DISTINGUISHING TOURNAMENTS WITH SMALL LABEL CLASSES

A. LOZANO

ABSTRACT. A d-distinguishing vertex (arc) labeling of a digraph is a vertex (arc) labeling using d labels that is not preserved by any nontrivial automorphism. Let $\rho(T)$ ($\rho'(T)$) be the minimum size of a label class in a 2-distinguishing vertex (arc) labeling of a tournament T. Gluck's Theorem implies that $\rho(T) \leq \lfloor n/2 \rfloor$ for any tournament T of order n. We construct a family of tournaments $\mathcal H$ such that $\rho(T) \geq \lfloor n/2 \rfloor$ for any tournament of order n in $\mathcal H$. Additionally, we prove that $\rho'(T) \leq \lfloor 7n/36 \rfloor + 3$ for any tournament T of order n and $\rho'(T) \geq \lceil n/6 \rceil$ when $T \in \mathcal H$ and has order n. These results answer some open questions stated by Boutin.

1. Introduction

Given a digraph G, V(G) (A(G)) stands for its set of vertices (arcs) and $\operatorname{Aut}(G)$ denotes the automorphism group of G. We refer to the identity automorphism in $\operatorname{Aut}(G)$ as to the trivial automorphism. A tournament is a complete oriented graph, that is, a digraph T for which for every $u,v\in V(T)$, either $uv\in A(T)$ or $vu\in A(T)$ but not both.

A vertex (arc) labeling of a digraph G is a total function $\phi\colon V(G)\to L$ $(\phi\colon A(G)\to L)$ which labels each vertex (arc) of G with a label from the set L. Given a vertex labeling ϕ for a digraph G, we say that an automorphism $\sigma\in \operatorname{Aut}(G)$ preserves ϕ if $\phi(\sigma(v))=\phi(v)$ for every vertex $v\in V(G)$. Similarly, we say that $\sigma\in \operatorname{Aut}(G)$ preserves an arc labeling ϕ if $\phi(uv)=\phi(\sigma(u)\sigma(v))$ for every arc $uv\in A(G)$. On the contrary, a vertex or arc labeling ϕ breaks an automorphism $\sigma\in \operatorname{Aut}(G)$ if ϕ is not preserved by σ . A (vertex or arc) labeling ϕ of G that breaks all nontrivial automorphisms in $\operatorname{Aut}(G)$ is called distinguishing for G. Additionally, if ϕ uses d labels, it is called d-distinguishing for G. When discussing about 2-distinguishing labelings, our color labels will be white and black.

Albertson and Collins introduced the concept of distinguishing number in the seminal paper [1]. The distinguishing number D(G) of a digraph G is the least cardinal d such that G has a d-distinguishing vertex labeling. In recent years, this concept has been extended to the distinguishing index D'(G), which is defined as

Received May 30, 2019.

 $^{2010\} Mathematics\ Subject\ Classification.$ Primary 05C15, 05C20.

Research supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement ERC-2014-CoG 648276 AUTAR).

the least cardinal d such that G has an d-distinguishing arc labeling. A distinguishing vertex class (distinguishing arc class) of ϕ in G is any of the d subsets of V(G) (A(G)) having the same label under ϕ . These notions have been studied in [3, 4, 5, 6, 7, 10, 13].

With respect to tournaments, Albertson and Collins [2] conjectured that every tournament T satisfies $D(T) \leq 2$. As Godsil observed in 2002 [9], since tournaments have odd order automorphism groups, the conjecture follows from Gluck's Theorem ([8], see also the shorter and self-contained proof by Matsuyama [12]). In the following statement of Gluck's Theorem, given a permutation group G on Ω , $S \subseteq \Omega$ is a regular subset of G if the setwise stabilizer $\{g \in G \mid Sg = S\}$ only contains the identity.

Theorem 1 ([8, 12, Gluck's Thm.]). Let G be a permutation group of odd order on a finite set Ω . Then G has a regular subset in Ω .

Given a tournament T, Gluck's Theorem shows the existence of a regular subset $S \subseteq \Omega = V(T)$ for $\operatorname{Aut}(T)$. Define a labeling ϕ that assigns a white label to the vertices in S and a black label to the vertices in $V(T) \setminus S$. Now, the definition of regular subset implies that the only automorphism in $\operatorname{Aut}(T)$ preserving labeling ϕ is the identity. Therefore, ϕ constitutes a 2-distinguishing vertex labeling of the vertices of T.

Corollary 1 ([9]). If T is a tournament, then $D(T) \leq 2$.

As an added consequence of Gluck's Theorem, we can observe that the distinguishing index of tournaments is also bounded by 2. Suppose that S is a regular subset of the vertices of a tournament T given by Gluck's Theorem. Clearly, vertices in S can be singularized if the arcs lying inside S are labeled white and the rest are labeled black. This way, the orbit of a vertex in S by any automorphism will lie inside S, and the previous arc labeling will be 2-distinguishing.

Corollary 2. If T is a tournament, then $D'(T) \leq 2$.

Some literature on the subject has focused on the minimum possible size of a distinguishing vertex class, which has been called the cost of 2-distinguishing. We define it here both for vertices and arcs. For a digraph G such that $D(G) \leq 2$, define $\rho(G)$ ($\rho'(G)$) as the minimum size of a distinguishing vertex (arc) class. Upper bounds for $\rho(T)$ and $\rho'(T)$, for any tournament T, are provided in Section 2. In Section 3 we introduce a class of tournaments \mathcal{H} that will allow us to give lower bounds for $\rho(T)$ and $\rho'(T)$, for any $T \in \mathcal{H}$.

2. Upper bounds

Just by observing that distinguishing vertex classes are closed under complementation, we obtain an upper bound for their size with the help of Gluck's theorem.

Theorem 2. For any tournament T of order $n, \rho(T) \leq \lfloor n/2 \rfloor$.

To get an upper bound of the cost of 2-distinghishing a tournament by means of the arcs, we will use the concept of determining set. Given a digraph G, a subset $S \subseteq V(G)$ is a determining set of G if for any $\varphi, \psi \in \operatorname{Aut}(G)$ such that $\varphi(x) = \psi(x)$ for all $x \in S$, then $\varphi = \psi$. Thus, the action of an automorphism on S determines its action on V(G). In particular, every distinguishing set is a determining set. The determining number of a digraph G, denoted by $\operatorname{Det}(G)$, is defined as the minimum size of a determining set for G. We will use the following result from [11].

Theorem 3 ([11, Thm. 8]). For every tournament T of order n, $Det(T) \le \lfloor n/3 \rfloor$.

To get an upper bound for $\rho'(T)$, where T is a tournament of order n, we start considering a determining set $S\subseteq V(T)$ that, according to Theorem 3, can be selected with size at most $\lfloor n/3 \rfloor$. We can now singularize the vertices in S by coloring some of the arcs in the subtournament of T induced by S, T[S]. An easy way to do it is by coloring the arcs of a Hamiltonian path in T[S] in black while coloring the rest of the arcs in T in white. This way, all the vertices in S will be at a different distance through the black arcs from the beginning of the path, and therefore, S will be fixed pointwise and $\rho'(T) \leq \lfloor n/3 \rfloor - 1$. However, we can push the upper bound further down by combining determining and distinguishing sets. By Theorem $2, \rho(T[S]) \leq \lfloor |S|/2 \rfloor \leq \lfloor n/6 \rfloor$ and, then, there exists a distinguishing set $R \subseteq S$ that proves it. Now, by conveniently grouping the vertices in R by disjoint black paths of length two and the vertices in $S \setminus R$ by disjoint black arcs, we can show the following improved bound.

Theorem 4. For any tournament T of order n, $\rho'(T) \leq \lfloor 7n/36 \rfloor + 3$.

3. Lower bounds

We introduce a class of tournaments that is needed to provide our lower bounds for the cost of 2-distinguishing tournaments. By \vec{C}_3 we denote the directed triangle, that is, the tournament containing the vertices x_1 , x_2 , and x_3 and the arcs x_1x_2 , x_2x_3 , and x_3x_1 .

Definition 1. The family $\mathcal{H} = \{H_k\}_{k\geq 0}$ of tournaments is inductively defined as follows. Tournament H_0 consists of a single vertex. For k > 0, H_k is the tournament consisting of a copy of \vec{C}_3 in which every vertex x_i in \vec{C}_3 is substituted by a copy of H_{k-1} , called *tertian* T_i , and an arc $x_i x_j \in A(C_3)$ is substituted by all possible arcs from T_i to T_j .

Observation 1. For any $k \geq 0$, $|V(H_k)| = 3^k$.

A module in a tournament T is a set X of vertices such that each vertex in $V(T) \setminus X$ has a uniform relationship to all vertices in X, that is, for every vertex $v \in V(T) \setminus X$, either $uv \in A(T)$ for all $u \in X$ or $vu \in A(T)$ for all $u \in X$. Note that both T and the sets $\{u\}$, where $u \in V(T)$, are modules. Furthermore, modularity is transitive: if Y is a module in the subtournament T[X] induced by module X, then Y is a module in T.

926 A. LOZANO

According to the definition of H_k , each of its three tertians are modules. By transitivity of modularity we can make the following observation.

Observation 2. For every $k \geq 1$, H_k can be decomposed into 3^{k-1} pairwise disjoint modules isomorphic to \vec{C}_3 .

We also need the following fact on how vertices in H_k can move in an automorphism.

Proposition 1. Let $\sigma \in \operatorname{Aut}(H_k)$ be an automorphism and let T_1, T_2, T_3 be the tertians of H_k . Then, any tertian is mapped by σ into another tertian as a whole, that is, for any $u, v \in T_i$, $\sigma(u), \sigma(v) \in T_j$, for $1 \leq i, j \leq 3$.

The following labelings play an important role in the proof of the lower bounds (see Figure 1).

Definition 2. A black (white) labeling of H_0 consists of labeling its unique vertex black (white). If k > 0, then a black (white) labeling of H_k contains two copies of H_{k-1} with a black (white) labeling and one copy of H_{k-1} with a white (black) labeling.

Figure 1. From left to right, white labelings for H_0 , H_1 , and H_2 . Tertians are shadowed in grey. Arcs between tertians imply all arcs between their vertices in the same direction.

The bound given in Theorem 2 is optimal for the family $\mathcal{H} = \{H_k\}_{k\geq 0}$. The proof is by induction on k based on counting the number of black (white) vertices in a black (white) labeling of H_k .

Proposition 2. For every $k \ge 0$, $\rho(H_k) \ge |3^k/2|$.

As a consequence, the upper bound from Theorem 2 is tight.

Theorem 5. For every $k \geq 0$, there is a tournament T of order $n = 3^k$ such that $\rho(T) = \lfloor n/2 \rfloor$.

We now show a lower bound for the distinguishing index of tournaments. We refer to any of the pairwise disjoint modules mentioned in Observation 2 as to a

basic module. Note that a nontrivial automorphism in any basic module trivially extends to H_k by definition. This fact leads to the following lower bound for $\rho'(H_k)$.

Proposition 3. For every $k \ge 1$, $\rho'(H_k) \ge \lceil 3^{k-1}/2 \rceil$.

We show that $\lceil 3^{k-1}/2 \rceil$ is also un upper bound for the family of tournaments $\{H_k\}_{k\geq 1}$. We prove it by induction based on counting the number of black arcs whose endpoints belong to the same basic module in any 2-distinguishing arc labelling of H_k (see an illustration of the labeling in Figure 2). Proposition 1 is also needed here to argue about the orbits of vertices in H_k .

Proposition 4. For every $k \ge 1$, $\rho'(H_k) \le \lceil 3^{k-1}/2 \rceil$.

As a consequence, we obtain the following result.

Theorem 6. For every $k \ge 0$, there is a tournament T of order $n = 3^k$ such that $\rho'(T) = \lceil n/6 \rceil$.

Figure 2. Arc labeling for tournament H_3 . The five straight thick arcs represent the only black arcs. Arcs between tertians imply all arcs between their vertices in the same direction.

928 A. LOZANO

4. Conclusions and open questions

In [3], Boutin proves that $\rho(Q_n) = \mathcal{O}(\text{Det}(Q_n))$, where Q_n is the hypercube of dimension n, and asks in Question 9 whether this is also the case of other graph families. In relation with this question, Problem 4 in [4] asks whether there are graphs G such that $\rho(G)$ is arbitrarily larger than Det(G). But for tournaments T of order n belonging to \mathcal{H} , we have, on the one hand, that $\rho(T) = \lfloor n/2 \rfloor$ (as seen in Section 3) and, on the other hand, it is easy to see that $\text{Det}(T) = \lfloor n/3 \rfloor$.

Therefore, $\rho(T)$ and $\mathrm{Det}(T)$, for any $T \in \mathcal{H}$, are related by a factor of 3/2 and we can answer affirmatively to both questions. We conclude with an obvious question left open in this work.

Question 1. Can the bound in Theorem 4 be improved? In particular, is $\rho'(T) \leq \lceil \frac{n}{6} \rceil$ for any tournament T of order n?

References

- Albertson M. and Collins K., Symmetry breaking in graphs, Electron. J. Combin. 3 (1996), #R18.
- Albertson M. and Collins K., A note on breaking the symmetries of tournaments, in: Proc. 13th Southeastern Int. Conf. on Combinatorics, Graph Theory, and Computing, Congr. Numer. 136 (1999), 129–131.
- Boutin D., Small label classes in 2-distinguishing labelings, Ars Math. Contemp. 1 (2008), 154–164.
- Boutin D., The cost of 2-distinguihing selected Kneser graphs and hypercubes, J. Combin. Math. Combin. Comput. 85 (2013), 161–171.
- Boutin D., The cost of 2-distinguishing Cartesian powers, Electron. J. Combin. 20 (2013), #P74.
- Broere I. and Pilśniak M., The distinguishing index of the Cartesian product of countable graphs, Ars Math. Contemp. 13 (2017), 15–21.
- Chan M., The distinguishing number of the augmented cube and hypercube powers, Discrete Math. 308 (2008), 2330–2336.
- Gluck D., Trivial set-stabilizers in finite permutation groups, Canad. J. Math. 35 (1983), 59–67.
- ${\bf 9.}\,$ Godsil C., personal communication of an annonymous referee, 2002.
- Kalinowski R., Pilśniak M. and Woźniak M., Distinguishing graphs by total colourings, Ars Math. Contemp. 11 (2016), 79–89.
- 11. Lozano A., Symmetry breaking in tournaments, Electron. J. Combin. 20(1) (2013), #P69.
- 12. Matsuyama H., Another proof of Gluck's theorem, J. Algebra 247 (2002), 703–706.
- Pilśniak M., Improving upper bounds for the distinguishing index, Ars Math. Contemp. 13 (2017), 259–274.

A. Lozano, Universitat Politecnica de Catalunya, Barcelona, Catalonia, Spain, e-mail: antoni@cs.upc.edu