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Abstract

Speech enhancement improves recorded voice utterances to eliminate noise
that might be impeding their intelligibility or compromising their quality.
Typical speech enhancement systems are based on regression approaches
that subtract noise or predict clean signals. Most of them do not oper-
ate directly on waveforms. In this work, we propose a generative approach
to regenerate corrupted signals into a clean version by using generative ad-
versarial networks on the raw signal. We also explore several variations of
the proposed system, obtaining insights into proper architectural choices for
an adversarially trained, convolutional autoencoder applied to speech. We
conduct both objective and subjective evaluations to assess the performance
of the proposed method. The former helps us choose among variations and
better tune hyperparameters, while the latter is used in a listening experi-
ment with 42 subjects, confirming the effectiveness of the approach in the
real world. We also demonstrate the applicability of the approach for more
generalized speech enhancement, where we have to regenerate voices from
whispered signals.

Keywords: speech enhancement, audio transformation, generative
adversarial network, neural networks.

∗Corresponding author.
Email address: santi.pascual@upc.edu (Santiago Pascual)

Preprint submitted to Speech Communication February 4, 2020



1. Introduction

Speech enhancement aims to improve the intelligibility and quality of
speech contaminated by additive noise (Loizou, 2013). Its main applica-
tions are related to improving the quality of communications in noisy en-
vironments. However, we also find applications related to hearing aids and
cochlear implants, where enhancing the signal before amplification can sig-
nificantly reduce discomfort and increase intelligibility (Yang and Fu, 2005).
Speech enhancement has also been successfully applied as a preprocessing
stage in speech recognition and speaker identification systems (Ortega-Garcia
and Gonzalez-Rodriguez, 1996; Yu et al., 2008; Maas et al., 2012). For in-
stance, the later-presented frequency-domain version of our proposed system
has already been used as a front end in a speech recognition pipeline (Don-
ahue et al., 2018a).

Most of the current speech enhancement systems are based on the short-
time Fourier analysis/synthesis framework, where only the spectral magni-
tude is treated to remove contaminating artifacts (Loizou, 2013). Recov-
ering the signal is, in that case, a matter of recombining the cleaned-up
magnitude with the input phase. This approach is common practice, as it
is often claimed that short-time phase is not important for speech enhance-
ment (Wang and Lim, 1982). Nonetheless, other studies show that significant
improvements of speech quality are possible, particularly when a clean phase
spectrum is known (Paliwal et al., 2011).

Generative adversarial networks (GANs; Goodfellow et al., 2014) are
state-of-the-art generative models within the deep learning framework. In
this work, we present a GAN for speech enhancement that works with the raw
audio signal (Pascual et al., 2017) and aims at more generalized speech en-
hancement tasks. We first describe our speech enhancement GAN (SEGAN)
applied to denoising, together with an extensive exploration of variations that
leads to an increase in performance and efficiency. With this step, we find
that two key variations are the introduction of learnable skip connections and
the reduction of the architecture size by means of larger convolutional strides,
which in turn increases the adversarial training stability. We then compare
our approach to classic speech enhancement algorithms, such as Wiener fil-
tering and statistical-based methods (Loizou, 2013), and to other deep neural
networks working on the frequency domain. A novel application of SEGAN
is also presented that goes beyond simple denoising and timewise sample
correspondence as a result of several changes in the GAN loss functions. We
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first substitute temporal regularization with spectral regularization. Second,
we enforce content preservation with the addition of an extra adversarial sig-
nal. With these augmentations, we address the regeneration of whispered
speech into a more natural and voiced signal. We call this modification a
whispered-to-voiced conversion, applicable to the assistance of people lack-
ing vocal folds, potentially after total laryngectomy surgery (Gonzalez et al.,
2017a,b).

The article is structured as follows. Sec. 2 is a review of different types
of speech enhancement algorithms in our current context. This review is
followed by a more detailed review of GANs in Sec. 3. Our model is then
introduced in Sec. 4, covering all architectural, configuration, and training
details. Sec. 5 explains the experimental configuration. In Sec. 6, we de-
scribe several model variations and their objective results, together with a
subjective comparison of the best-performing variant against other compet-
itive systems. Sec. 7 presents the application of whispered-to-voiced conver-
sion. Finally, conclusions are discussed in Sec. 8. Code for our approaches1,
deep learning baselines2, and audio samples for denoising3 and dewhisper4

applications are available online.

2. Related Work

Classic speech enhancement includes spectral subtraction (Berouti et al.,
1979), Wiener filtering (Lim and Oppenheim, 1978), statistics-based meth-
ods (Ephraim, 1992) such as the minimum mean squared error (MMSE), and
subspace algorithms (Dendrinos et al., 1991; Ephraim and Van Trees, 1995).
Neural networks are a recent and successful trend for this task, although they
were initially applied in the 1980s by Tamura and Waibel (1988), and later by
Parveen and Green (2004). Recent widely used architectures typically work
in the spectral domain, as with classic techniques, to learn a regression to
the clean spectrum, typically in the form of a denoising autoencoder (DAE;
Lu et al., 2013; Xu et al., 2015). Other approaches work by predicting masks
with deep neural networks that palliate noisy spectral regions (Narayanan
and Wang, 2013; Williamson and Wang, 2017; Wang et al., 2014). Recurrent

1https://github.com/santi-pdp/segan_pytorch
2https://github.com/santi-pdp/spentk
3http://veu.talp.cat/seganp
4http://veu.talp.cat/whispersegan
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neural networks (RNNs) are also used, owing to their success in modeling
sequential processes. Research shows that RNNs can predict a better con-
textualized set of frames or masks (Maas et al., 2012; Weninger et al., 2015,
2014; Erdogan et al., 2015). The use of dropout, postfiltering, and perceptu-
ally motivated metrics is also effective. Xia and Bao (2013) propose to use
a weighted DAE, altering the mean squared error loss function by assigning
weighting factors to each spectral component. Furthermore, Shivakumar and
Georgiou (2016) use a loss function that considers the perceptual quality of
speech, and Fu et al. (2018) use an intelligibility loss to obtain better scores
than those of plain regression losses. Williamson and Wang (2017) use a
deep neural network (DNN) in the spectral domain, including the phase, by
working with complex masks.

Convolutional neural networks (CNNs) are also known to perform well
for locally correlated data, such as speech waveforms or spectrograms. As
such, we have used them for one of the first speech enhancement systems
working with the raw audio signal (Pascual et al., 2017). Other contem-
porary studies use deep convolutional structures for this task in the form
of regression architectures, such as the work by Park and Lee (2017), who
emphasize the need for reduction in model size (typically achievable through
CNNs), or the denoising WaveNet (Rethage et al., 2018). Other approaches
use improvements in the adversarial setup in the form of a Wasserstein GAN
with gradient penalty (Gulrajani et al., 2017; Qin and Jiang, 2018). More-
over, adversarial losses have been used in the speech enhancement field to
work without parallel corpora of aligned pairs (Higuchi et al., 2017). The
adversarial framework also appeared as a methodology to combine speech
enhancement together with automatic speech recognition systems, either in
the waveform or the spectral domain (Donahue et al., 2018a; Meng et al.,
2018).

3. Generative Adversarial Networks

GANs (Goodfellow et al., 2014) are generative models that learn to map
samples z from some prior distribution Z to samples x from another distri-
bution X , which is the one of the training instances (e.g., images or audio).
The component within the GAN structure that performs the mapping is
called the generator network (G), and its main task is to learn a function
whose outcomes can imitate some real data distribution. In this way, we can
generate novel samples related to those of the training set. Importantly, G
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does so not by memorizing input-output pairs but by mapping the data dis-
tribution characteristics to the manifold defined in our prior Z. Thus, there
is an inherent stochastic component (in this case the sampling from Z) that
implies a different outcome for every generated prediction.

Adversarial training is the key component with which G learns to per-
form the aforementioned mapping. In this configuration, we have another
component, called the discriminator network (D), which is typically a binary
classifier. Its inputs are either real samples, coming from the dataset, or syn-
thetic samples, entirely made up by G (which in turn imitates real samples).
The adversarial characteristic comes from the fact that D has to classify the
samples coming from X as real, whereas the samples coming from G, X̂ , have
to be classified as synthetic. This condition leads to G trying to fool D, and
the way to do so is that G adapts its parameters such that D classifies the
G output as real. During back-propagation, D improves at finding realistic
features in its input; in turn, G corrects its parameters to move towards the
real data manifold described by the training data (Fig. 1). This adversarial
learning process is formulated as a minimax game between G and D, with
the objective

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] +

+ Ez∼pz(z) [log (1−D (G (z)))] .

The previously described model would learn to generate novel samples
that could resemble random real points, but it is often interesting to add
a conditioning factor that can be used for a specific task. We can thus
work with a conditioned version of GANs, where we have some additional
information in G and D to perform mapping and classification (see Isola
et al., 2017, and rerefernces therein). In our case, we can condition the
generation to a contaminated input utterance such that G has to output
a clean version of it. The minimax game formulation is then modified to
include a conditioning input vector x̃:

min
G

max
D

V (D,G) = Ex,x̃∼pdata(x,x̃) [logD(x, x̃)] +

+ Ez∼pz(z),x̃∼pdata(x̃) [log (1−D (G (z, x̃) , x̃))] .
(1)

Note that D is also receiving the conditioning vector x̃ such that the informa-
tion flowing back from D to G during training incorporates tied descriptions
of both reality x (clean signal) and its conditioning reference x̃ (noisy or
corrupted signal).
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Figure 1: Schema of the GAN training process. First, D back-props a batch of real
examples (left). Then, D back-props a batch of synthetic examples that come from G
and classifies them as synthetic (middle). Finally, the D parameters are frozen, and G
back-props to make D misclassify the examples (right).

There have been a number of improvements to the classifier structure of
the discriminator to stabilize the overall adversarial training. These devel-
opments make D learn better features, with a better gradient flow in some
cases relative to the classical formulation, which in turn improves the training
of G, as it receives better error signals. The binary classification output in
D can suffer from vanishing gradients due to the sigmoid cross-entropy loss
used for training. To solve this problem, the least squares GAN (LSGAN)
approach (Mao et al., 2017) replaces the cross-entropy loss with the least
squares function and an output linear unit, keeping the same binary coding
(1 for real and 0 for synthetic). With this replacement, the formulation in
Eq. 1 changes to

min
G

V (G) =
1

2
Ez∼pz(z),x̃∼pdata(x̃)[(D(G(z, x̃), x̃)− 1)2],

max
D

V (D) =
1

2
Ex,x̃∼pdata(x,x̃)[(D(x, x̃)− 1)2]

+
1

2
Ez∼pz(z),x̃∼pdata(x̃)[D(G(z, x̃), x̃)2].
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4. Speech Enhancement GAN

4.1. Model

In the enhancement problem, we have an input noisy signal x̃, and we
wish to clean it, thus obtaining the enhanced signal x̂. In our configuration
we have, for every noisy signal, its clean reference x during training. The
proposed model follows the conditioned generative adversarial approach de-
scribed in Sec. 3. We call our model speech enhancement GAN, or SEGAN
for short. G is structured as a deep convolutional autoencoder (Fig. 2) that
first compresses the input waveform in time with the encoder and then re-
constructs a plausible clean version of it with the decoder. Compression is
done to discourage learning the identity function in the reconstruction of
x̃. Additionally, this autoencoder design also accelerates the convolution op-
erations in the decimated parts of the structure (shorter sequence lengths
involve faster processing) and reduces the memory footprint by using smaller
feature maps.

The generator input is the noisy speech signal x̃, which is projected into
an intermediate representation (see below). Its output is the enhanced ver-
sion x̂ = G(z, x̃). As the design of G is exclusively convolutional, there are
no fully connected layers nor autoregressive connections. This condition en-
courages the network to focus on temporally close correlations in the input
signal and throughout the whole forward process across layers. Additionally,
we note that it is a fast way to perform forward operations, as we process
the full signal with one forward operation through the whole G. This ap-
proach contrasts with that of autoregressive or RNN models, which cannot
be parallelized when computing each time step.

In the generation stage, the input signal x̃ is decimated and expanded fea-
turewise through a number of strided convolutional layers, followed by multi-
parametric rectified linear units (PReLUs, i.e., learnable activation negative
slope per feature channel; He et al., 2015). We choose strided convolutions
as they are more stable than other pooling approaches for well-known GAN
configurations (Radford et al., 2015). Decimation is implemented until we
obtain a condensed representation of a few time samples (in the form of
vectors of features), commonly called the thought vector c. This result is
concatenated with the generative noise component z, which adds stochas-
tic behavior to the generator predictions x̂ (we use isotropic Gaussian noise
for z). The encoding process is reversed in the decoding stage by means of
transposed convolutions (sometimes called deconvolutions), followed again by
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Figure 2: Autoencoder architecture for speech enhancement (G network). Feature maps
are depicted in blue and green. The decimation/interpolation factor sd depends on the
stride s and layer depth index d. The input waveform length is designated L, and the num-
ber of kernels/channels at each layer is kd. The right-side arrows denote skip connections,
which have a multiplicative scalar factor ad.

PReLUs. The only exception is the last layer, which has a tanh activation to
ensure that the output range is between −1 and 1. This step is introduced
for stability purposes as it avoids exploding gradients, owing to its activation
saturating regions, as in deep convolutional GAN (Radford et al., 2015).

The generator G also features skip connections, linking each encoding
convolutional layer output to its homologous decoding layer and bypassing
the compression performed in the middle of the model (Fig. 2). We do this
because the input and output signals of the model share the same underlying
structure of natural speech. We hypothesize that low-level details to recon-
struct the speech waveform properly could be lost if we force all information
to flow through the compression bottleneck. Skip connections can help in
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this scenario, directly passing the fine-grained information of the waveform
to the decoding stage. Moreover, we observed that skip connections offer a
better training behavior, as the gradients can flow deeper through the whole
structure (He et al., 2016). Our skip connections contain a multiplicative
scalar factor al,k per signal channel k and layer l. Therefore, if we have
k = 16 channels, after the first encoder layer (l = 1) we will have a vector
a1 ∈ R16 of amplifying or attenuating factors. These al vectors are learned
together with the whole convolutional structure. In this way, the scaling of
every feature map is optimized for the end task. At the j-th decoder layer
input, we merge the (scaled) l-th encoder layer with the j − 1-th decoder
layer responses, following either a summation,

hj = hj−1 + al � hl,

or a concatenation,
hj = [hj−1; al � hl],

where hj is the output of the j-th layer and � is an elementwise product
along channels. Concatenation gives us slightly better results, but summa-
tion can also be competitive and compelling to make the system work with
computationally restricted resources, as it requires fewer feature maps than
the other option (see Sec. 6).

To complete the GAN structure, we have the discriminator network,
which follows the same one-dimensional convolutional structure as the G
encoder, hence matching the conventional topology of a convolutional classi-
fication network. However, there are a few differences from theG encoder: (1)
the discriminator network provides two input channels, (2) it can use some
form of batch normalization (Ioffe and Szegedy, 2015) before LeakyReLU
nonlinearities of α = 0.3, and (3) in the last activation layer, there is a
one-dimensional convolution layer with a single filter of width 1 and stride
1. The latter (3) reduces the amount of parameters required for the final
classification neuron, which is fully connected to all hidden activations with
a linear behavior (no activation function in between). This aspect reduces
the amount of required parameters in the last activation from T × 1024 to T
with a learnable weighting.

4.2. Training

With the generator G and the discriminator D, we then build the ad-
versarial setup, which means that D leaks information to G during back-
propagation of what is real and what is synthetic. This way, G can slightly
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correct its output waveform towards the realistic distribution, discarding the
noisy signals as those are signaled to be synthetic. In this sense, D can be
understood as learning some sort of loss for the G output to look real, so that
the enhancement must remain faithful to the speech signal and eliminate all
the surrounding noise as much as possible. However, in preliminary experi-
ments, we found it convenient to add a secondary regression component to
the loss of G to minimize the distance between its generations and the clean
examples. This way, the adversarial component can add more fine-grained
and realistic results to the regression component. Both losses together were
more stable than the separated case.

We chose the L1 norm to be our regularizer, as it has been proven to be
effective in the image manipulation domain (Isola et al., 2017; Pathak et al.,
2016). Therefore, the G loss becomes

min
G

V (G) =
1

2
Ez∼pz(z),x̃∼pdata(x̃)[(D(G(z, x̃), x̃)− 1)2]

+ λ ‖G(z, x̃)− x‖1,
(2)

where λ is a hyperparameter that controls the magnitude of the regression
component. We set λ to 100 after observing a better minimization trend cor-
related with signal quality. If λ is set to a smaller value, the L1 term oscillates
erratically. If it is set to a larger value, G behaves as a simple regressor. At
approximately 100, this regularization term helps stabilize the training and
yields favorable results (which is expected on a purely signal denoising task).
However, having an L1 regularization term can be a limitation when we have
misalignment in input/output pairs, as it forces every sample of the output
to match with the corresponding sample of the input. We did not encounter
this problem when removing additive noise, but we had to replace this term
when dealing with speech reconstruction (see Sec. 7).

In terms of input data for D, and contrasting to typical adversarial train-
ing configurations, our configuration does not check whether a chunk is real
or synthetic. Instead, training works with pairs of chunks that make real
or synthetic targets as follows: a real pair is composed by a clean and a
noisy signal (x, x̃) and a synthetic pair is composed by an enhanced and a
noisy signal (x̂, x̃). This is why D needs a stereo input: it classifies the com-
parison between both chunks as being real or synthetic. The training data
were obtained by sliding a window of 16,384 samples (approximately 1 s at
16 kHz) every 500 ms from every training waveform. To study the variations
on our architecture, models train for 100 epochs with a batch size of 300. A
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validation set of another 300 segments with maximum variability (different
speakers than those in training, different noises, and different SNRs) is used
to find reasonable plateaus in COVL and SSNR metrics (Sec. 5.3).

4.3. Generation

As G is a fully convolutional structure, we can forward any chunk size
L at test/generation time, with the only restriction being that the size be a
multiple of the decimation factor ∆ of the encoder. This means that we have
to pad sequences with P zeros in some cases to fulfill N = L+P

∆
∈ Z, so that

we recover L+P samples in the decoder output, to finally remove the leftover
P values and retain our original L samples in our region of interest. When
it comes to training, however, D has a fully connected output classification
layer, which requires us to use fixed-size chunks.

At test/generation time, the difference between concatenating individu-
ally processed chunks of 1 second and processing any length T through G was
objectively negligible. Hence, for long signals where intermediate network
activations do not fit in memory (neither GPU’s nor RAM), we can chunk
without overlap, and by sliding G with the same z through the chunks, we
can reconstruct with a concatenation.

5. Experimental Configuration

5.1. Data

To evaluate the effectiveness of our approach, we employ the clean speech
in the VCTK Corpus (Veaux et al., 2016) and the noises from the Demand
dataset (Thiemann et al., 2013), together with some extra synthesized noises
following the structure and scripts of Valentini-Botinhao et al. (2016). We
choose to generate these data ourselves, based on publicly available datasets
with a massive amount of speakers because, this way, we can increase the
pool of available speaker variability following the same SNR and noise vari-
ation structure as in Valentini-Botinhao et al. (2016). We have 109 available
speakers in VCTK, out of which we split into 80 for training, 14 for valida-
tion, and 15 for testing. We force different speakers per split to study the
generalization of the enhancement algorithm to unseen speakers.

To further lessen the intersection between splits, we run preprocessing to
look for the least possible intersection in terms of textual contents between
them. We find a total of 44,085 text files in the corpus, but with simple
preprocessing, we obtain approximately 14,000 unique ones at the sentence
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level. We process the text files by lowercasing and eliminating any carriage
return characters, punctuation signs, and repeated spaces. This way, we
obtain strings that can be compared literally among speakers (even though
some strings can still have same spoken contents but slightly different text
files, with some spontaneous missing determinants such as “the”). Based on
this simple rule, we select the 15 speakers that have minimum text intersec-
tion with others for testing. The validation set is made of 14 speakers within
the remaining pool of 94 available ones after test selection. We also retain
gender balance to remain consistent in each subcorpus.

The noise conditions imposed with the abovementioned structure and
scripts are 10 different noises with 4 SNR levels each for training and 5
different noises with other 4 SNR levels each for testing. The SNR conditions
were {0, 5, 10, 15} dB for training and {2.5, 7.5, 12.5, 17.5} dB for testing. The
noises used were (1) synthetic babble: many speakers in background; (2) real
cafeteria: a busy office cafeteria; (3) real car: in a private passenger vehicle;
(4) real kitchen: inside a kitchen preparing food; (5) real meeting; (6) real
metro: a subway; (7) real restaurant; (8) synthetic ssn: white noise low-pass
filtered; (9) real station; and (10) real traffic: a busy traffic intersection; for
training/validation, and (1) real bus; (2) real cafe: the terrace of a cafe at
a public square; (3) real living: inside a living room; (4) real office; and (5)
real square: a public town square with tourists; for testing (noise types were
randomly selected).

5.2. Baselines

We compare our model with two sets of baselines: (1) classic methods
that do not require training parameters and (2) two deep learning methods
that work in the spectral domain. Regarding the classic methods, we used a
Wiener filter together with a statistical model based on the LogMMSE esti-
mator. Both are taken from Loizou (2013). The deep learning methods are
based on discriminative learnable nonlinear mappings. First we have mod-
els mapping noisy spectrum frames to clean spectrum frames. Based on Xu
et al. (2015) and the modifications of the deep neural network baseline by Fu
et al. (2017), we first build a deep neural network (DNN) with fully connected
units, where we inject C input log-power spectral frames and obtain a single
clean one. Consequently, we have a context window for which we clean up
the central frame (Fig. 3). The structure of the network is a stack of 4 hid-
den layers of 1024 units each and an output layer that projects to the proper
dimensionality to match the number of frequency bins F of our signal. We
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Figure 3: (a) LPS-DNN: Deep neural network baseline mapping of a context window of
C log-power spectral frames to the central clean frame. (b) LPS-BLSTM: Bidirectional
long-short term memory recurrent neural network that maps the full input noisy sequence
to the clean one. The output of the BLSTM (forward and backward extracted features) is
fed to an additional multi-layer perceptron to fullfil a final transformation and dimension
adaptation sharing weights through time.

refer to this model as log-power spectrum DNN (LPS-DNN). Every hidden
layer is a stack of an affine transformation, followed by a multiparametric
PReLU activation and batch normalization. The FFT resolution remains for
all experiments at 512, so that we address F = 257 bins. We then consider
L1 and L2 losses and variations of C to check the regime of values in which
we have a competitive baseline.

We also implement a bidirectional LSTM network (BLSTM; Hochreiter
and Schmidhuber, 1997) for its known good modelling capacity for sequential
problems like this (Maas et al., 2012; Weninger et al., 2015, 2014; Erdogan
et al., 2015). Our BLSTM has 650 cells, followed by a multi-layer perceptron
to perform a final transformation and dimension adaptation. This last mod-
ule’s parameters are shared at all time-steps, and the hidden layer is of size
1024, following the LPS-DNN output structure. This network is designed to
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be comparable in terms of parameters to those of the LPS-DNN with C = 1,
where only the sequential processing structure is changed. We also perform
the L1 and L2 loss variations. We find that the LPS-BLSTM models require
more careful tuning than the LPS-DNN given their tendency to stop learn-
ing because of gradient propagation issues if activations and gradients do
not have the proper magnitudes (Hochreiter and Schmidhuber, 1997). For
this reason, we normalize the first two statistical moments of the inputs and
apply gradient clipping to stabilize and promote the proper learning during
back-propagation through time (Pascanu et al., 2013), which we observe to
be beneficial in this case.

Finally, we also make a fully convolutional auto-encoder structure trained
as a plain L1 regression, hence decoupling the adversarial component from
the system presented in Sec. 4. The specific configuration of this model is
the best one resulting from the ablation study performed in Sec. 6.1, so that
only the adversarial component is removed. This is an interesting way to
assess the effect of the adversarial component for the considered tasks.

All models were trained with the Adam optimizer (Kingma and Ba,
2015) with default parameters as in PyTorch version 0.4.1 (Paszke et al.,
2017). They are trained with all noise types, SNR conditions, and speakers
(Sec. 5.1). Note that these approaches do not use any supervision such as
speaker identity or noise type. This way, we expect them to generalize to
the different kinds of noises and speakers, which we also do with our model.
These baselines are competitive counterparts to our waveform-based model.
Specially the LPS ones as they work with more condensed information, with
a prelocation step we perform that focuses on the spectral magnitude, where
additive noise can be detected and removed easily.

5.3. Objective Metrics

We evaluate the quality of the enhanced speech with a set of well-known
objective metrics, which serve as tools to obtain an estimation on how well
the models work. All of them compare the enhanced signal with the clean
reference of 4,432 test set files. They have been computed with our Python
reimplementation of the algorithms in Loizou (2013), which were available at
the publisher website. The metrics, their meaning, and their range of values
are as follows:

• PESQ: Perceptual evaluation of speech quality using the wide-band
version recommended in ITU-T P.862.2 (ITU, 2007).
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• CSIG: Mean opinion score (MOS) prediction of the signal distortion
attending only to the speech signal (Hu and Loizou, 2008).

• CBAK: MOS prediction of the intrusiveness of background noise (Hu
and Loizou, 2008).

• COVL: MOS prediction of the overall effect (Hu and Loizou, 2008).

• SSNR: Segmental SNR (Scalart and Filho, 1996).

• STOI: Short-time objective intelligibility (Taal et al., 2010, 2011).

The PESQ metric ranges between -0.5 and 4.5. MOS regression metrics
(CSIG, CBAK, and COVL) take values between 1 and 5. SSNR, in dB, is in
the range [−10, 35], as we trim it following the abovementioned implemen-
tation. STOI takes values in the range of 0 to 1. For all metrics, the higher
the score is, the better the speech quality and the intelligibility.

6. Results

In the following, we make two blocks of analyses. In the first block, we
conduct an ablation study of different SEGAN configurations and structures,
departing from our first version introduced in Pascual et al. (2017). New
configurations allow us to obtain an improved version of SEGAN, SEGAN+,
which we take as our current best model. In the second block of analyses,
we make performance comparisons between SEGAN/SEGAN+ and baseline
systems, which comprises both objective and subjective evaluations.

6.1. Model Variations

The variations introduced in the first block of experiments to improve
SEGAN are the encoder/decoder stride size, encoder/decoder kernel size,
optimizer, normalization schemes, enhancement with z, and skip connections
design. All variation results are shown in Table 1, where model variants have
an identifier that follows a tree development, from V1 (first SEGAN) toward
the latest leaves in the V1.2.8.x level. We highlight the best node (SEGAN+)
of the tree in bold. We follow these different node details in the following
sections, where a set of takeaways emerge:
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• It is important to have an aggressive decimation factor per encoder
stage while maintaining a large kernel width. This approach allows for
an efficient architecture that, as a result of the large receptive field,
maintains satisfactory performance.

• Some normalization mechanism, either spectral normalization (G and
D) or batch normalization (D), is essential for the correct training of
the system. Both increase performance in a similar way, allowing for
better training gradient flows for a deep structure such as the one we
consider.

• Learnable skip connections are a significant improvement on the G
architecture. Using a scalar factor per hidden feature allows for impor-
tance filtering of feature maps from encoder to decoder. This approach
provides better results with the same stability and similar gradient
propagation as regular skip connections.

• The latent vector z is not clearly used as a generative component in
noise removal, but we find that it helps as a regularization factor of G
(without any additional requirements of dropout, batch normalization,
or weight magnitude restrictions).

In the following subsections, we comment each variation in detail.

Table 1: Objective performance for different architecture variations. SEGAN is the first
approach we developed in Pascual et al. (2017) but is evaluated over the new dataset (V1).
SEGAN+ is the new best-performing model out of the different variations (V1.2.8). For
both COVL and SSNR metrics, higher is better. Letters η and ω denote the learning rate
and kernel width, respectively.

Model Description COVL SSNR

V1
(SEGAN)

SEGAN first version with a stride of 2, a
kernel width of 31, and batch norm in D.

2.77 5.15

V1.1 V1 made smaller and narrower, with a stride
of 4 and a kernel width of 11.

2.58 4.38

V1.2 V1 made smaller with the same kernel sizes,
with a stride of 4 and a kernel width of 31.

2.89 6.65

V1.2.1 V1.2 with spectral normalization in G and
D and ηG = 10−4, ηD = 4 · 10−4.

2.33 6.42
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V1.2.2 V1.2 with spectral normalization in G and
D and ηG = 10−4, ηD = 4 · 10−4, and no
batch norm in D.

2.72 6.56

V1.2.3 V1.2 with Adam and no batch norm in D. 2.10 3.35
V1.2.4 V1.2 with spectral normalization in G and

D and ηG = 10−4, ηD = 4 ·10−4, Adam, and
no batch norm in D.

2.88 6.59

V1.2.5 V1.2 with no batch norm in D. 2.00 3.75
V1.2.6 V1.2 with Adam. 2.73 6.84
V1.2.7 V1.2 with convolutional skip connections. 2.73 3.30
V1.2.8
(SEGAN+)

V1.2 with learnable scalar skip con-
nections initialized at 1.

3.00 7.05

V1.2.8.1 V1.2.8 with skip connections initialized at
0.

2.89 6.83

V1.2.8.2 V1.2.8 with summation merge of feature
maps.

2.83 6.82

V1.2.8.3 V1.2.8 skipping post-activation feature
maps.

2.90 6.04

V1.2.8.4 V1.2.8 without z vector. 2.20 4.19
V1.2.8.5 V1.2.8 without biases. 2.88 7.11
V1.2.8.6 V1.2.8 modifying kernel widths: ωGenc = 31,

ωGdec = 4, and ωD = 31.
2.61 6.37

V1.2.8.7 V1.2.8 modifying kernel widths: ωGenc = 31,
ωGdec = 4, ωD = 31, and no biases.

2.83 5.96

6.1.1. Encoder/decoder stride and kernel sizes

In this first level of experiments, we determine the effectiveness of increas-
ing kernel stride in terms of both stability and performance, in addition to
the degradations in performance associated with smaller kernel widths (V1.1
and V1.2, Table 1). This condition also makes G more efficient, yielding a
generation process that is 1.7 times faster than real time on a CPU and 17
times faster on a GPU.

Sec. 4 introduces SEGAN as a flexible deep convolutional design. The
first SEGAN proposal (V1) is composed of convolutions/deconvolutions of
stride 2 and kernel width 31. The feature map configuration of the G network
is as follows: 16384×1, 8192×16, 4096×32, 2048×32 , 1024×64, 512×64,
256 × 128, 128 × 128, 64 × 256, 32 × 256, 16 × 512, and 8 × 1024. This
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configuration is mirrored in the decoder to go back to 16384× 1 resolution,
with some possible doubled feature channels if we use concatenative skip
connections (Sec. 4).

One of the goals of our design is its speed, and decimation is a key factor
to increase speed in a fully convolutional setup. An initial step we take is
to reduce the size of model, hence increasing its computational efficiency, by
means of increasing the stride factor from 2 to 4. After changing the stride
to 4, we reduce the amount of layers from 22 to 10 such that we obtain the
feature map structure 16384×1, 4096×64, 1024×128, 256×256, 64×512, and
16× 1024 in the G encoder. Our first interest was reducing the model depth
itself while maintaining the quality, but we found a quality increase, and
we hypothesize that this factor might be related not only to less depth but
also to the change in decimation, as we observe a change in high-frequency
artifacts appearing in the G output with this structural change. Recently, the
aliasing effect increasing with convolutional pooling was shown to degrade
classification tasks with a waveform injected into the network (Gong and
Poellabauer, 2018). Nonetheless, it remains unclear how this aliasing affects
the quality of waveform generative models (Donahue et al., 2018b), as it may
be used to reconstruct missing frequency bands when upsampling from the
latent space in GAN frameworks.

6.1.2. Normalization schemes

After experimenting with different normalization schemes, we determine
how important they are to stabilize the adversarial training. Hence, either
batch normalization in D or spectral normalization in both networks (G and
D) is required to obtain training stability. Nonetheless, they should not be
applied jointly because the performance would degrade. These observations
are shown in results V1.2.1–6 (Table 1), where we vary optimizers and nor-
malization schemes.

Whenever we do not use any form of normalization (V1.2.3 and V1.2.5),
we obtain more unstable results that lead to lower objective scores, particu-
larly in terms of SSNR, as outputs are quite noisy. Hence, unless we use some
form of normalization somewhere in the full GAN structure, either training
diverges or the results are noisy and of poor quality. Moreover, we encoun-
tered no substantial difference between using virtual batch normalization as
we did originally (Pascual et al., 2017) or plain batch normalization while
reproducing SEGAN on the current data (V1). Thus, we use plain batch nor-
malization for the sake of simplicity in all our current experiments. Spectral
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normalization, a promising technique for conditioned generator structures, is
based on upper bounding gradient magnitudes (Zhang et al., 2018). Nonethe-
less, we could not obtain a better result than the one we had with plain G
and batch normalization in D.

6.1.3. Optimizer

We also find that both Adam and RMSprop (Tieleman and Hinton, 2012)
optimizers are effective and yield a stable training across the different con-
figurations with varying learning rates (V1.2.1–6, Table 1). We depart from
V1, with small and balanced learning rates ηG = ηD = 5 · 10−5, and we also
implement the recent two-timescale update rule (TTUR; Heusel et al., 2017).
TTUR is a promising schedule to emulate a discriminator that is updated
more often than the generator by simply applying a scaled ratio ηD

ηG
= 4, thus

ensuring ηD = 4 · 10−4 and ηG = 10−4 (Heusel et al., 2017). Even though
we achieve competitive results with TTUR (even better than those of V1),
we discard them because the results are not better than that of V1.2. We
therefore continue using RMSprop with ηG = ηD = 5 · 10−5.

6.1.4. Skip connections

We see that including skip connections with a simple learnable scalar
boosts the performance of the system. Skip connections facilitate gradient
flow, while learnable scalars are trained to determine which level of detail
from the encoder layers is shuttled to the decoder layers. We also found that
skip connections in G to help stabilize the training process (so much that if
we try to train the system without them, it collapses). In V1, we have the
simplest skip connections possible: they forward the feature map through an
identity function to shuttle features, and gradients flow back and reach the
deepest part of the structure. We decided to make them learnable such that
the optimization process can weight their importance independently because
they can act as pseudo-attention mechanisms of what levels of features are
more important to be shuttled in the decoding process. Experiment V1.2.8
shows the effectiveness of this approach, surpassing the performance of V1.2.4
(Table 1).

Following the criteria that learnable skip connections can enable addi-
tional processing that helps the decoding stages, we also tried configuring
them as convolutional layers of kernel width 11. This approach is expected
to allow them to transform certain filter bands or shift subsignals temporally
in the hidden layers, as much as the kernel width. However, the result of this

19



scheme was not positive (V1.2.7). We hypothesize this is due to the possible
introduction of noisy transformations when shuttling the data and to the fact
that phase transformations are not well indicated for the task of denoising
the speech. Overall, we suggest that convolutional skip connections could
be useful in future tasks if we have strong misalignments between input and
output signals, so that these connections can operate with signal shifts from
encoder to decoder.

In addition to determining that learnable scalar skip connections give us
the best result so far, we experiment with two different initialization weights
on them: 0 and 1. We reach the conclusion that 1 (V1.2.8) is better than 0
(V.1.2.8.1). This result is an intuitive one, given the issues in gradient and
data flow provoked having no connections at the beginning. We also try the
summation merge described in Sec. 4 (V1.2.8.2), which is ultimately worse
than both concatenation alternatives with different initialization schemes.
Still, the use of this scheme might be of interest for running the system in
environments where memory and/or computing power is restricted, as having
fewer feature maps (and thus parameters) can be important. Finally, we
also check what happens if we pick the feature activations after the PReLU
(V.1.2.8.3) instead of prior to it (V1.2.8) in the encoder to shuttle them up.
These are injected into the input of each mirrored decoder layer as before.
Performance degrades in this case, thus indicating the superiority of the
linear projection before the activation for the skip connection.

6.1.5. Latent z

We find it beneficial to have a latent vector z at the core of the G struc-
ture, which yields better enhancement performance due to a possible regu-
larization effect in the denoising task. In the GAN context, z serves as a
stochastic element to make novel samples at each inference, thus providing
generative characteristic to G. Our first intention to place it in G is because
the enhanced signal is a regeneration of the noisy one. However, the prelim-
inary hearing results of z suggest that it only minimally affects any hearable
structure in the output (with the same input noisy signal sounding similar
to different z), which was already noted in the research of conditional gen-
erators when incorporating GANs (Isola et al., 2017). Nonetheless, when we
remove z, we systematically find a worse performance in all objective metrics
(V1.2.8.4, Table 1). We hypothesize that this effect is related to some form of
overfitting when we lack this noise. Further training checkpoints yielded sim-
ilar performances, including the checkpoint with minimum validation error
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in COVL and SSNR.
Although z has a reduced relevance as a generative component in the

speech denoising application, it can become a key piece in a speech restoration
task. In Sec. 7, we apply SEGAN+ on a more difficult signal regeneration
task, specifically, to construct pitch contours from damaged, silent speech.
In this new task, we empirically observed the generation of different but
plausible pitch contours with the same input. An example of this approach
is shown in Fig 5.

6.1.6. Biases

After experimenting with the introduction and absence of biases in the
full convolutional structures of G, we choose to maintain them as they give
a higher peak performance in perceptual objective results. Nevertheless, it
is worth discussing the importance of not having biases and considering this
feature for future implementations. The intuition behind the absence of bias
is that if we have pure silence in the input, we should have pure silence in
the output. This condition arises only if we have a multiplicative interaction
within the network with a zeroed-out signal, which is guaranteed if we do
not have bias terms in our convolutions. This variation (V1.2.8.5) shows a
slightly better SSNR than V1.2.8, but COVL shows a degradation (Table 1).

6.1.7. Transposed Convolutions

We also note the importance of having large kernel widths even in the de-
coder of the generator. We tried to reduce them to avoid overlapping in the
transposed convolution operations, owing to high-frequency artifacts that ap-
pear in the output waveform. These could be related to the checkerboard ar-
tifacts appearing in image generation transposed convolutions (Odena et al.,
2016), something already observed in recent GAN-based speech generation
systems (Donahue et al., 2018b). A plausible mechanism to remove them is
working with non-overlapping interpolated segments.

We thus try to reduce the kernel width in the decoder layers in an attempt
to make non-overlapping interpolations. Fig. 4 shows a schematic of the
transposed convolution concept with a non-overlapping form. If we have a
kernel width larger than the stride, information between inputs would be
mixed in the output of the layer (in the example figure samples, yi with
i > 4 would also depend on x1). Intuitively, for a learnable interpolation
in the decoder, a non-overlapping upsampling could suffice, provided that
the encoder has sufficient capacity to extract a representation with a large
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Figure 4: One-dimensional transposed convolution (‘deconvolution’) with both kernel
width and stride equal to 4. The same kernel with weights wi ∈ R with i ∈ [1, 4] (in
a one-channel input case) does not overlap itself with neighboring samples.

receptive field over the input signal. Nevertheless, we find empirical evidence
of a worse performance, particularly in terms of SSNR (compare V1.2.8 with
V1.2.8.6–7).

6.2. Comparative Results

We now report the results of the aforementioned second block of experi-
ments, comparing SEGAN (V1) and SEGAN+ (V1.2.8) with the considered
baselines (Sec. 5.2). We first report objective performance, assessed on a
held-out split (Sec. 5.1). Next, we report the results of a subjective prefer-
ence test, based on the mean opinion scores (MOSs) of 42 subjects.

6.2.1. Objective Performance

Table 2 shows the comparison between SEGAN, SEGAN+ and the con-
sidered baselines. First, we observe that all deep learning baselines are over
the classic baselines, specially for CBAK and COVL. Nonetheless, the SSNR
of the LogMMSE is much better than the one of the spectral deep learning
baselines: the SSNR of the LPS-DNN and LPS-BLSTM systems is actu-
ally at the level of the Wiener filter or below. The LPS-BLSTM approaches
achieve better perceptual scores, but do not reach the level of the LPS-DNN
systems in this setup. In terms of PESQ and MOS-like metrics, LPS-DNN
and LPS-BLSTM systems generally perform better than other systems. For
LPS-DNN, increasing the context C actually helps the DNN, as expected.
We also observe that there is a slight difference between using L2 and L1

losses in spectral deep learning baselines, but both behave comparably.
It is notorious that the speech enhancement auto-encoder (SEAE+) is

objectively comparable to SEGAN+ across perceptual metrics. Nonetheless,
CBAK and SSNR show some benefit on using the adversarial component to
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Table 2: Objective evaluation results with the considered baselines. The L1/L2 prefix
of DNNs and LSTMs describes the regression loss used, and the C value describes the
amount of context frames. For all metrics, higher is better.

Model CSIG CBAK COVL PESQ SSNR STOI

Noisy 3.28 2.28 2.56 1.92 0.03 0.74

Wiener 2.91 2.43 2.43 2.13 3.32 0.73

LogMMSE 3.16 2.67 2.64 2.27 5.00 0.72

L2-DNN-C1 3.82 2.70 3.02 2.26 2.98 0.70

L2-DNN-C7 3.98 2.83 3.22 2.47 3.22 0.73

L1-DNN-C7 3.95 2.81 3.17 2.42 3.38 0.72

L2-BLSTM 3.75 2.65 2.96 2.21 2.59 0.71

L1-BLSTM 3.82 2.69 3.01 2.24 2.84 0.70

SEGAN 3.52 2.69 2.77 2.10 5.15 0.73

SEAE+ 3.66 2.84 3.00 2.42 5.00 0.73

SEGAN+ 3.66 2.97 3.00 2.37 7.05 0.75

reduce the intrusiveness of background noise. This result is reasonable for a
purely denoising task, where it suffices to remove noisy components as in a
regression problem, as stated by Donahue et al. (2018a). However, it does
not suffice for other applications that require better generative characteristics
as in reconstruction (see Sec. 7).

In terms of STOI, we observe comparable values between all approaches,
with SEGAN+ presenting the best average, suggesting a better resulting
intelligibility over all presented models. We also observe that SEGAN+ is
superior to all other systems in terms of SSNR, which is related to removing
more noise, although it has slightly worse PESQ and MOS-like metrics than
the DNN-C7 baselines. We suspect that this result is related to the genera-
tive capability of the system: the network regenerates a signal that sounds
plausible, but such signal still differs from the original one used for evalua-
tion. Another possible source of trouble is high-frequency artifacts that we
identify listening to some samples during model development. Such artifacts
can introduce accentuated distortions that lower model scores.
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Table 3: Subjective evaluation results comparing the considered systems. BCK stands for
background noise removal and SPE for speech distortion introduced by the system (see
Sec. 6.2.2). For both values, higher is better. Each cell shows the mean of each system
(standard deviation in parentheses).

Model BCK SPE

Noisy 2.84 (1.10) 4.59 (0.81)

Wiener 3.19 (1.12) 4.47 (0.87)

LogMMSE 3.43 (1.08) 4.44 (0.93)

L1-DNN-C7 4.26 (1.08) 4.12 (1.22)

SEGAN 4.24 (1.01) 4.11 (1.21)

SEGAN+ 4.27 (1.09) 4.21 (1.12)

6.2.2. Subjective Performance

Objective evaluations such as the ones in the previous section are use-
ful indicators, comparing spectral distortions and noise against clean speech
levels. However, such evaluations are not completely fair when we face the
generation of new data that can include audible artifacts noticeable to hu-
mans but not accounted for by the metric. In addition, if the regenerated
signal differs from the ground truth in terms of amplitude, phase, or other
properties that make it intelligible and natural but not an exact fit, objec-
tive scores identifying exact matches between low-level properties can lead
to misleading results. For these reasons, a subjective test was conducted
to assess, with an averaged opinion among many people, how the system
performs with regard to the regeneration of plausible speech that resembles
a clean reality. For this test, we select the subset of best objectively per-
formant systems per category to compare against SEGAN+. We take the
LPS-DNN and LogMMSE as best representatives of the deep learning (spec-
tral) and classic groups, and also maintain the baseline SEGAN and Wiener
used in Pascual et al. (2017) as incremental references.

The test was taken by 42 subjects. Each subject was presented with 8 ut-
terances, with each utterance being enhanced by 6 systems. Thus, each user
had to rate 8× 6 = 48 audio samples. For each audio, we asked participants
to give a MOS rate regarding (a) how intrusive was the background noise
(BCK: 5–Not noticeable, 4–Slightly noticeable, 3–Noticeable but not intru-
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sive, 2–Somewhat intrusive, and 1–Very intrusive) and (b) how much speech
was distorted (SPE: 5–Not distorted, 4–Slightly distorted, 3–Somewhat dis-
torted, 2–Fairly distorted, and 1–Very distorted). Table 3 shows the results
for these metrics.

We first focus on the background noise being removed (BCK). We can
confirm the incremental gap from Noisy to Wiener and from Wiener to Log-
MMSE. After LogMMSE, we have the three deep learning systems falling
within a comparable range of values, with SEGAN+ achieving a marginally
better BCK. In terms of the amount of speech distortion (SPE), we observe
a detrimental gap in performance from Noisy to Wiener and LogMMSE, and
then the three deep learning systems. Overall, we can understand this result
as a trade-off between how much noise they remove and how much speech
they destroy. Notably, SEGAN+ remains better than the other two deep
learning options for this score, although its performance lies under the clas-
sic baselines, as expected, because it clears more intrusive noise as shown
in the BCK metric. A conclusion from this result is that with the current
subjective results, SEGAN+ seems more selective destroying intrusive sig-
nals and that improvements on SEGAN+ make it perform better than the
original SEGAN both objectively and subjectively.

7. Towards More General Speech Enhancement GANs

In this section, we explore the enhancement capabilities of SEGAN+ be-
yond the specific task of denoising (i.e., eliminating additive noises of many
kinds). An important set of enhancement applications are those that directly
affect the speech, allowing for the recovery of more natural spoken utterance
out of a damaged one. As a first step in this direction, we explore the ap-
plication of whispered-to-voiced speech conversions. We refer to this conver-
sion as dewhispering or voicing of the speech signal. Importantly, whispered
speech can be uttered on purpose but is also expressed by people suffering
from disease or trauma that manifests as aphonia (e.g., patients after a total
laryngectomy). The dewhispering process is typically performed in the spec-
tral domain or with vocoder features, similarly to the denoising case. Once
these features are obtained, some statistical models such as Gaussian mixture
models (Toda et al., 2008; Nakamura et al., 2011, 2012) or DNNs (Gonzalez
et al., 2017a) are applied to reconstruct corrupted/missing components, and
then, features are reverted to the time domain.
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Our whispered utterances are obtained with an articulator motion cap-
ture device (Fagan et al., 2008) that monitors the movement of the lips and
tongue, tracking the magnetic field generated by small attached magnets.
Then, an existing synthesis module generates speech from articulatory data
by means of an RNN model trained on parallel articulatory-to-speech sam-
ples (Gonzalez et al., 2017a,b). The speech produced by this system has a
reasonable quality but sounds monotonous and robotic, owing to limitations
when estimating the pitch (i.e., the capturing device does not have access to
any information about the glottal excitation). Hence, we can use the RNN
to generate a reconstructed whispered speech out of articulatory data while
discarding the predicted pitch and then apply SEGAN+ as an enhancement
over it. SEGAN+ recovers a more natural sounding speech with a whispered
input such that it must implicitly generate pitch curves with proper intona-
tions embedded in the waveform. Here, we compare our model against the
existing system that employs the RNN-based architecture to regress pitch
and performs a vocoder-based synthesis (Gonzalez et al., 2017b).

7.1. Whispered SEGAN

Importantly, because of the data acquisition and synthesis procedures,
small temporal misalignments remain between the input and output records
(i.e., whisper and natural speech differ in length and are not accurately par-
allel). Therefore, the original SEGAN version is not immediately effective
when receiving the new data, particularly because the L1 regularization loss
is restricted to work when the output is fully aligned with the input. Simi-
larly, we also expect an L1 auto-encoder to not be effective in the regeneration
of missing components, as stated in Sec. 6.2.1. Nonetheless, we consider the
SEAE+ architecture in this setup too, as a standalone reconstruction system.

The amount of data we have to carry out this experimentation is 30 min of
training utterances plus 3 min of test utterances5 (it is important to note the
large gap in terms of amount of data to train on, from SEGAN/SEGAN+
models, which handle 32 h, relative to this small set of 30 min). We no-
ticed that this data shortage has two main effects: (1) it introduces arti-
facts at many frequencies, particularly the high ones, and (2) intelligibility
is sometimes lost in the reconstruction phase. Hence, we had to make two

5The corpus contains a single English male speaker that recorded a random subset of
the CMU Arctic corpus (Kominek and Black, 2004).

26



reformulations to SEGAN+ to adapt it to the current task. We denote this
reformulated version as WSEGAN to specify its applicability to dewhisper-
ing.

First, time-domain regularization is removed from the loss of G, and
we use only the power loss as a regularizer (Oord et al., 2017). In this
way, we try to mitigate the allocation of energy in non-speech-like frequency
bins and thus reduce the aforementioned artifacts. We also add a denoising
SEGAN+ processing system on top of WSEGAN to remove erratic artifacts
and corrupted speech segments, which acts specifically on silence regions.
Second, we introduce a new adversarial loss that enforces content preservation
between the input and the output of G. More specifically, a synthetic signal
(0 in the LSGAN binary coding, Sec. 3) is triggered whenever we have the
current clean reference signal x and another randomly chosen clean signal
xr. Both signals are clean and look natural, and the only difference is the
content mismatch; thus, D must learn that mismatched information is not
realistic. With these two changes, the WSEGAN loss becomes

min
D

V (D) =
1

3
Ex,w̃∼pdata(x,w̃)[(D(x, w̃)− 1)2]+

+
1

3
Ez∼pz(z),w̃∼pdata(w̃)[D(G(z, w̃), w̃)2]

+
1

3
Ex,xr∼pdata(x)[D(x,xr)

2]

min
G

V (G) = Ez∼pz(z),w̃∼pdata(w̃)[(D(G(z, w̃), w̃)− 1)2]+

+ αEz∼pz(z),w̃∼pdata,x∼pdata [|Φ(G(z, w̃))− Φ(x)|],

where w̃ ∈ RT is the whispered utterance; x ∈ RT is the natural speech; xr ∈
RT is a randomly chosen natural chunk within the batch; G(z, w̃) ∈ RT is the
enhanced speech; D(x, w̃), D(G(z, w̃), w̃), andD(x,xr) are the discriminator
decisions for each input pair; and Φ(x) corresponds to the short-time Fourier
transform magnitude in dBs (20 ms windows, 10 ms stride, and 2048 bias),
with α = 10−3 corresponding to the weighting of this term.

7.2. Results

First of all, we perform an objective evaluation with mel cepstral distor-
tion (MCD). MCD is an indicator of correct uttered content generation and
speaker identity match in speech synthesis. We use the same formulation
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Table 4: Mel cepstral distortion results for the three considered systems: RNN baseline,
SEAE+ (L1 auto-encoder), and WSEGAN.

RNN SEAE+ WSEGAN

MCD [dB] 8.01 17.19 12.81

as in previous speech synthesis works (Pascual and Bonafonte, 2016; Pas-
cual, 2016). Table 4 shows the results for the baseline RNN, the SEAE+
and WSEGAN. Firstly, we can see that SEAE+ has the highest distortion
rate, indicating its lack of reconstruction capacity from the whispered signal
towards the clean one. Actually, qualitative listenings allow us to appreciate
how it is not able to reconstruct voiced segments, and the best it does is a
low pass reconstruction of the input whispered signal itself. The application
of the adversarial component is thus more critical in this setup as our in-
tuition from Sec. 6.2.1 suggested. The qualitative listenings for WSEGAN
reveal pitch reconstructions that match natural intonations and the expected
modelled male identity (no low-pass effect is observed in this case). Regard-
ing the RNN, it obtains the best score objectively, thus indicating possibly
the best match to the clean signal. It is expectable to obtain such score as
the model was directly optimized to minimize its quadratic error towards
the clean spectral components. Nevertheless, low distortion scores are not
always an indicator of a natural sounding voice in speech synthesis. In fact,
a model with increased variance in its acoustic predictions (as in the case of
WSEGAN), which in turn increments speech naturalness, can be an objec-
tively inferior model (Henter et al., 2018). Hence, a subjective evaluation is
normally the best procedure to assess the generated speech naturalness.

For the case of generated intonations of the two successful models, Fig. 5
lets us appreciate examples of generated pitch contours. We can first observe
an increased variance in the pitch contours of the signal for WSEGAN as
opposed to the RNN. The figure also shows different trajectories that match
plausible intonation contours depending on a randomly selected latent de-
scription zi, which is enabled by the generative capacity of the model. We
can also appreciate that the regenerated signal has different voiced/unvoiced
regions (unvoiced regions are denoted by a 0 Hz signal). We hypothesize that
these mismatches with the ground-truth signal may be corrected with the ad-
dition of more data, as the network could better estimate the right placement
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Figure 5: Natural pitch contour in blue and three example reconstructions. Orange is
the RNN baseline contour, with a relatively flat behavior. Green and red are two dif-
ferent voiced versions from WSEGAN, produced with different latent codes z1 and z2
(i.e., different random seeds).

of pitch contours within the spoken contents of the damaged signal.
A subjective test was carried out to assess the improvement of WSEGAN

with respect to the pitch regression RNN baseline system (online samples are
referenced in Sec. 1 so that the reader can evaluate the differences qualita-
tively). A set of 25 subjects listened to and rated 10 randomly selected test
utterances from a pool of 44, choosing whether they preferred the naturalness
of one system, the other one, or both of them (the order of the two systems
per utterance was shuffled). The results of this test are shown in Fig. 6,
where WSEGAN (green) is preferred in 54.6% of the utterances, against the
37.7% of preference for the RNN system (red). Additionally, we observe no
clear difference of preference between expert and nonexpert listeners (12 par-
ticipants declared having expertise with speech signals and audio processing
techniques). Participants noted that WSEGAN could sound more natural,
implicitly producing proper intonations matching the sentences, but loses
intelligibility in some utterances, potentially owing to the lack of data for
such a large model. Interestingly, a native English listener even unveiled the
geographic accent of the English speaker accent after WSEGAN recovery.

8. Conclusion

In this work, we propose a speech enhancement method framed within the
GAN methodology using raw audio. We explore some variations of it that
make it more efficient and effective. The model is an encoder-decoder fully
convolutional structure, which makes it adaptable to deal with sequences of
any length. With the introduced variations, we unveil some possible future
paths to further improve the architecture, specifically in terms of encoder
structure to obtain a better decimation scheme. The current results suggest
that our approach performs better than classic baselines such as Wiener or

29



Figure 6: Subjective test preference results on naturalness rating between RNN regression
baseline and WSEGAN. Green denotes WSEGAN preference, red denotes RNN preference
and gray denotes that both are equally preferred.

LogMMSE. They also show that the approach is competitive with custom-
tuned deep learning models in the log-power spectral domain, trained with
a regression on the magnitude, where a major amount of noise is detected
and removed. Our approach, on the other hand, requires little preprocess-
ing, working on the raw waveform, and is more flexible to work with other
enhancement tasks such as speech reconstruction or whispered-to-voiced con-
version. We also verify the effectiveness of the adversarial component over
the fully convolutional regression system. This component becomes specially
relevant in damaged signal reconstructions as in the WSEGAN setup, where
plausible intonations and prosody are constructed matching the spoken con-
tents.
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