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DISTINGUISHING TOURNAMENTS

WITH SMALL LABEL CLASSES

A. LOZANO

Abstract. A d-distinguishing vertex (arc) labeling of a digraph is a vertex (arc)

labeling using d labels that is not preserved by any nontrivial automorphism. Let

ρ(T ) (ρ′(T )) be the minimum size of a label class in a 2-distinguishing vertex (arc)
labeling of a tournament T . Gluck’s Theorem implies that ρ(T ) ≤ bn/2c for any

tournament T of order n. We construct a family of tournaments H such that

ρ(T ) ≥ bn/2c for any tournament of order n in H. Additionally, we prove that
ρ′(T ) ≤ b7n/36c + 3 for any tournament T of order n and ρ′(T ) ≥ dn/6e when

T ∈ H and has order n. These results answer some open questions stated by

Boutin.

1. Introduction

Given a digraph G, V (G) (A(G)) stands for its set of vertices (arcs) and Aut(G)
denotes the automorphism group of G. We refer to the identity automorphism
in Aut(G) as to the trivial automorphism. A tournament is a complete oriented
graph, that is, a digraph T for which for every u, v ∈ V (T ), either uv ∈ A(T ) or
vu ∈ A(T ) but not both.

A vertex (arc) labeling of a digraph G is a total function φ : V (G) → L
(φ : A(G) → L) which labels each vertex (arc) of G with a label from the set
L. Given a vertex labeling φ for a digraph G, we say that an automorphism
σ ∈ Aut(G) preserves φ if φ(σ(v)) = φ(v) for every vertex v ∈ V (G). Similarly, we
say that σ ∈ Aut(G) preserves an arc labeling φ if φ(uv) = φ(σ(u)σ(v)) for every
arc uv ∈ A(G). On the contrary, a vertex or arc labeling φ breaks an automor-
phism σ ∈ Aut(G) if φ is not preserved by σ. A (vertex or arc) labeling φ of G
that breaks all nontrivial automorphisms in Aut(G) is called distinguishing for G.
Additionally, if φ uses d labels, it is called d-distinguishing for G. When discussing
about 2-distinguishing labelings, our color labels will be white and black.

Albertson and Collins introduced the concept of distinguishing number in the
seminal paper [1]. The distinguishing number D(G) of a digraph G is the least
cardinal d such that G has a d-distinguishing vertex labeling. In recent years, this
concept has been extended to the distinguishing index D′(G), which is defined as
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the least cardinal d such that G has an d-distinghishing arc labeling. A distin-
guishing vertex class (distinguishing arc class) of φ in G is any of the d subsets of
V (G) (A(G)) having the same label under φ. These notions have been studied in
[3, 4, 5, 6, 7, 10, 13].

With respect to tournaments, Albertson and Collins [2] conjectured that every
tournament T satisfies D(T ) ≤ 2. As Godsil observed in 2002 [9], since tourna-
ments have odd order automorphism groups, the conjecture follows from Gluck’s
Theorem ([8], see also the shorter and self-contained proof by Matsuyama [12]).
In the following statement of Gluck’s Theorem, given a permutation group G on
Ω, S ⊆ Ω is a regular subset of G if the setwise stabilizer {g ∈ G | Sg = S} only
contains the identity.

Theorem 1 ([8, 12, Gluck’s Thm.]). Let G be a permutation group of odd
order on a finite set Ω. Then G has a regular subset in Ω.

Given a tournament T , Gluck’s Theorem shows the existence of a regular subset
S ⊆ Ω = V (T ) for Aut(T ). Define a labeling φ that assigns a white label to the
vertices in S and a black label to the vertices in V (T ) r S. Now, the definition of
regular subset implies that the only automorphism in Aut(T ) preserving labeling
φ is the identity. Therefore, φ constitutes a 2-distinguishing vertex labeling of the
vertices of T .

Corollary 1 ([9]). If T is a tournament, then D(T ) ≤ 2.

As an added consequence of Gluck’s Theorem, we can observe that the distin-
guishing index of tournaments is also bounded by 2. Suppose that S is a regular
subset of the vertices of a tournament T given by Gluck’s Theorem. Clearly, ver-
tices in S can be singularized if the arcs lying inside S are labeled white and the
rest are labeled black. This way, the orbit of a vertex in S by any automorphism
will lie inside S, and the previous arc labeling will be 2-distinguishing.

Corollary 2. If T is a tournament, then D′(T ) ≤ 2.

Some literature on the subject has focused on the minimum possible size of a
distinguishing vertex class, which has been called the cost of 2-distinguishing. We
define it here both for vertices and arcs. For a digraph G such that D(G) ≤ 2,
define ρ(G) (ρ′(G)) as the minimum size of a distinguishing vertex (arc) class.
Upper bounds for ρ(T ) and ρ′(T ), for any tournament T , are provided in Section 2.
In Section 3 we introduce a class of tournaments H that will allow us to give lower
bounds for ρ(T ) and ρ′(T ), for any T ∈ H.

2. Upper bounds

Just by observing that distinguishing vertex classes are closed under complemen-
tation, we obtain an upper bound for their size with the help of Gluck’s theorem.

Theorem 2. For any tournament T of order n, ρ(T ) ≤ bn/2c.
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To get an upper bound of the cost of 2-distinghishing a tournament by means
of the arcs, we will use the concept of determining set. Given a digraph G, a
subset S ⊆ V (G) is a determining set of G if for any ϕ,ψ ∈ Aut(G) such that
ϕ(x) = ψ(x) for all x ∈ S, then ϕ = ψ. Thus, the action of an automorphism
on S determines its action on V (G). In particular, every distinguishing set is a
determining set. The determining number of a digraph G, denoted by Det(G), is
defined as the minimum size of a determining set for G. We will use the following
result from [11].

Theorem 3 ([11, Thm. 8]). For every tournament T of order n, Det(T ) ≤
bn/3c.

To get an upper bound for ρ′(T ), where T is a tournament of order n, we start
considering a determining set S ⊆ V (T ) that, according to Theorem 3, can be
selected with size at most bn/3c. We can now singularize the vertices in S by
coloring some of the arcs in the subtournament of T induced by S, T [S]. An easy
way to do it is by coloring the arcs of a Hamiltonian path in T [S] in black while
coloring the rest of the arcs in T in white. This way, all the vertices in S will be
at a different distance through the black arcs from the beginning of the path, and
therefore, S will be fixed pointwise and ρ′(T ) ≤ bn/3c − 1. However, we can push
the upper bound further down by combining determining and distinguishing sets.
By Theorem 2, ρ(T [S]) ≤ b|S|/2c ≤ bn/6c and, then, there exists a distinguishing
set R ⊆ S that proves it. Now, by conveniently grouping the vertices in R by
disjoint black paths of length two and the vertices in SrR by disjoint black arcs,
we can show the following improved bound.

Theorem 4. For any tournament T of order n, ρ′(T ) ≤ b7n/36c+ 3.

3. Lower bounds

We introduce a class of tournaments that is needed to provide our lower bounds for

the cost of 2-distinguishing tournaments. By ~C3 we denote the directed triangle,
that is, the tournament containing the vertices x1, x2, and x3 and the arcs x1x2,
x2x3, and x3x1.

Definition 1. The family H = {Hk}k≥0 of tournaments is inductively defined
as follows. Tournament H0 consists of a single vertex. For k > 0, Hk is the

tournament consisting of a copy of ~C3 in which every vertex xi in ~C3 is substituted
by a copy of Hk−1, called tertian Ti, and an arc xixj ∈ A(C3) is substituted by
all possible arcs from Ti to Tj .

Observation 1. For any k ≥ 0, |V (Hk)| = 3k.

A module in a tournament T is a set X of vertices such that each vertex in
V (T )rX has a uniform relationship to all vertices in X, that is, for every vertex
v ∈ V (T ) r X, either uv ∈ A(T ) for all u ∈ X or vu ∈ A(T ) for all u ∈ X.
Note that both T and the sets {u}, where u ∈ V (T ), are modules. Furthermore,
modularity is transitive: if Y is a module in the subtournament T [X] induced by
module X, then Y is a module in T .
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According to the definition of Hk, each of its three tertians are modules. By
transitivity of modularity we can make the following observation.

Observation 2. For every k ≥ 1, Hk can be decomposed into 3k−1 pairwise

disjoint modules isomorphic to ~C3.

We also need the following fact on how vertices in Hk can move in an automor-
phism.

Proposition 1. Let σ ∈ Aut(Hk) be an automorphism and let T1, T2, T3 be the
tertians of Hk. Then, any tertian is mapped by σ into another tertian as a whole,
that is, for any u, v ∈ Ti, σ(u), σ(v) ∈ Tj, for 1 ≤ i, j ≤ 3.

The following labelings play an important role in the proof of the lower bounds
(see Figure 1).

Definition 2. A black (white) labeling of H0 consists of labeling its unique
vertex black (white). If k > 0, then a black (white) labeling of Hk contains two
copies of Hk−1 with a black (white) labeling and one copy of Hk−1 with a white
(black) labeling.

Figure 1. From left to right, white labelings for H0, H1, and H2. Tertians are shadowed in

grey. Arcs between tertians imply all arcs between their vertices in the same direction.

The bound given in Theorem 2 is optimal for the family H = {Hk}k≥0. The
proof is by induction on k based on counting the number of black (white) vertices
in a black (white) labeling of Hk.

Proposition 2. For every k ≥ 0, ρ(Hk) ≥ b3k/2c.

As a consequence, the upper bound from Theorem 2 is tight.

Theorem 5. For every k ≥ 0, there is a tournament T of order n = 3k such
that ρ(T ) = bn/2c.

We now show a lower bound for the distinguishing index of tournaments. We
refer to any of the pairwise disjoint modules mentioned in Observation 2 as to a
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basic module. Note that a nontrivial automorphism in any basic module trivially
extends to Hk by definition. This fact leads to the following lower bound for
ρ′(Hk).

Proposition 3. For every k ≥ 1, ρ′(Hk) ≥ d3k−1/2e.

We show that d3k−1/2e is also un upper bound for the family of tournaments
{Hk}k≥1. We prove it by induction based on counting the number of black arcs
whose endpoints belong to the same basic module in any 2-distinguishing arc
labelling of Hk (see an illustration of the labeling in Figure 2). Proposition 1 is
also needed here to argue about the orbits of vertices in Hk.

Proposition 4. For every k ≥ 1, ρ′(Hk) ≤ d3k−1/2e.

As a consequence, we obtain the following result.

Theorem 6. For every k ≥ 0, there is a tournament T of order n = 3k such
that ρ′(T ) = dn/6e.

Figure 2. Arc labeling for tournament H3. The five straight thick arcs represent the only black

arcs. Arcs between tertians imply all arcs between their vertices in the same direction.
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4. Conclusions and open questions

In [3], Boutin proves that ρ(Qn) = O(Det(Qn)), where Qn is the hypercube of
dimension n, and asks in Question 9 whether this is also the case of other graph
families. In relation with this question, Problem 4 in [4] asks whether there are
graphs G such that ρ(G) is arbitrarily larger than Det(G). But for tournaments
T of order n belonging to H, we have, on the one hand, that ρ(T ) = bn/2c (as
seen in Section 3) and, on the other hand, it is easy to see that Det(T ) = bn/3c.

Therefore, ρ(T ) and Det(T ), for any T ∈ H, are related by a factor of 3/2
and we can answer affirmatively to both questions. We conclude with an obvious
question left open in this work.

Question 1. Can the bound in Theorem 4 be improved? In particular, is
ρ′(T ) ≤ dn6 e for any tournament T of order n?
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