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Abstract

Here, assuming a general communication model where objects map to signals, a
power function for the distribution of signal frequencies is derived. The model relies
on the satisfaction of the receiver (hearer) communicative needs when the entropy
of the number of objects per signal is maximized. Evidence of power distributions
in a linguistic context (some of them with exponents clearly different from the
typical β ≈ 2 of Zipf’s law) is reviewed an expanded. We support the view that
Zipf’s law reflects some sort of optimization but following a novel realistic approach
where signals (e.g. words) are used according to the objects (e.g. meanings) they are
linked to. Our results strongly suggest that many systems in nature use non-trivial
strategies for easing the interpretation of a signal. Interestingly, minimizing just the
number of interpretations of signals does not lead to scaling.
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We assume a general communication framework where signals are mapped
to the objects they refer to [1,2]. For vervet monkeys, we have alarms calls
as signals and predators as objects [3]. For human language, we have words
as signals and meanings as objects, acknowledging that meaning is a com-
plex matter to define [4] and we humans make use of symbolic reference and
not indexical reference as many animals seem to do [5]. For Unix computer
commands, we have commands and their options as signals and the computer
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operations they imply as objects [6]. For the immune system, we have reactiv-
ity patterns as signals and antigens as objects [7,8]. We assume communication
takes place between an ideal sender (speaker) and an ideal receiver (hearer).
The task of the sender is to code an object using a signal that the receiver has
to decode [9].

Word frequencies are usually modeled by a power function

pf ∼ f−β (1)

where pf is the proportion of words whose frequency is f in a given sample
text and β > 0. The regularity is called Zipf’s law honoring G. K. Zipf, the
linguist who made it popular [10]. We typically have β ≈ 2 [11,12] but slight
variations around β have been recorded [11]. There are some interesting clear
deviations:

(1) Schizophrenia with 1 < β < 2 [10].
(2) Variations in the exponent when focusing on certain types of words (Fig.

1). We find β = 3.35 for English nouns (Fig. 1 B) [13] whereas we find
β = 1.94 for English verbs (Fig. 1 A)

(3) The peripheral lexicon [12,14]. Studies on multiauthor collections of texts
show two domains in pf . One domain with with β ≈ 2 for the most fre-
quent words and another domain with β ≈ 3/2 for the less frequent
words. The two regimes are said to divide words into a core and periph-
eral lexicon, respectively. We assume we focus on the core lexicon in the
present paper.

(4) Shakespearean ouvres with β = 1.6 [11]. This a rather controversial situ-
ation because Shakespearean works are likely to be a case of multiauthor-
ship [15] and thus show the shape of a peripheral lexicon. What follows
must be cautiously interpreted for this case.

Besides human language, scaling consistent with Zipf’s law is found in the
frequency of immune reactivity patterns [7,8] and the computer commands
issued by experienced Unix users with β = 2.24 [6] (Fig. 1 B, [16]).

We are aimed at answering the following questions:

(1) Is there any general principle allowing to explain whatever form scaling
in signal frequency distributions?

(2) Is such a principle totally different from any explanation for the typical
β ≈ 2?

(3) How does information transfer depends on β?

Many explanations have been proposed for scaling in word frequencies [17–29].
Most of such models assume a certain optimization or stability principle. Given

2



10−3 10−2 10−1 100

f

10−3

10−2

10−1

100

cu
m

ul
at

iv
e 

P
(f)

10−4 10−3 10−2 10−110−6

10−5

10−4

10−3

10−2

cu
m

ul
at

iv
e 

P
(f)

A

B

Fig. 1. P (f) the probability a signal has normalized frequency f in cumulative form.
Power approximations are shown for every series (dotted lines). Arrows indicate the
point considered as the end of the straight line for calculating the exponents β.
A. pf for English verbs with β = 1.94 ± 0.003(circles) and English nouns with
β = 3.35 ± 0.02(squares). The core lexicon starts slightly before f ≈ 10−3 B. Unix
computer commands issued by an experienced user β = 2.24 ± 0.028.

the large amount of models, Zipf’s law models require a discussion not only
about the suitable models but also about distinguishing the causes of Zipf’s law
(the true model(s)) from its consequences (the side-effect models). This is not
the aim of the present paper. Nonetheless, all the explanations for Zipf’s law
(except [17]) forget a fundamental reason for which words are used: words are
used according to their meaning. Real sentences are not a collection of words
entirely chosen at random as many models intend [19,18,20,22]. Following the
approach in [17], we assume that words are chosen according to their meaning
and that the frequency of a word is a function of the objects eliciting it.

Recently, it has been shown that G. K. Zipf’s proposal of a principle of least
effort for the hearer and the speaker can explain β ≈ 2 [17]. In a few words,
G. K. Zipf proposed that Zipf’s law results from a trade-off between hearer
and speaker needs. In G. K. Zipf’s rough intuition, the sender prefers a few
words for all meanings (unification) and the hearer needs every meaning has
a different word (diversification). The higher the degree of satisfaction of the
needs of one of them, the less its effort. The model in [17] uses a parameter λ
for minimizing Ω = λED + (1− λ)EC , a linear combination of ED, the coding
effort (the effort for the hearer/receiver) and EC , the coding effort (the effort
for the speaker/sender), with 0 ≤ λ ≤ 1. Sender and receiver needs are totally
satisfied when λ = 0 and λ = 1, respectively. A phase transition separates
a no communication phase (sender’s full satisfaction) and a perfect commu-
nication phase (receiver’s full satisfaction). Scaling consistent with Zipf’s law
with β ≈ 2 is found at some intermediate value of λ = λ∗. The model shows a
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continuous phase transition [30] at the point where sender and receiver needs
are at the maximum tension. We will refer to this model as the dual least effort
satisfaction model. Here we show that scaling in word frequencies can be ex-
plained only complying with receiver needs under a convenient maximization
principle. We will refer to this model as the decoding least effort model.

We assume we have a set of signals S = {s1, ..., si, ..., sn} and a set of objects
of reference R = {r1, .., rj , ..., rm}. We define a matrix of signal-object associ-
ations A = {aij} (1 ≤ i ≤ n , 1 ≤ j ≤ m) where aij = 1 if the i-th signal and
the j-th object are connected and aij = 0 otherwise. Here, we define the joint
probability of the i-th signal and the j-th object as

p(si, rj) =
aij

∑n
k=1

µk

where µi, the number of objects linked to the i-th signal, is defined as

µi =
m
∑

j=1

aij. (2)

Knowing the frequency of the i-th signal is

p(si) =
m
∑

j=1

p(si, rj) (3)

we obtain

p(si) =
µi

∑n
k=1

µk

.

The probability of understanding rj when si is received is

p(rj|si) =
p(si, rj)

p(si)

so we have

p(rj|si) =
aij

µi

. (4)

The probability definitions used here are simpler than in [17].
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Fig. 2. < H̄ > the mean normalized entropy of the number of objects per signal
(solid line) versus λ, where H̄ =< H > / log m. For λ ≈ 0.41 as sharp transition
takes place and scaling is found in the dual least effort model (n=m=150).

We define H, the entropy of the number of objects per signal, as

H = −
m
∑

k=1

pk log pk

where

pk =
|{i|µi = k and 1 ≤ i ≤ n}|

n
.

The maximization principle we will use for ED comes from the observation
that H is maximal at the point where scaling is found in [17] (Fig. 2). Thus,
we can obtain {pk} = (p1, ..., pk, ..., pm) using the maximum entropy principle
[31,32]. We define Φ(k) as the decoding effort (effort for the receiver) implied
once a signal linked to k objects has been issued. We seek {pk} maximizing
the a priori uncertainty H under the decoding effort we define here as

ED =
1

n

n
∑

i=1

Φ(µi) (5)

and the normalization constraint

m
∑

k=1

pk = 1. (6)
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Rewriting Eq. 5 as

ED =
m
∑

k=1

pkΦ(k) (7)

we end up with the functional

Ω = H + α
m
∑

k=1

pk + β
m
∑

k=1

pkΦ(k).

The distribution {pk} maximizing H will be deduced from the condition
∂Ω/∂pk = 0 which leads to different distributions depending on Φ. Once si

has been issued, the receiver must avoid interpreting an object that was not
intended by the sender. The simplest way of satisfying the receiver needs is
just minimizing µi, which leads to Φ(k) = k when µi = k. A more sophisti-
cated strategy consists of minimizing H(R|si), the entropy of objects when si

is given, defined as

H(R|si) = −
n
∑

j=1

p(rj|si) log p(rj|si). (8)

H(R|si) measures the uncertainty associated to the interpretation of si.

Replacing Eq. 4 into Eq. 8 we get

H(R|si) = −
m
∑

j=1

aij

µi

log
aij

µi

which gives H(R|si) = log µi. According to H(R|si), if the i-th word has
µi = k objects, then it implies an effort Φ(k) = log k.

For Φ(k) = k/m and large m, ∂Ω

∂pk

= 0 leads to [33]

pk ∼ e−k/<k> (9)

where c is a normalization term. For Φ(k) = log k, we obtain [31]

pk ∼ kβ′

. (10)

β′ < 0 is satisfied provided that [31]

∑m
k=1

kβ′

log k
∑m

k=1
kβ′

<
1

m

m
∑

k=1

log k.
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Zipf’s law [10] can be straightforwardly obtained from Eq. 10 with β ′ = −2.
If f is the frequency of a signal and pf is the probability of f , Eq. 3 can be
written as

f =
k

n
∑m

i=1
pkk

=
k

n 〈k〉

If P (k = K) is the probability the random variable k (the number of objects
per signal) is K then using pf = P (k = fn 〈k〉) with Eq. 10 we get

pf ∼ fβ′

.

Using the same argument on Eq. 9 we obtain

pf ∼ e−nf .

We have seen that explaining a wide range of exponents for the scaling in word
frequencies is a relaxation of a more restrictive principle, minimizing both the
coding and decoding effort. The dual least effort satisfaction model predicts
that all signals will tend to have the same frequency if only receiver needs
are satisfied. The decoding least effort presented here, with scaling in word
frequencies, does not contradict the dual least effort model. The decoding least
effort model assumes what is a side-effect close to the phase transition in the
dual least effort model, i.e. maximizing H.

We have seen that the decoding least effort model with Φ(k) = log k predicts
without specifying the value of β. The dual least effort model shows scaling
consistent with Zipf’s law for λ ≈ λ∗ [17]. When λ < λ∗, word frequencies
obey

P (i) ≈











1 if i = 1

0 otherwise
(11)

where P (i) is the frequency of the i-th most frequent word. Eq. 11 can be
rewritten as P (i) ∼ i−α with α → ∞. When λ > λ∗, word frequencies obey
p(i) ∼ 1/n which can be rewritten as P (i) ∼ i−α with α = 0. Knowing (see
for instance [34,35,12])

β =
1

α
+ 1, (12)

we can argue that Eq. 1 is always present in the dual least effort model, not
only for the transition but also at the two phases. The typical Zipf’s law in
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human language is a particular case of scaling with non-extreme exponents,
since P (i) ∼ i−α is only monotonically decreasing (and thus P (i) can be
defined as the frequency of the i-th most frequent word) only when α ∈ [0,∞).

Now, we will find a simple relationship between ED and β. c, the normalization
term of Eq. 10, can be approximated solving

c

m
∫

1

k−βdk = 1 (13)

which leads to

c ≈
1 − β

m1−β − 1
(14)

provided β 6= 1. β can be approximately determined substituting Eq. 10 into
the definition of ED of Eq. 7 as follows

ED =

m
∫

1

ck−β log kdk (15)

Solving the integral in the right side of the previous equation with β 6= 1 we
get

ED = c
1

1 − β

[

m1−β

(

log m −
1

1 − β

)

+
1

1 − β

]

(16)

which we rewrite as

ED =
1

m1−β − 1

[

m1−β

(

log m −
1

1 − β

)

+
1

1 − β

]

(17)

using Eq. 14. Notice that the previous equation is undetermined for β = 1 or
m = 1. If m → ∞ and β > 1 we have

β =
1

ED

+ 1 (18)

It follows from Eq. 12 and Eq. 18 that ED = α. Since ED ≥ 0 (when β > 1),
then solving

dED

dβ
= −

2

(β − 1)2
= 0

gives a global minimum of ED for β → ∞.
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Knowing that α = 0 and therefore β → ∞ minimize not only ED but also
maximize the potential information transfer [36,37], we may ask why human
language has chosen α ≈ 1 and therefore β ≈ 2 as its typical exponents. Is
the answer that human language is more a system of thought and mental rep-
resentation than a communication system as some researchers have proposed
[38–40]? Probably the answer is that the pressure for maximizing informa-
tion transfer, minimizing the decoding effort in human language has to satisfy
conflicting goals. The dual least effort model tells us that adding coding least
effort is a suitable answer for β ≈ 2. Other exponents require putting into con-
sideration other constraints. Nouns, with β ≈ 3.35 are closer to the theoretical
maximum information limit (β → ∞), suggesting they have violated the bal-
ance or or maximum tension between coding and decoding needs in other
to achieve higher information transfer, that is, lower decoding effort. Eq. 18
suggests that nouns have lower decoding effort than the typical ED given by
Zipf’s law with β ≈ 2. Similarly, schizophrenics speech with 1 < β ≤ 2 suggest
they are not taking into account the effort for the hearer their exponents im-
ply high values of ED. This is consistent with the suspect that schizophrenic
speakers tend to lump together too many meanings in one form of expression.
Schizophrenics overload word meanings [10].

Therefore, exponents are indicators of ED and have to do with information
transfer. To make it more explicit, Eq. 1 and Eq. 18 give

pf ∼ f
−

1

ED
−1

.

It should be understood from the present work that β < ∞ does not imply
that scaling in word frequency has nothing to do with effective communication
although different mechanisms can lead to Zipf’ law [37]. Eq. 18 bridges the
gap between power word frequency distributions and communicative efficiency.
There are many possible ways of minimizing the decoding effort, but probably
only one where hearer and speaker needs are at the maximum tension, i.e.
β ≈ 2.

Our work puts a step forward to understand complex and simpler communica-
tions systems. The former making use of Φ(k) = log k and the latter Φ(k) = k.
Scaling in different contexts [10,7,8,6] suggests that many systems in nature
make use of non-trivial mechanisms for reducing the uncertainty associated
to the codes they generate. Minimizing Φ(k) = k helps to decrease the uncer-
tainty associated to the interpretation of a signal but does not lead scaling.
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