relies and put forward a hypothesis for understanding the

frequency of the possible six of orderings of S, V and O in world languages. First,

from the point of view of economy, there is a tendency towards orders SV O and its

symmetric, i.e. OV S, as explained in Section 5.1. We assume that SV O and OV S

are two attractors of the word order dynamics of a language when only distance

matters, as argued in Section 5.1. Second, we assume that there is a conflict between

SV O and OV S that can be viewed from two perspectives:

• In some languages, the symmetry between the attractors SV O and OV S

has not been broken. For this reason, 14% of languages in [5] lack a prefer-

ence for a specific word order.

• In the remaining languages (the overwhelming majority), the symmetry

between SV O and OV S has been broken. Word order counts suggest that

the majority has broken the symmetry in favour of SV O and nearby word

orders in the permutation ring (Fig. 4) as dominant word orders. For this

reason, 35% of languages have SV O as a dominant word order and 96% have

an order that is either SV O or its nearest neighbours in the permutation

ring (Fig. 4). In order to provide support for the hypothesis that there is

a tendency towards SV O (once the symmetry is broken), we consider the

correlation between the number of languages that have a certain word order

as dominant and the distance in edges between SVO and the remaining word

orders in the permutation ring (for instance, the distance between SV O

and itself is 0, the distance between SV O and OSV is two). Spearman’s

correlation lower-tailed test gives ρ = −0.794 with p = 0.03, indicating that

languages grow in number as SV O is approached. This finding can also be

interpreted as evidence of a tendency or languages to move away from

OV S (notice that the distance to OV S is a linear function of the distance

to OV S). Notice that that a symmetry breaking is a null hypothesis for

the empirical preference (Table 2) for SV O and nearby word orders in

the permutation ring. Alternative hypotheses would be based on assuming

that orders near SVO in the permutation ring have been preferred because

they have some sort of advantage over OV S and its neighbours in the

permutation ring.

• Languages that have a dominant word order different than the attractors

suggest that Euclidean distance minimization is not only factor determining

word order. However, if such distance minimization actually exists and is

strong enough, these conflicting languages must have adopted word order

rules to fight against the a priori advantage of the attractors. In particular,

the fact that that SOV is the most frequent word order is not a sign

that Euclidean distance minimization fails to operate. As we have seen,

Greenberg’s Universal 16 and 17a can be explained as an adaptation of

SOV and V SO to reduce the a priori advantage of SV O.
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Here we have made a simplified approach to the S, V O ordering problem

because we have assumed that the blocks S, V and O are the only components of the

sentence. A priori, we do not expect that this happens very often in real sentences

because actual sencences may include other components (e.g., a time complement).

However, one could use a large corpus to extract a sufficiently large samples of pure

sentences where only S, V and O are present. If this three components, are always

located in the boundaries of a real sentence (e.g., adjuncts) then our approach may

still be approximately valid. If the components fall between any pair made of S,

V and O then our framework is no longer valid. From an empirical point of view,

one could collect a sufficiently large list of sentence where the constituents S, V

and O (in any possible ordering) appear consecutively (without interruptions from

other constituents) in large corpora. We have also made a simplified approach to the

covering-of-the-root problem. We have assumed that there is only one syntactic link

that could cover the root word. In contrast, our theoretical framework for studying

the covering of a vertex, is not only valid for a covered root word but also valid for

any kind of potentially covered vertex. Therefore, the projectivity constraint may

be too specific when requiring the uncovering of the root word only and forgetting

about the roots of subtrees. A bias for uncovering a vertex is a general pressure to

the light of our model. However, this pressure may be weaker in coverings involving

short distances than in coverings involving long distances (there is less to lose in

short links) but we have seen that a bias for uncovering the root decreases as the

length of the sentence increases. For this reasons, the distribution of covering arc

lengths should be investigated in future studies.

We mentioned above that the goodness of our idealization depends on the suc-

cessful predictions it can make. We have sucessfully tested our model with some

Greenbergian universals but more universal biases should be studied. Our theoret-

ical framework could be the basis for future psycholinguistics or corpus linguistics

studies. For instance, one could study the proportion of times that SV O was chosen

when it was the best option according to our equations and also the proportion of

times that SV O was not chosen and it was not the best option according to our

equations. Something similar could be done concerning the the covering problem.
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Appendix

Here we aim to use recent data [19] to study if word orders have preferences for

placing the noun after the adjective (AN) or the adjective after the noun (NA).

Combining the information about word order and the placement of the adjective,

the data in [19] yields Table 6. From this table, six 2×2 contingency tables (one for

each ordering of SV O) can be obtained (Table 7). For constructing these contin-

gency tables, languages lacking a dominant word order are exlucded because we aim

to study the relationship between the placement of adjective and dominant word

orders. Fisher’s exact test [2] can be applied to each of these contingency tables to

find out if a certain word order has a preference for the placement of adjectives.

From this analysis, the only statistically significant associations at a significance

level of 0.05 are SOV with AN and SV O with NA (p-value< 10−5 in both cases).

Therefore, Greenberg’s Universal 17, stating that ”with overwhelmingly more than

chance frequency, languages with dominant order V SO have the adjective after the

noun [17]” is no longer supported by recent data. Interestingly, we have found two

statistically significant tendencies that were not reported in Greenberg’s original

studies. We propose to introduce a variant of Universal 17, i.e. Universal 17a, stat-

ing that

”With overwhelmingly more than chance frequency, languages with dominant order

SV O have the adjective after the noun and languages with dominant order SOV

have the adjective before the noun”.
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NA AN No dominant order Only internally headed

OSV 3 0 0 0

OVS 4 2 0 0

SOV 223 166 19 2

SVO 303 56 24 0

VOS 14 7 1 0

VSO 56 16 7 0

No dominant order 65 46 24 1

Table 6. Ordering of S, V and O versus the placement of the adjective of a noun (NA: Noun-
Adjective; AN: Adjective-Noun). Inner cells contain the number of languages with a certain row
and column feature. Data obtained from [19].

NA AN

OSV 3 0

non-OSV 600 247

OVS 4 2

non-OVS 599 245

SOV 223 166

non-SOV 380 81

SVO 303 56

non-SVO 300 191

VOS 14 7

non-VOS 589 240

VSO 56 16

non-VSO 547 231

Table 7. Ordering of S, V and O versus the placement of the adjective of a noun (NA: Noun-
Adjective; AN: Adjective-Noun). Inner cells contain the number of languages with a certain row
and column feature. Data derived from Table 6.


