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Abstract

This document reports the process of design, implementation, and testing of an On-Board Com-
puter for CubeSats in a single 1U-sized CubeSat PCB. The aim is to design a modular, cheap,
efficient and flexible product than could be easily reproduced and implemented in forthcoming
CubeSats missions. The document describes all the hardware design phases, from the selection
of components to the creation of the circuits and blocks, following with the physical design of
the layout in two stackable boards, and finally the actual integration and subsequent electrical

test of the components.

The project ended successfully with a prototype of the OBC allowing the boot of a Linux
operative system from a pSD card, and the documentation needed to reproduce the work and

manufacture new products.



Resumen

En este documento se describe el proceso de diseno, implementacién y verificacién de un Ordena-
dor de a bordo (OBC) para CubeSats en una tnica placa de tamano estdndar 1U. El objetivo es
disenar un producto modular, barato, eficiente y flexible con la idea de que pueda ser facilmente
reproducido e implementado para préximas nuevas misiones espaciales usando CubeSats. En el
documento se detallan todas las fases de diseno del hardware, desde la seleccién de componen-
tes, a la creacion de los circuitos y bloques, siguiendo con el diseno fisico del layout de 2 placas

apilables, y finalmente la integracién y posterior verificacién eléctrica de los componentes.

El proyecto fue terminado satisfactoriamente con la fabricacion de un prototipo de OBC que per-
mite arrancar un sistema operativo Linux desde una tarjeta pSD, junto a toda la documentacién

necesaria para reproducir y fabricar nuevas unidades.
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Chapter 1

Introduction

1.1 Object of the project

The purpose of the work developed during this final master project is to design, implement and
test an unified platform that integrate in a single board, the on-board computer of a CubeSat,

in order to reduce costs, power and space.

The proposed OBC shall be able to accomplish the tasks of an on-board computer for satellites,
manage the communications between subsystems, process and store information, monitor the
status of the spacecraft and its onw, and be able to reset or reboot any subsystem or the OBC

itself, receiving commands from a user communicating with the computer.

To do this, this project will face the phases of design, implementation, and testing of the hard-
ware of this OBC, what will be developed along with the design of an embedded GNU/Linux
environment for the software of this OBC. The result of this project would be a product that

may be replicated and re-built for future CubeSats missions.

1.2 Project description

1.2.1 CubeSats overview

A satellite is an artificial object that is intentionally placed in orbit around some celestial object
in order to perform a series of tasks, as, for example scientific measurements, monitoring and

observation or to serve as a communications relay between other satellites and/or Earth based
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Table 1.1: Satellites categorized by mass

Name Mass (kg)

Large satellite > 1000

Medium satellite 500 to 1000

Mini satellite 100 to 500

Micro satellite 10 to 100

Nano satellite 1 to 10

Pico satellite 0.1to1

Femto satellite < 0.1

stations or devices.

Traditionally, the satellites were quite large and expensive, and they could be launched just by
international agencies like NASA or ESA or big companies. The cost of designing, manufacturing
and launching was huge. However, during the last decade, it has been popularized the use of
smaller, cheaper satellites that actually are changing the space exploration and exploitation.
Nowadays, a new era is beginning. And it has been proven that a small, cheap satellites may
perform very well, providing quite good scientific data, creating communications links that
support the traditional means or allowing the test of new technologies in space at much less the
price of the old big satellites. Of course, those big satellites are still useful when the quality and

the importance of the mission requires the best solution.

CubeSats are just one type of these new smaller satellites. The table 1.1 categorizes the satellites

according to its mass.

A CubeSat is a particular kind of nanosatellite that has some specific constraints. The size of
the satellite is defined by multiples of 10 cm x 10 cm x 10 cm cubic units, and its mass should not
exceed 1.3kg. The CubeSat standard started in 1999 when the effort of Prof. Jordi Puig-Suari
of California Polytechnic State University and Bob Twiggs of Stanford University, both in the
United States, proposed this kind of small satellites and succesfully worked in the definition of
this standard with the aim of giving graduate students the option to really design, build, test

and operate a spacecraft in a similar way as big, traditional satellites.

The first satellite was launched on 2003, and since then, the number of satellites per year has
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been continuously rising, as seen in figure 1.1. During 2019, the overall number of CubeSats

launched exceeded the thousand.

Nanosatellite launches by types Www.nanosats.eu

700 Il Picosats (0.1-1 kg) 703
Il Other nanosats (1-10 kg)

Il 16U CubeSat

650 | w12V CubeSat 420

Il Other CubeSats

600 | mmm8U (4x2U) CubeSat 586

550 [ 6U CubeSat 546
3U CubeSat

2U CubeSat

500 1.5U CubesSat

1U CubeSat

0 450 0.25U Cubesat

400 Nanosats.eu (2018 Jan) prediction

438

satellites

O 350
5

Z 300 294 290
250 244

200 172
150
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Figure 1.1: Number of nanosatellites launched per year and type by June 2019. ”Erik Kulu,
Nanosats Database, www.nanosats.eu” [5]

CubeSats are usually manufactured with cheap commercial off-the-shelf (COTS), components
for its electronics and mechanics. Also, recently, many companies have begun to work in this
field. Both in the manufacturing and design of CubeSats and components, and also in the

exploitation and control of these new products.

Focusing now on the design and manufacture of a CubeSat, it must be analysed what are the

needs of an spacecraft, and how are they usually faced.

A spacecraft is a vehicle that would fly through the space in orbit, typically around the Earth,
but it could be another celestial body. In this case we are focusing on unmanned vehicles, so
it needs to provide its own energy, and should be able to communicate with ground stations in
order to send payload data back, or upload commands to the SC. This is not something new,
created for CubeSats, in essence is the same as the way that traditional satellites work. The
common way to manage these tasks is by the definition of subsystems that would be in charge

of certain aspects of the SC operation.
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1.2.2 Subsystems overview
1.2.2.1 EPS

The Electrical Power System (EPS) is the one in charge of generate, accommodate, store and
distribute the electrical power to the rest of subsystems. This is usually made by means of the
solar radiation that generates power using some solar panels. Then, the energy is regulated and

stored, while distributed to the rest of components.

The use of batteries to store the power is usually needed because during its orbit around the
Earth, it could exists some periods of shadow; so if you want to keep the SC working during
this time, you need to have generated enough energy during the day period and have stored it

in batteries.

1.2.2.2 COMMS

The COMMunicationS subsystem should enable the SC to send and receive information from
ground stations in order to command the SC, receive data acquired by the satellite and even

send updates or repair part of the on-board software.

It is done usually using antennas and an electronic circuit that generates and amplifies the
signal that wants to be transmitted and received. Usually, when transmitting, it is one of the

subsystems that demands most energy from the EPS.

1.2.2.3 OBC

The On-Board Computer (OBC) is the main control unit in the SC, that should be able to
command and monitor the rest of subsystems and manage the communications between them

and with the Ground Segment (GS).

It usually consists of a computer with interfaces to control every subsystem and some amount of
storage for the on-board software and the data that may be stored on-board and that is managed

by the, sometimes called, On-Board Data Handling (OBDH) subsystem.
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1.2.2.4 ADCS

The Attitude Determination and Control System is the one in charge of learning the actual
position and orientation of the SC and the actuation on its state by physical apply of torques.
The way that the attitude of the satellite is controlled is mission-dependant and it can change
during the mission itself. Sometimes what is needed is to keep pointing in a certain direction to
take pictures, measure something, or communicate with the ground station. Sometimes, what

is needed, is that the spacecraft is rotating at certain rate, or not rotating at all.

The determination of the attitude is usually made using sensor, that could take advantage of the
Sun and stars positions, the magnetic field or the electromagnetic signals coming from ground
stations. This system also measures the rate of rotation of the SC with gyroscopes, and using

some algorithms it is able to determine the overall attitude state.

The attitude control is made by using mechanical action of reaction wheels or by using the

existing magnetic field with magnetorquers.

1.2.2.5 TCS

The Thermal Control System is the one in charge of monitoring and controlling the temperature
of subsystems and components within the SC. In space, there is not air, but the heat could still
propagate though radiation and conduction along the structure of the satellite. Given that the
SC could live in sunlight and shadow for some periods, the temperature of its part may vary quite
a lot with time. All the components, electrical and mechanical have a margin of temperatures

to properly work. So the aim of the TCS is to keep its temperature within its limits.

To do that, the TCS uses temperature sensors to monitor the temperature and heaters or

dissipation devices to regulate the heat flow in the SC.

1.3 Justification and needs of the project

This project has been done in the context of the UPC NanoSat Lab|6], a laboratory of CubeSats

and nanosatellites, part of the Universitat Politecnica de Catalunya (UPC), Barcelona Tech.
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In this laboratory a team of engineers and some equipment work on the design, manufacture,
and testing of nanosatellites and payloads. The laboratory owns a class 7 clean room to allow the
integration of components that are intended to be launched into space. It also has a vacuum and
thermal chamber, and a shake table. Also there is electronic equipment to test and manufacture

the electrical boards and systems.

Part of the team is currently manufacturing a satellite that will be launched in 2020 as part
of the ESA program "Fly Your Satellite”, that is named "3CAT-4" [7]. Also there is other

projects running as the creation of a ground station and operation centre.

Also, in parallel with the current missions there exists a project, commonly named "3CAT-
NXT?”, that accounts for an innovation project where new solutions are investigated and tested.
During this year it have been developed some projects under this label with the aim of design
a set of subsystems to, in the end, build a full functional satellite by our own, not relying in
external suppliers. The justification to this approach is, first of all, reducing the economical cost
of buying the subsystems and components to external suppliers, but also, a partial reduction on
the risks by the fully understand on the product used. Also, doing our own technology it can

be more easily changed or adapted to our real needs.

In this context, some projects were initiated. One must be in charge of the EPS subsystem,
designing all the components to properly generate, regulate, store and distribute electrical power

to the CubeSat.

My project has been the design of the on-board computer module. The main purpose of that is
to try to substitute the use of external suppliers, which is the case of some current missions like
3CAT-4. In order to accomplish that task, I was asked to develop the hardware of this brand
new OCB and my college Isaac Montsech was in charge of designing a new embedded Linux
Operative System to run on it, allowing the desired functionality. All the work he has been
doing from January to June 2019, is covered in his final degree project [8], which I will use as
a reference in many points because lots of aspects of my project may be affected by software

factors, and viceversa.
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1.4 State of the art

As the field of CubeSat is a very active one, despite its relatively recent birth, it can be found
many references on developed on-board computers both in the technical literature as also in the

market.

In a work from the Norwegian University of Science and Technology, (Normann 2015 [9]), ex-
poses an extensive review of the requirements of an OBC system for CubeSats looking for
solutions to an existing OBC developed for his "NUTS” satellite, discussing how to improve the

microcontroller and the memories.

In a study of the Manipal Institute of Technology (India)[10], they describe a CubeSat formed by
a main platform and a payload were they used 2 on-board computers connected by 12C. The one
used for the platform is a Texas Instrument MSP430 microcontroller, which communicates with
the ADCS subsystem and COMMS. This MCU has a very low power consumption of 0.022 W
at nominal operation. The second microcontroller consists a STM32F207 ARM processor which
is in charge of the image processing as part of the payload. Due to the limited RAM and ROM
storage that this MCU has, an external SRAM and Flash memory has been used.

Additionally, many commercial options are available in the market. One of them is the one
used for 3CAT-4 mission in the laboratory, the GOMSpace®NanoMind " A3200 [11]. This OBC

consists in a single, stackable board that measures (65 x 40 x 7.1 mm), and weights 24 g.

Another example is the OBC developed by the Dutch company ISISpace®, ”iOBC” [12], that
already has flight heritage, with a cost starting from 4400 €, it integrates a 400MHz 32-bit
ARMY processor with FreeRTOS operative system and 512 KB of FRAM (non-volatile storage)
and 64MB of SDRAM. This system is integrated in a single CubeSat-sized board of (96 mm x
90mm x 12.4mm), and it provides 12C, SPI, 2xUART, GPIOs, 8xADC, 6xPWM and JTAG

interfaces.

Finally, ” CubeComputer” [13] an OBC from CubeSpace® | is a general purpose nanosatellite
computer with a built-in 32-bit ARM Cortex-M3 MCU at 4-48MHz, with 256 KB of EEPROM,
4MB flash for code storage, 2x1MB SRAM storage, and pSD socket for external storage up to
2GB. As interfaces, it has 2x I12C ports, 1x debug UART, 1 CAN bus up to 1Mbps, 4xPWM,
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4xADC, and SPIL

1.5 Environmental impact

This project, given that its purpose is to design a part of the hardware for a possible future

spacecraft, it has the environmental impact as every space mission.

One of the major environmental impacts of spacecrafts is the contamination of the space sur-
rounding the Earth, both by the satellite itself, and the possible, not desirable, unattached parts
due to failures in the design or the operation, or maybe, after a catastrophe like a collision in
orbit. Also, sometimes, as a consequence of the launch, some stages of the main launcher vehicle
or parts of it, may stay in orbit, at least for some time. All this concern is what is called space
debris, and it is a very worrying topic, which is becoming more important during the last dec-
ades as the act of launching objects into space has become cheaper and more accesible to more

countries and companies every day.

Several decades ago, the only objects in space were just a few, big, expensive satellites and
probes launched by big agencies and a limited number of countries. Nowadays, it is relatively
easy and cheap to create something able to orbit the Earth, and lots of new countries, institutions
and companies are launching technology into space. This has a fascinating lecture in terms of
improving the technology and disseminate the knowledge around the globe, which would also

contribute in better understanding of our own planet and a positive impact in our lives.

But, in contrast, the proliferation of these cheap technologies to access space may become a
problem. The problem is the massification of near space around the Earth with small and
every-day, less controlled satellites. This is due to the large number of satellites and the difficult
coordination between nations, companies and institutions to settle the basis of a legal interna-
tional frame to regulate the space traffic and establish clear decommission guidelines for every

object put in orbit.

Regarding this aspect, this project consists in an specific type of spacecraft that has its own
distinctive properties, a CubeSat. CubeSats use to be orbiting the Earth in Low Earth Orbits
(LEO), with altitudes around 300km to 500km. The size of the spacecraft is well defined
according to the standard of CubeSats and also its weight. And usually, they do not make use
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of active propulsion systems Taking into account that, the atmospheric drag is not negligible,
and that is the main cause of deorbiting for these satellites. They use to stay in orbit less than

7 years [14], for 1U, 2U or 3U CubeSats in orbits around 500km.

Also, given the small size of the satellite, and the huge re-entry speeds, in the end all the

mechanical and electrical components use to deintegrate and burn in the atmosphere.

Another environmental impact of space missions is the pollution of the launch itself, both in
terms of atmospheric pollution with combustion result gases, but also with acoustic pollution,

both harmful for the fauna and flora of the launch pad environment.
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Chapter 2

Development of the project

2.1 The on-board computer

The main objective of this project, as justified in section 1.3, is the manufacture of and On-Board
Computer, briefly introduced in 1.2.2.3. So, from now, the document would try to describe all
the work done to accomplish this task. First of all, it is needed a more in depth description of

what an OBC is, but in particular, on what this OBC is intended to do.

The OBC is the main brain of the satellite, and it may be able to control and/or communicate
with all other subsystems. The user of the satellite, in general would want to communicate with
the satellite, sending and receiving commands and data; and all this information would have
to be managed by the OBC. Some of these functions are summarized in the next diagram of
functions (table 2.1), which would translate, the functions that the user may want to to do, to

functions that the OBC would have to implement.

These functions have to be implemented by the OBC as a system, sometimes they are more
related to software functions, but other are also mixed with the hardware architecture. What is
clear is that software and hardware has to follow very close ways and both has to be consequent

with these functions.

11
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Table 2.1: Diagram of functions

User OBC

Formatting /partitioning a non-volatile

Formatti titioni SD card
memory ormatting/partitioning an car

Send /receive commands to the OBC Communicate with COMMS subsystem

Flash the kernel

Flash the user code

Read microcontroller registers
Change configuration

Read/write memory

Reboot the OBC Reboot himself
Monitor himself:
CPU load

Monitor OBC status RAM usage
Disk usage

System temperature

Power on/off other subsystems
Switch between operational modules Communicate with other subsystems
Send commands to other subsystems

Execute tasks in real time

t 1-ti lock
Load time into the clock Store a real-time cloc
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2.2 Project organization

2.2.1 Project plan

The project started in the beginnings of February 2019 in the NanoSat Lab, as an idea to
reduce the cost of externally provided OBC modules, as mentioned in the previous chapter 1.3.
At the same time, Isaac Montsech begun his parallel project that tries to develop the linux-based
software that would be implemented on this OBC. Since that moment, we had weekly meetings
with our supervisor Adriano Camps and other colleges involved in the context of SCAT-NXT

projects.

The full project lasted from February 2019 to September 2019, when a first version of the
resultant OBC was tested working as expected. The project plan with detailed tasks and its

schedule is reported at the end of the document in the Appendix C using a Gantt diagram.

2.2.2 Requirements

To start defining the OBC module, it is mandatory to write down a list of requirements that
the product shall accomplish. These requirements are derived from the diagram of functions
presented in previous chapter 2.1, taking them and creating a more precise definition of the tasks
and design aspects that the system must have. After that, these requirements will translate into
design decisions, and the work would start by designing a schematic circuit that satisfies them.

Table 2.2 lists the requirements of this project.

These requirements uses a naming convention to identify them that is as follows: (Field)-
(Type)-(ID_num), where (field) refers to the subsystem involved, and (type) could be FUNC
(Functional), DCP (Design, Configuration & Physical), or PERF (Performance).
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Table 2.2: Table of OBC requirements

ID

Description

Test method

OBC-FUNC-001

The OBC shall be able to monitor the

status of each sub-system

Functional testing

OBC-FUNC-002

The OBC shall be able to reboot other sub-

systems

Functional testing

OBC-FUNC-003

The OBC shall be able to control and
command all the devices in the spacecraft

through its interfaces

Functional testing

OBC-DCP-001

The OBC shall include at least 1 temper-

ature sensor on its board

By design

OBC-PERF-001

The temperature sensors shall have an ac-

curacy of at least + 2 2C

Electrical testing

OBC-FUNC-004

The OBC shall include the following inter-
faces:

- 12C

- UART

- RS-422

- SPI

- SD-MMC

By design

OBC-DCP-002

The maximum number of I12C connections

shall be 8

By design

OBC-DCP-003

The maximum number of UART connec-

tions shall be 8

By design

OBC-DCP-004

The maximum number of RS-422 connec-

tion shall be 8

By design

OBC-DCP-005

The OBC shall include a SD card memory
storage of at least 32 Gb

By design

OBC-PERF-002

The OBC shall consume less than 500mW

Electrical testing

Page 14
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2.3. SCHEMATIC DESIGN Carlos Molina

Table 2.2 — continued from previous page

ID Description Test method

OBC-DCP-006 The OBC shall be integrated in one board Mechanical testing
that fits the Laboratory Standard:
- Width: 90.2 mm
- Length: 95.9 mm

OBC-DCP-007 The components that could generate elec- Electromagnetic testing

tromagnetic interferences shall be shielded

OBC-ENV-001 The OBC board shall withstand vibration Mechanical testing

tests

2.3 Schematic design

The first task to accomplish in the creation of the proposed On-Board Computer is to start
designing the hardware components that it will use. This task is performed by following the

guidelines imposed by the requirements described in section 2.2.2.

The schematic design phase of the project should take the functions and requirements of the
defined system and translate them into a real electronic circuit. This process comprises several

tasks that must be followed in order and sometimes they may be iterated.

The first step to start the hardware design is to define a number of major blocks to perform
main tasks of the OBC. In our case, the complete schematic of the OBC may be organized in

the following parts or blocks:

—_

. Core

2. Power generation
3. Interfaces
4

. Extra functionalities
Each of them has a specific task in the complete system, and they depend on the others. After
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defining these blocks, the next point is to design exact circuits and sub-circuits, and at the same
time select which components would be used. This is done by carefully analysing the initial

requirements and ensuring they are achieved.

A first approach to how the global schematic would be like was created before starting the actual

design, and can be schematized in the block diagram shown in figure 2.1.

mothership
ext_5V

submarine 1.8V
3.3V 1.8V

usB

<+, —— FTDI

33V 1.8 II 3.3V 1.8V
UART-B Levelshlfter

(3.3v)  ~ 3.3Vel8Vv
5V 1.8V EET
/I/ /I/ \ ((;Iean)
RS-422 ——RS-422 >

3.3V 1.8V 5V

12C

2l 2
PI

mw Core SPI 3 /

pm Power

Interface
poe Extra ADC  GPIO

Power in
(5V -17V)

Figure 2.1: Block diagram for the whole OBC design

2.3.0.1 Altium project

To start designing both schematic and layout of the PCB, the EDA software Altiumw[15] is
used. This EDA (Electronic Design Automation) tool allows the creation of a project where a
library of components can be managed, an schematic created and then, its implementation into

the layout of a PCB.
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At first instance, after component selection, a library of symbols and footprints was created for
the Integrated Circuits, passive components and connectors, including the ones that interface
the Torpedo SoM, which was manually created. Other footprints where downloaded from sup-
plier websites and, afterwards, double checked, looking for discrepancies or errors between the

dimensions specified in the datasheets.

Once the library was completed, the creation of the proposed schematic started, organizing the
full schematic in multiple sheets and creating some hierarchy between them. This hierarchy of

files and libraries is shown in figure 2.2.

i;-l 3CAT-NXT_OBC_v1.0.DsnWrk
3CAT-NXT_OBC_mothership.PrjPch
4 ® Source Documents

_interface.S5chDoc

ard_conn.Schloc

_motherboard_

notherboard_

T onnectors.PcblLib

NXT_IC.LibPkg

Figure 2.2: Altium workspace created for the project. The left column is the Mothership project,
which includes the schematic files organized in sheets and sub-sheets, and the PCB
layout.

The right part is the Submarine project and the two libraries created especially for
this project: connectors and ICs

2.3.1 Core

The main component to take into account is the core of the OBC, that is the microcontroller
(MCU), or microprocessor (MPU) that will be used. Due to the requirements of the OBC
in terms of processing power and software requirements, it was decided to use a MPU. The
proposed architecture is to use an integrated mini-computer given by an external manufacturer
which includes all the basic components of a computer, CPU, ROM and RAM, with several

interfaces to communicate with it.
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Initially, there were some options considered for that purpose. One option was to use an
STM32F4 System-on-Module, as it was used previously in NanoSat Lab to design a prototype

of an on-board computer [16]. This consisted of a board that includes:

Microcontroller: STMicroelectronics STM32F429
16 MB NOR Flash: Spansion S29GL128S10DHI010
32 MB SDRAM: ISSI IS42SM16160K-6BLI

Ethernet controller

External crystal oscillators

Top side Bottom side

Ethernet PHY STM32F429

LIE1E4671 4H
§iz Maewo 13360
<% 46 mm -
16 MB NOR Flash 32 MB SDRAM

Figure 2.3: STM32F4 System-on-module board

This System-on-module is integrated in a 30mm x 46mm board and is connected by two 100-pin

Hirose DF40 series 0.4 mm-pitch board-to-board connectors [17].

Finally, this module was discarded because, for wider possibilities in the future, a more powerful
central computer was preferred, bringing more options to even control others subsystems like
COMMS, EPS, ADCS. Using a more powerful processor and building a full capable Linux oper-
ative system, may have great advantages for future CubeSats missions, allowing more processing
load for tasks like communications, attitude and orbit determination and control or any other

on-board processing.

The alternative for this module was a microprocessor integrated into a System-on-Module,

named as DM3730/AM3703 Torpedo” SoM, commercialized by Logic PD®.
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27 mm

Figure 2.4: Torpedo SoM

The specifications of the Torpedo SoM are [18]:

e Texas Instrument DM3730 up to 1GHz ARM® Cortex -A8
e 256MB SDRAM / 512MB NAND Flash memory

e Android, Linux, Windows Embedded CE support

e Industrial temperature (—40°C to 85°C)

e 3xUART, 2xMcBSP, 3xSD/MMC, 3xSPI, 2x12C

e Parallel camera interface

e Ultra-compact form factor (15 x 28 x 3.8 mm)

e Hirose DF40 series 2 x 100 pin 0.4 mm-pitch connectors [17]

The Torpedo SoM has in total 200 pines to connect. Of course, not all of them are of interest for
this project. Some of them are used to interface a LCD screen, or to use the external memory
interface through GPMC (General Purpose Memory Controller), along with many others. In
conclusion, just around 60 signals plus the power supplies are actually connected. The schematic

of the connection with to SoM can be seen in figure 2.5.

Also, a circuit that must be mentioned here, related with the Torpedo SoM, is the configuration
circuit for the software booting process. The DM3730 includes some signals within its inputs

that configures the booting devices priority. These signals are SYS_.BOOT[6:0]. Only 0, 1, 3, 4
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Figure 2.5: Schematic of Torpedo SoM connectors

and 5 are available off-board. Setting them as LOW or HIGH digital values, the boot method

can be configured, as described in table 2.3.

This configurability was made accessible to the user by outputting these signals and giving the
possibility of shorting them with GND or digital VDD, with 0 Ohm resistors. The schematic in

figure 2.6 shows how this is done.

Additionally, around the Torpedo, the OBC needs some components in order to extend and
improve the performance of the OBC. Most of them are just a way to interface the outputs and

inputs of the board to the CubeSat standard.

2.3.2 Power generation

The SoM and other components in the circuit need a power supply to run. One approach is

that the EPS would bring the OBC module the voltages it needs, but this one has the problem
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Table 2.3: Configuration signals for boot devices priority

DM3730 processor pins Boot method

SYS_-BOOTI6:0] = 1101111 USB, UART3, MMC1, NAND
SYS_BOOTI6:0] = 1001111 NAND, USB, UART3, MMC1
SYS_BOOT]6:0] = 1001110 XIPwait, DOC, USB, UART3, MMC1
SYS_BOOTI6:0] = 1000110 MMC1, USB

VDDI18

<_8YS BOOTO

AT
SYS BOOTI1 ’
< SYS BOOT3
SYS BOOT4 ’

<_SYS BOOTS5 >

Figure 2.6: Schematic of SYS_BOOT configuration pull up/down resistors

that the EPS would depend too much on the specifications of the OBC, and if they change, the
EPS would have to be modified.

The preferred approach is to generate the voltage rails needed just using one input voltage from
the EPS. It also has the advantage of being better isolated from external disturbances and noise

in the voltage that could be produced by external devices connected to the general power bus.

The main power supply for the SoM is at 3.3V, but it is also needed to generate others points
of load at 1.8V and 5V for other devices, as shown in the table 2.4.

The way to obtain these points of load is by using three DC/DC voltage converters that takes
the input voltage line from EPS at a certain voltage and outputs the three voltages. The circuit
architecture used is a step-down (or buck) converter. So that imposes that the input voltage
from the EPS has to be higher than 5V.
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Table 2.4: Devices classified by voltage needs

Point of load Device that uses it

RTC Clock of Torpedo SoM

L]V Digital supply of ADCS sensors (for 12C)

microSD supply
Digital input for UART levelshifters

Main battery of Torpedo SoM
3.3V Main power of ADCS sensors
Output levelshifters for UART-B
RS-422 output levelshifters for UART-C
UART to USB converter for UART-A (debug USB)

oV

Table 2.5: TLV62130 specifications [1]

Specification Value
Input voltage range 3V tol7V
Max output current 3A

Configurable Output Voltage 0.9V to 5.5V

Operating junction temperature —40°C to 125°C

The DC/DC voltage converter circuit is based in the Texas Instrument IC TLV62130 [1].

This architecture based on DC/DC buck converters is a good approach for spacecrafts because
the efficiency is generally quite high, which is very important in term of the power budget of
a mission. This particular IC has the efficiency curves shown in figure 2.7 for the two possible
PWM frequencies. It is observed that efficiency is higher for 1.25 MHz, but in the first version

of the circuit it was set to the default frequency 2.5 MHz.

So the overall power generation circuit for this OBC was made using the following circuits shown

in figures 2.8, 2.9 and 2.10.

Placed before each DC/DC converter, a current limiting and short circuit protection circuit was
added using the IC MIC2005-05YM6. This circuit would shutdown the output if the current

exceeds 0.5A and also if temperature exceeds 145 °C. The input maximum voltage for the circuit
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Figure 2.7: Efficiency of DC/DC Buck converter TLV62130 for 3.3V output as a function of the
output current and different input voltages [1]
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Figure 2.10: DC/DC buck converter for 5V rail
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is 5.5V [19]. This is a problem that is discussed in last section ?7.

Finally, each branch of power generation (1.8V, 3.3V and 5V) have an schema similar to the one
shown in figure 2.11. It has been added a LED to indicate the status of the output, that should

be used just with debug purposes, and may be removed for real space missions to reduce power

consumption.
w
TLV§2130RGTR P4
U1 Step-down DC/DC
ON = 1y vour & 1 PVIN 1 SW 3 3 DDV
Ri1 | ]| 2 C s J: l 10 P\',IN—‘ SV‘,—’ R15
E GND  CSLEW [—— 2 ] AVIN SW_1 :
“nablel | v T 330
o
. 3 ENABLE FAULT o | 10 B gy vos

MIC2005-0.5YM6_TR PG -

FB

A logic "low" in FAULT pin
findicates the power switch is
lin current limiting mode or [

as been shutdown by the
Thermal protection circuit P3

@
z
[~}

.ﬂ
z
[l
5
oo e
mo
2
25
HI- pAD
75| AGND
Ha{ POND §
P poND

Figure 2.11: Final schematic for 5V power generation

Another remarkable aspect is that, for the power supply of the FTDI chip that converts the
UART to USB (as shown in table 2.4), it was used the 5V power rail coming from the external
USB connect to the board. By doing this, if there is no USB host connected, there will be
no power consumption from the on-board 5V generation. This circuit is depicted in the next

section in figure 2.13

2.3.3 Interfaces

As said before, one of the key aspects of the surrounding circuit of the OBC is to serve as an
interface for the outputs and inputs of the SoM. In total there are 7 types of interfaces in this

OBC, listed in table 2.6:

2.3.3.1 SD/MMC

SD cards (Secure Digital) or MMC (MultiMediaCard) are both digital solid-state storage devices
that can be used to write and read information. In our case they can be used to increase the
limited storage capacity of the built-in NAND memory of the SoM Torpedo. It can also be used
to store the kernel and operative system that the computer will run, so you can easily change
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Table 2.6: List of interfaces

Interface type Quantity

Description

SD/MMC 2

MMC1 (Debug SD card)
MMC2 (Optional SD card)

USB 2.0 1

Debug through UART-A

UART 2

UART-B @ 3.3V
UART-C to RS-422 Q5V

SPI 3

SPI1 (up to 4 Chip Select)
SPI2 (up to 2 CS)
SPI3 (up to 2 CS)

I?C 2 (1 external)

12C1
I2C2 (internal use for attitude sensors)

ADC 4

ADCO (max 1.5V)
ADCI1 (max 1.5V)
ADC2 (max 2.5V)
ADC3 (max 2.5V)

GPIO 10

GPIO 94
GPIO_95
GPIO_96
GPIO97
GPIO_105
GPIO_106
GPIO 111
GPIO_128
GPIO_129
GPIO_167

O
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the code and recompile it externally, and then test the software running from the SD/MMC

card.

The DM3730 allows up to 3 SD/MMC cards [18, 20]. In this prototype of the design, only two
would be available. The first one, MMC1, is the debug card, and it is explicitly connected using
a pnSD slot in the PCB (figure 2.12). The second card has its nets available in the schematic but
not connected to any hardware slot. If this is needed in the future, it is just routing these nets

until a place to put the connector.

The option of a third card was discarded at first instance because some of the nets to control it
actually collide with others, for example, SPI signals. As it will be seen, this is something usual
in this SoM, so a trade-off would have to be found in the design, prioritizing some functionalities
over others. In this case, it was prioritized having more SPI signals than SD cards —assuming

that 2 SD cards are enough for this project.

The schematic of this MMC1 card is just connect each net to the corresponding signal in the
SoM and add pull-up resistors for the signals that requires it. This card is powered by the 1.8V

voltage
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1ok | 1ok | Jiok | Jiok | 1o
SD1
™ uSD
CDATO DALo . ; DATO
? DATI ? AT | DATI
<_DAT2 D;\T" > DAT2
<{_DAT3 b = DAT3
< CMD b (Cﬁ? g CcMD
< CLK Lo CLK
O CD 1(9) CD_A
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6 | vss
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Q
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Figure 2.12: Schematic connection of the SD/MMC card
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2.3. SCHEMATIC DESIGN Carlos Molina

2.3.3.2 USB

The USB is driven from the TX/RX lines of UART-A, which is the one configured by default as
debug UART for the SoM Torpedo. These signals have to be translated to 5V by a levelshifter
and then the IC FT232RQ [21] does the conversion from UART to USB serial protocol, resulting
in a pair of differential nets (USB_P, USB_N) that must be routed to the connector with an

impedance less than 90 Ohm.

The power supply is taken from the USB connector 5V rail, which would be generated by the
external device connected to the OBC. The overall schematic of this module is depicted in figure
2.13.

UART-A to USB
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Power from USB
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Figure 2.13: UART-A to USB circuit using FT232RQ

2.3.3.3 UART

The other UART interfaces have been also made available to use. UART-B is directly translated
into 3.3V using a levelshifter, as shown in figure 2.14a. And UART-C is converted into full-
duplex RS-422 serial protocol, that implements differential signalling, helping reducing noise and
interferences. This is done by using the IC MAX22502EATC+ [22], which has to be powered
by 1.8V in the UART side, and 5V in the RS-422 side, because the differential signal goes at
+5V/-5V. The circuit is shown in figure 2.14b.
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Figure 2.14: Interface circuits for UART-B and UART-C

2.3.3.4 SPI

Three SPI interfaces are output directly by picoblade connectors, as shown in figure 2.15. One
thing to take into account is that the pin SPI_CS3 is configured by default as the SPI3_CLK, so

it should have been connected to J10 connector, along with the other SPI3 pines.

SPI interfaces

< SPII CLK —1 %

SPI1_SIMO ;———% .

< SPI1_SOMI 4 <_SPI2_CS0 5 <_SPI3 CSO
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(_SPI1 €SI sr—— <_SPL2_CLK .

< SPIL €82 ——— < SP2 SIMO : { SPI3_SIMO
{_SPIL CS3 < SPI2_SOMI : {SPI3_SOMI

SPI2
1125360RI

Figure 2.15: SPI interfaces

2.3.3.5 1I2C

The SoM has two 12C interfaces. In this version of the hardware, one of them (12C2) is used
internally to communicate with the three attitude sensors, that would be treated in section 2.3.4.

So, that means that externally only 12C1 is available with a picoblade connector.

One advantage of the I2C protocol is that it uses just a line for data and another one for the

clock, and, it does not use one additional net for each connected device (as does the SPI), so
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it may allow many devices just using a pair of wires. The only limit is the capacitance of the
whole line, that should not exceed 400pF. This capacitance depends on the length of the wires

and the number of devices holding from the line.

2.3.3.6 ADC

The SoM provides 4 internal 10-bits ADCs up to 1.5V and 2.5V [20] as specified in table 2.6. If
there is a need of having better and/or more ADC inputs, an external ADC chip may be used

and connected through one of the available interfaces (SPI, 12C,...).

2.3.3.7 GPIO

10 GPIOs are routed in this version of the hardware. They could be configured, by software, as
inputs or outputs, and may be used to control or monitor any signal of interest. More GPIOs

would be available from the SoM (see Torpedo hardware specifications document [18]).

2.3.4 Extra functionalities

Finally, it has been implemented other functionalities that every CubeSat mission may use, as
a basics. This is a set of attitude sensors. These sensor include a 3-axis gyroscope to measure
angular velocity and a 3-axis magnetometer, to measure the magnetic field in the position
of the satellite. Additionally it has been added another IC that is a complete IMU (Inertial
Measurement Unit), that integrates a gyroscope, magnetometer and accelerometer. The idea of
this chip is to have a redundant device that can be used to calibrate the other two, or support

the measurement operation.

The specific ICs selected for these tasks were selected together with the attitude team in the lab,
taking into account, the attitude related specifications as resolution, range and noise density,

but also the interface protocol, voltage range and power consumption.

In terms of power supply, it was preferred 3.3V and the interface could be SPI or I2C. In the
end 12C was preferred because, the three sensors could be connected with the same bus and also

it was decided that this 12C bus were used only for these ICs, limiting the length of the 12C line
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to reduce the risk.

As it will be seen in the next paragraphs, these three sensors, may share the power supply at
3.3V, so they will use the same point of load generated for the main power of the Torpedo SoM.
Furthermore, to reduce the noise in the power rail of the sensors, that may be produced by the
operation of the Torpedo, or couplings with commutating signals, the supply of these sensors
was isolated using a LDO (low-dropout) regulator. It consist a DC linear voltage regulator that
has less efficiency of commuting DC/DC converters but is much simpler to connect and also,
the power consumption of the sensors is small enough to neglect the losses. The LDO regulator

used is the LP5907MFX-3.3 [23], that regulates the output voltage to 3.3V.

The full schematic of this block is shown in figure 2.16.

Main magnetometer Redundand IMU (Gvro + Magnetometer)
DDI8
:\VS,\ZJI VDD33A GND
VDD33A 5 . 7 -
vpp e T fri—
Lo 1, ¢ | vop 10 DRDY | *
i Thowr o SDOSAL |
+—{—{ ¢ o sDasDISDO =
1005F 3 By SCLSEC g
GND EE s [a10
G
{TICRCL
TTRCEDA
Main gyroscope
GND  GND
= = o7 cs
cm)-\\l—{ }—h\-(m) =
Ica ICF- 221 ﬁom—z &0
VDD1§ 10aF 10008 = 5‘
VDD33A J 8 Moo - -
flvicoic 3 2 atxpa &
s <3 AUXCL
3 E CIRIN [
SCL
2 sDa oy Bl e st i
%1 apo RESV 3 | . awer supply isolation
GYRO ez [Z Yooz U A circuit
oD EsI RESV] 12 ! est point
5 [, La
ErEEEzEE =15
5 T]Ll.
1 Bewe rrREH
GND
E'-?[)

‘u'ﬂ'e

Figure 2.16: Schematic of the ADCS sensors

The following paragraphs give more details of each sensor used.

2.3.4.1 Main gyroscope

The gyroscope selected was the MPU-6050"from InvenSense®. It has digital output for angular
rate in the three axis with user programable full-scale range of £250, £500, 1000 and 2000 °/s.
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Table 2.7: Gyroscope MPU-6050 main specifications [2]

Parameter Min Typ Max
Main power supply 2375V 3.3V 3.46'V
Logic power supply 1.8V

Angular rate +2000°/s
Resolution 16 bits

RMS noise @ 100Hz 0.05°/s rms

Noise spectral density @ at 10Hz 0.005°/s/v/Hz
Gyroscope sample rate 8kHz
Temperature sensor —40°C 85°C
Temperature sensitivity 340LSB/°C

Operating temperature —40°C 85°C
Current consumption 3.6 mA

(only gyroscope)

This IC can be controlled by both SPI and 12C, so this last one is the used. The table 2.7 list

the main specifications of this sensor.

2.3.4.2 Main magnetometer

The magnetometer selected is the LIS3MDL. This IC implements a low-power high-performance
three-axis magnetic sensor. The sensor range covers from +4 to £16 gauss. It also includes both
SPI and 12C interfaces, this last one at standard and fast modes (100kHz and 400kHz). The

table 2.8 summarizes the main specifications of this sensor.

2.3.4.3 Redundant magnetometer 4+ gyroscope

Finally, an ST®Inertial Measurement Unit (IMU), LSM9DS1, was included in the design, to
prevent in case of failure of one of the other sensors, or to have a second measurement to
compare, calibrate or improve the precision. This IMU has integrated acceleration, angular rate
and magnetic field measurements in the three axis. As the other two ICs, it may be commanded
by both SPI and I12C. The next table 2.9 details the main specifications.
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Table 2.8: Magnetometer LIS3MDL main specifications [3]

Parameter

Min Typ Max

Main power supply (Vdd)

1.9V 3.3V 3.6V

Logic power supply

1.71V 1.8V Vdd + 0.1V

Measurement range (FS) +4G +16 G
Resolution 16 bits

RMS noise (FS= £12G) XY axis 3.2mG

RMS noise (FS= £12G) Z axis 4.1mG
Temperature sensor —40°C 85°C
Temperature sensitivity 8LSB/°C

Operating temperature —40°C 85°C
Current consumption 270 pA

(ultra-high resolution mode)

Current consumption 40 pA

(low-power mode)

Table 2.9: IMU LSM9DS1 main specifications [4]

Parameter Min Typ Max
Main power supply (Vdd) 1.9V 3.3V 36V
Logic power supply 1.71V 1.8V Vdd + 0.1V
Acceleration range +2¢g +16g
Magnetic field range +4G +16 G
Angular rate range +245°/s +2000°/s
Resolution 16 bits

Temperature sensor —40°C 85°C
Temperature sensitivity 16 LSB/°C

Operating temperature —40°C 85°C
Current consumption 600 A

(accelerometer + magnetic sensor)

Current consumption 4mA

(gyroscope)
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2.4 PCB design

A PCB (Printed Circuit Board), is the typical way of physically implement an electric circuit.
It provides mechanical support for the components and also electrical connection between them.
A typical PCB is made of a non-conductive substrate, which usually is a composite material,

and some layers of some conductive material, usually copper, which is distributed in layers.

During the fabrication of the PCB, the conductive material is etched leaving copper just in the
tracks and nets that would be connected together. Also, in order to properly route every net in
the circuit, holes are needed to connect different layers of copper. In the technology used in this

project, that holes connect all the layers together.

2.4.1 CubeSats constraints

Given that this OBC module is intended to be used in CubeSats missions, it must follow a
certain number of constraints related with the size of the board, the connections and interfaces

with other modules, the mechanical structure to hold the board.

In terms of the size of the board, every board must fit inside the volume of a CubeSat. Typical
1U, 2U or 3U are elongated and the boards are arranged perpendicular to the long axis of the

CubeSat, so the size of the board should fit in the 10 x 10 cm? area section.

Nevertheless, it is also possible to design smaller boards that could connect to a full-sized,
square board. One advantage of this is that the same model of circuit could be connected to
different baseboards that shares the same interface, which is interesting from the point of view

of standardization and unification of the OBC subsystem.

This was the approach when designing this OBC module; a small PCB for the core block
and a large PCB for interfaces and power supply. The usual way of naming these type of
boards is Mothership for the bigger one and daughterboard for the smaller. But for my project
I personalized this names as ”Submarine” for the board that holds the Torpedo SOM and
”"Mothership” for the one that connects to the Submarine.
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2.4.2 Submarine

At first instance, the Submarine PCB was designed to integrate only the core components (SoM
Torpedo and pSD). The Torpedo board size is 15 x 28 mm, and the uSD connector is around
14 x 21 mm. The connector between Mothership and Submarine was estimated to have around

80 pines, and a specific connector was selected, explained in next chapter 2.4.4.

Knowing the size of everything included in the board, a estimation of its dimensions was done.
The board could measure around 45 x 65 mm. Then, observing that these dimensions could allow
to place two of these boards on top of the standard size of a CubeSat board [24], the definitive
dimensions were adjusted to 40 x 66 mm. Reducing the horizontal length from 45 mm to 40 mm,
two boards can be placed together with a small separation, not exceeding the standard width

of 90.17 mm.

A sketch of the disposition of these components in the Submarine is shown in figure 2.17. Finally,
it was decided to also include the attitude sensors in the same board, because there was enough
place for them and also to keep one of the I2C ports in the Submarine board, without using

pines of the inter-board connector.

40mm

SoM

66mMm

T
n
O

©) ©)

Figure 2.17: Estimation of area for Submarine board

After the area estimation, the process of placing and routing started. Was during this time that
I realized that the board would have to be with 4 layers, not just 2 (top and bottom). This was

due to that the high congestion of pines of some components like the Torpedo SoM and also the
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80-pin connector, did not allow to route them without using more layers.

Finally, the board was completely routed, and the result can be seen in figure 2.18, just the top
and bottom layers. Layers 2 and 3 have just some lines. All the areas where there is not a net,
where filled by a polygon connected to ground (GND), that also helps improving the ground

connection.

(a) Top side (b) Bottom side

Figure 2.18: Submarine PCB layout

Also, with the aim of providing a global 3d model of the system and also detecting possible
collisions between components, the 3d model of each component was added to the footprint, so

Altium can take them into account. A 3d view of this board is shown in figure 2.19.

On top of the board was also added some overlay text indicating the name and version of the
board, and the name and position of every component to help the soldering of the components.
And also was noted the axis in which the attitude sensors were arranged, taking care of orienting

them in the same way to simplify the posterior analysis of data measured.

The magnetic sensors has both the axis oriented in a way that the x-axis is the short length of
the board (positive to the right), and the y-axis is the long one (positive to the top), leaving

the z-axis positive perpendicular to the board plane through the top side. In the case of the
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(a) Top side (b) Bottom side

Figure 2.19: 3D view of the Submarine PCB

gyroscopes, they both share the z-axis, positive in the anti-clockwise direction seen from top,
following the vector product 2’ x 7. But for x and y-axis the two sensors has the same direction
but oposite signs. The one that follows the right-hand rule of vector product is U2 (the main
gyroscope MPU-6050), this is, the positive x angular rate is following the vector product 7' x E,

and the positive y measurement k x 7. This can be visuallized in figure 2.20

Figure 2.20: Sensor axis visualization. The two magnetic sensors share the same directions
indicated with positive axis arrows. The two gyroscopes measure positives angular
rates in the sense indicated by the arrows. Note that U5 and U2 have oposite sign
for its x and y-axis
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2.4.3 Mothership

The Mothership has the size and shape of standard CubeSat boards [24]. This includes the
dimensions, number an position of structural holes and the position of the standard CubeSat
connector, PC104. The size of the board is 90.17 mm x 95.89 mm with one hole in each corner

as depicted in figure 2.21. The full specifications document is attached in appendix D.
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Figure 2.21: Dimensions of the Mothership board according to PCB CubeSat Standard [24]

This board integrate the power generation circuits, all the external interfaces and its associated
circuits. The board also supports two Submarine-sized boards on top of it, with the holes to fix
them, and the connector for the Submarine. In this version, only in the left side was placed the

80-pin connector, because, in this moment the use of the other board is unknown.

This board started with some constraints: the position of the two daughterboards, the inter-
board connector, the main PC-104 CubeSat bus and the holes for structural screws, both for
the Mothership structure and for the two daughterboards attached to it. Having the pc-104
connector in the north side of the board, the rest of interfaces were placed in the south side by

using 90-degree PicoBlade connectors.

The power generation circuits were place in the left side of the board, under the Submarine

slot. And the USB for debug was placed in the bottom face, in the right side. Also in this
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board were placed the configuration signals for the boot priority selection, as explained in the
schematic section. This board is somehow simpler than the Submarine, but, despite that, the
high density of nets interfacing with the 80-pin connector, made mandatory to use 4 layers too.

The complete layout of this board is shown in figure 2.22.
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(a) Top side (b) Bottom side

Figure 2.22: Mothership PCB layout

In the same way as for the Submarine, also the 3d model of this board was created and is shown

in figure 2.23.

As can be seen in the top side of the board in figure 2.23a, or, with better detail in 2.24, the
input power may be selected to come from the pc-104 bus or from the a dedicated extra pin
labelled as 5V_EXT. This is done by selecting the position of a jumper in the the 3-pin connector
shown in figure 2.24. This input, as explained in the 2.3.2, ranges from 5V to 17 V.

As mentioned previously, 3D models of every component and the board itself was exported to
a CAD software to made a simulation of the integration looking for possible collisions between

components. An image of this is shown in figure 2.25.
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Figure 2.23: 3D view of the Mothership PCB

Figure 2.24: Detail of external power input. If the jumper shorts the two left positions the
input would came from the pc-104 bus. In the right position the input is taken
from EXT_PW connector (where square pin is the GND).

2.4.4 Inter-board connector

In order to communicate the two boards (Mothership and Submarine), a 80-pin inter-board
connector. The physical component selected is a SAMTEC High Speed Hermaphroditic Strip
LSHM Series [17]. The position of the 80 pines of the Submarine board used to interface with

the Mothership, is shown in figure 2.26.
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Figure 2.25: A 3D model of the integration of the two boards (Submarine and Mothership)
together using a CAD software to check possible collisions between components
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Figure 2.26: Submarine inter-board connector pinout
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2.5 Integration phase

The two boards were ordered in a same panel together to reduce costs. The minimum amount
of copies were two, so that was the number of boards ordered, which also allows to have a
second chance in case of failures and damages in the board. This was also the case for electric
components and connectors, they were always ordered, at least 2 or 3 more, depending on the

price and the risk of failure.
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Figure 2.27: The two PCB boards just arrived from the manufacturer in a same panel

When the boards (figure 2.27) and also the electrical components arrived, the integration process
started. This process followed the standard used in the NanoSat Lab [25], and can be synthetized

in the following points:

1. Check that all the components ordered were received and verify its model name and
quantity.

2. Visual inspection of the boards and also first electrical test of main nets, checking for
continuity in a same line and ensuring there is no shorts between different lines.

3. Check mechanical fit of the two boards using spacers.

4. Create a sorted list for soldering components:
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(a) Components that must be soldered inside a furnace (if existing)
(b) ICs that must be soldered using the hot air gun
(¢) Other ICs
(d)
)

(e) Connectors, starting with smaller

The rest of passive components (capacitors, inductors and resistors)

5. Check electrical connections, continuity and no shorts after every soldering.

The first visual inspection concluded that some holes were missed in the board. In particular,
the micro USB had holes for two plastic attachments, and so for the 80-pin connectors. The

solution for this first version, was to cut the plastic pieces on both connectors.

After that, a mechanical test of integration of the two boards with spacers was done, as seen in

picture 2.28.

< -, .
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Figure 2.28: Mechanical check of matching boards

As a first try, the 80-pin connector, was soldered manually, without using hot air gun nor furnace.
After several tries and checks, it was decided to try the connector in the second board with the
furnace, and the result was a bit better, just with some shorts between some pines that were

corrected with some manual work.
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2.5. INTEGRATION PHASE Carlos Molina

Also in this development version, the pc-104 pin connector was not integrated, because, before

that, it was preferred to check the basic working of the whole system.

Next images shown the process of soldering of the Submarine board, where it can be seen the
100-pin connectors manually soldered (figure 2.29), the full board after being completely soldered
(figure 2.30), and both sides of the board with main blocks indicated (figure 2.31).

Figure 2.29: Both 100-pin connector soldered

Figure 2.30: Submarine PCB finished with all the components soldered and the Torpedo SoM
and pSD plugged

Also, in parallel, the integration of the Mothership board was done by soldering the electrical
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Figure 2.31: Submarine board soldered, indicating the position of main blocks

components and some connectors, as seen in figure 2.32. Not all the connectors were soldered in
this current version because they are not still used. For example, it was not soldered the PC-104

bus nor the PicoBlade external interfaces.

NAH@SAT LAB
3CAT-NXT 0BC - *
mothership_vi.0%
R21 &l

—

Ji0_SPI3  J4 UPRT_B J9

Figure 2.32: Mothership soldered, indicating the position of main blocks
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2.6. TEST AND VERIFICATION PHASE Carlos Molina

2.6 Test and verification phase

The test and verification steps consist in check that the components soldered in the boards
functions as expected and also to verify is the schematic or layout design were correct. This is
done step by step, and sometimes it is mandatory to come back to the integration phase because

there is something to correct, re-solder or make a major correction of the design.

The steps that where mainly followed were:

1. Check electrical continuity and the no existence of shorts due to soldering

2. Check power generation, one voltage branch at a time, without other ICs and components,
and without connecting the Submarine.

3. When all voltages are OK, check the correct propagation of these voltages to the Submarine
board (without connecting the Torpedo SoM).

4. When the voltages that supply the SoM are OK, try to power on the Torpedo module.
To be able to learn when it is on, the communication though the debug UART with an
external computer is needed. Check that the Toperdo powers on, without any uSD card.
It should appear the logic PD bootloader.

5. After correct operation, try booting from the pSD, with the same firmware loaded in the
card as used when debugging the software in the Torpedo development board.

6. After correct Linux start-up, check other interfaces and functionalities as external, 12Cs

and SPIs interfaces or attitude sensors readings.

The test to check that all power supply voltages were correctly working is shown in picture 2.33.
The LEDs are used to help the debug process; if they are on, the output is up. They do not
check if the voltage is within the correct range, just if they are higher than the voltage that
polarizes on the diode. That is one of the design mistakes in the case of the 1.8V point of load.
The selected LED has a threshold voltage higher than 1.8V, so it never goes on, even having

correct voltage.

After testing correct working of power supplies and its distribution to the Submarine board
without any shorts, the Torpedo board was connected to try to communicate with it. For

that, the FTDI chip was used to convert the UART signal from the OBC to the USB to con-
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Figure 2.33: Electrical test of power supply voltages working. The three points of load where
giving proper lectures of voltage for different input voltage values from 5V to 17V,
in this case 6.4'V.
As explained, the 1.8V LED does not light even having correct voltage.

nect with the external PC. Doing that, at first instance, without any pSD inserted in the
slot, it was observed correct start-up of the firmware, and the debug terminal shown that the
LogicLoaderTMstarted correctly, waiting for a memory to boot from any device. The boot config-
uration used was the first (default) in table 2.3: (USB, UART3, MMC1, NAND). As there was

no bootable image any of them, the process stopped.

The next step was to repeat the process after inserting the pSD card, expecting booting from
it. At this point something went wrong because the system could not read the SD card. The

error was found to be a schematic design mistake which is explained later in chapter 3.2.
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Chapter 3

Results of the project

3.1 Product developed

The main objective and result of this project was to develop an OBC as a product to be used
in future missions. I consider that this work was archived just with some errors and mistakes
during the design and integration phases that would be analysed in subsequent chapter 3.2, with
the intention of correcting and, in some cases, improve the result with a second version of the

product, as detailed in next chapter 4.2.

The product that was created is an On-Board Computer, that it is able to run an embedded
Linux operative system and communicate/command other subsystems in the spacecraft with
the use of several available interfaces. A summary of the main specifications of this OBC is

shown in table 3.1. And a summary of the external interfaces of the OBC is shown in table 3.2.

47



Carlos Molina 3.1. PRODUCT DEVELOPED

Table 3.1: Summary of 3CAT-NXT OBC specifications

Specification Value Units Observations
Dimensions 90.17 x 95.89 x 17.8 mm  All boards stacked
Mass 522 g Mothership
+ Submarine
Input voltage range (Viy,) 5to17 V
Rest current consumption ~ 150 mA Idle processor at bootloader
QV;, =6V
Operating temperature -40 to 85 °C
Processor frequency (max) 1 GHz ARM Cortex-A8
Volatile memory 256 MB SDRAM
Non-volatile storage 512 (+ SD) MB  NAND Flash memory

Finally, just as a reference, this OBC module may be comparable with some commercial options
like the GOMSpace®NanoMind " A3200 [11], which is an OBC specially designed for CubeSats

with the following specifications:

Hardware features

e High-performance AVR32 MCU with advanced power saving features
e 512 KB build-in flash

e 128 MB NOR flash (On two dies of 64 MB each)

e 32 kB FRAM for persistent configuration storage

e 32 MB SDRAM

e RTC clock

e On-board temperature sensors

Interfaces

12C, UART, CAN-Bus
8 external ADC channels that can also be used as GPIO

External SPI with 3 chip selects
Cubesat Space Protocol (CSP)
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Table 3.2: List of 3CAT-NXT OBC interfaces

Interface type Quantity Description

USB 2.0 1 Debug through UART-A

UART 2 UART-B @ 3.3V
UART-C to RS-422 @5V

SPI 3 SPI1 (up to 4 Chip Select)

SPI2 (up to 2 CS)
SPI3 (up to 2 CS)

12C 1 12C1
12C2 (internal use for attitude sensors)
ADC 4 ADCO (max 1.5V)

ADCI1 (max 1.5V)
ADC2 (max 2.5V)
ADC3 (max 2.5V)

GPIO 10 GPIO 94
GPIO_95
GPIO_96
GPIO_97
GPIO_105
GPIO_106
GPIO_111
GPIO_128
GPIO_129
GPIO_167
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e GOSH interface for check-out

ADCS features

¢ 3-Axis magneto resistive sensor

3-Axis gyroscope

3 bidirectional PWM outputs with current measurements

12C interface for GomSpace Sensor Bus (GSSB)

3.2 Errors and difficulties encountered

During the project, mainly during the testing phase, several error were detected and, in some
cases, corrected with a temporal solution. A second version of the OBC would try to correct
all of them with a design update, and also other improvements that are not real failures or

mistakes. These improvements would be discussed in next chapter 4.2.

3.2.1 Power switch

This error concerns the schematic design of the three power supplies, one per point of load. In
order to understand the problem, remembering what was mentioned in chapter 2.3.2, before
each DC/DC converter circuit there was a power switch (MIC2005) intended to cut the output
if there is a short-circuit after if, which is detected by an sudden increase in the current. It

would also cut the output in case of an over-temperature.

The problem is that the input voltage of this component is from 2.5V to 5.5V [19], when the
expected input could be higher. This is limiting the maximum input voltage of the DC/DC
buck converter [1], that is 17 V. If the input voltage needs to be higher than 5.5V, this power
switch should be removed or substituted by an equivalent one with higher input range. If the
input is restricted to a maximum of 5.5V, this IC would not be a problem.
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3.2.2 pSD power supply

The power supply that the pSD card was designed to use is the 1.8V that comes from the power
generation block in the Mothership board. The problem was found to be that this interface may
operate at two voltages, 1.8V or 3.0V. As explained in the Texas Instrument AM37x processors

wiki [26]:

7 The ROM code supports booting from MMC1, but only at 3.0V. If using a TPS659zz
power companion chip —in our case this is integrated in the SoM Torpedo—, the ROM
will command this chip to output 3.0V on VMMC1 when attempting to boot from
MMC1. If you are not using a TPS659zx, you must ensure 3.0V is present when the
ROM attempts to boot from MMC1.”

This problem was corrected cutting the PCB track that powered the pSD with 1.8V and soldering
a wire from this net to the VMMCI1 pin of the Torpedo connector. After that, the ROM code
seemed to detect the card better than before, when the card was supplied at 1.8V, but still the
Linux kernel could not boot. This is the current point to start working on, as mention in the

next chapter 4.2.

3.2.3 Adjust DC/DC working frequency

The current design uses a switching frequency of 2.5MHz in the buck topology converter. Ac-
cording to the datasheet of the current IC, the efficiency is better for every current consumption
when the frequency is 1.25MHz instead of 2.5MHz [1], as observed in figure 2.7 for 3.3V. That

is similar also for 1.8V and 5V output voltages.

3.2.4 Debug-USB not working

The FTDI integrated circuit is the one used to convert the UART-A port to USB-2.0. The
problem detected here comes from the schematic design, where one of the ports, the input pin

18, called "RESET+#”, was attached to GND, setting a low input there. This port is an active
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low reset, that can be used by an external device to reset the FT232R. If not required, it can

be left unconnected or pulled up to VDD.

As this point is crucial to stablish a communication with the SoM and debug the software, the
workaround used was to remove the IC and externally connect the two UART signals (TX and
RX) to an external FTDI converter, in particular, the one that uses the STM32F4 board. The

solution was successful and the debug interface could be read.

In a following version of the PCB, this pin would be left floating, or maybe with the possibility

of grounding it to reset the USB interface.

3.2.5 SPI corrections

As exposed in chapter 2.3.3.4, and the figure 2.15, the default configuration for pin J1.88 of the
Torpedo SoM is to be the SPI3_CLK but it can also be the SPI1_CS3. The problem is that,
currently, this pin is routed along with the SPI1 signals, to the same PicoBlade connector J6,
which is the corresponding to SPI1, but, as the default configuration is as SPI3_CLK, it should
be routed to the Picoblade connector J11, with the rest of SPI3 signals.

3.2.6 SYS_BOOT labels

This is just a labelling error. In the picture 3.1 can be seen the actual PCB board and labelling
of the SYS_BOOT configuration resistors. The problem here is that the labels of this bits are
reversed. The one labelled as 0 is the 5, the 1 is the 4 and so on. The solution is simply inverting

the order of the labels.

3.3 Budget estimation

In this project there is two main costs. One of them is the cost of physical material and equipment
used during the project, including components and instrumentation. The list of components to

manufacture the boards is listed in table 3.3.
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Figure 3.1: Detail of SYS_BOOT pull up/down resistors

Table 3.3: Electric components budget

Value Description Manufacturer ID Qty Price (€) Total (€) Seller
micro USB connector 10033526-N3212MLF 1 0.518 0.518 Farnell
Series DF40, 100-pin DF40C-100DS-0.4V(51) 2 1.25 2.5 Farnell

connector 0.4 mm

Power switch MIC2005A-1YM6-TR 4 0.249 0.996 Farnell

Samtec series LSHM LSHM-140-06.0-L-DV-A-N- 1 9.66 9.66 RS

Razor Beam Male K-TR

Samtec series LSHM LSHM-140-03.0-L-DV-A-N- 1 8.83 8.83 RS

Razor Beam Male K-TR

Gyroscope MPU-6050 1 7.25 7.25 Farnell

Magnetometer LISSMDLTR 1 1.39 1.39 Farnell

Inertial measurement LSMI9DS1TR 1 6.09 6.09 Farnell

Unit

LDO regulator LP5907MFX-3.3/NOPB 1 0.445 0.445 Farnell
10uF Tantalum capacitor 10V~ TPSA106K010R0900 10 0.398 3.98 Farnell
1uF Tantalum capacitor 10V~ TAJA105K025RNJ 9 0.461 4.149 Farnell
22uF Tantalum capacitor 10V~ TAJA226K010RNJ 7 0.355 2.485 Farnell
100nF  Ceramic multilayer ca- 06031C104KAT2A 20 0.164 3.28 Farnell

pacitor
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Table 3.3 — continued from previous page

Value Description Manufacturer ID Qty Price (€) Total (€) Seller
3.3nF  Ceramic multilayer ca- 06035C332KAT2A 3 0.0969 0.2907 Farnell
pacitor
2.2nF  Ceramic multilayer ca- 06035C222KAT2A 1 0.108 0.108 Farnell
pacitor
10nF Ceramic multilayer ca- 06035C103KAT4A 1 0.0777 0.0777 Farnell
pacitor
10K Resistor 0603 MCWRO06X1002FTL 5 0.0059 0.0295 Farnell
0 Resistor 0603 MCWRO06X000 PTL 17 0.0051 0.0867 Farnell
330 Resistor 0603 MCWRO06X3300FTL 6 0.0057 0.0342 Farnell
100K Resistor 0603 MCWRO06X1003FTL 6 0.0059 0.0354 Farnell
680K Resistor 0603 MCWRO06X6803FTL 2 0.0059 0.0118 Farnell
130k Resistor 0603 MCWRO06X1303FTL 2 0.0056 0.0112 Farnell
750k Resistor 0603 MCWRO06X7503FTL 2 0.0059 0.0118 Farnell
240k Resistor 0603 MCWRO06X2403FTL 4 0.0058 0.0232 Farnell
330k Resistor 0603 MCWRO06X3303FTL 2 0.0057 0.0114 Farnell
2.2uH  Power inductor PFL1609-222MEU 6 1.15 6.9 Farnell
100uF  Tantalum capacitor 6.3V~ TLJA107M006R0800 1 1.25 1.25 Farnell
Picoblade 7 pin 53261-0771 1 1.1 1.1 Farnell
Picoblade 2 pines 53261-0271 3 0.678 2.034 Farnell
Picoblade 4 pin 53261-0471 2 0.858 1.716 Farnell
Picoblade 10 pin 53261-1071 1 1.34 1.34 Farnell
Picoblade 5 pin 53261-0571 2 0.952 1.904 Farnell
Micro SD connector DM3AT-SF-PEJM5 1 1.83 1.83 Farnell
DC/DC buck converter =~ TLV62130RGTR 5 1.844 9.22 RS
Levelshifter 8bits TXB0108PWR 4 1.49 5.96 Farnell
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Table 3.3 — continued from previous page

Value Description Manufacturer ID Qty Price (€) Total (€) Seller
Full-duplex RS-422 MAX22502EATC+ 2 4.79 9.58 Farnell
high-speed receiver-
transceiver
FTDI USB to serial FT232RQ-REEL 2 4.05 8.1 Farnell

UART interface

3CAT-NXT OBC PCB 2 250.31 500.62 2cisa,

board panel

603.86

The instrumentation used for the project, in this case, is provided by the laboratory, but an
estimation of its cost is summarized in the next table 3.4.

Table 3.4: Budget estimation for instrumentation and tools used

Instrument Price
Multimeter 60 €
Oscilloscope 300 €
Microscope 1000 €
Power supply 80 €

One-year Altium license 7000 €

Total 8440 €

The second main cost is the job salary of an engineer during the time of the project, and the
support of the laboratory technician during the integration phase. This is estimated in the next

table 3.5.

So, the final estimation of the whole project cost is around 28500 €. Also it can be estimated
the price of manufacturing a new OBC product assuming that all the equipment and licenses

are already available, and the budget in this case would be 20100 €.
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Table 3.5: Budget estimation for engineers salary

Position Salary per month Number of months Total
Hardware engineer 2500 € 7 17500 €
Laboratory technician 2000 € 1 2000 €

19500 €
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Chapter 4

Conclusions and future work

4.1 Conclusions

This project has supposed a great challenge as it was a difficult and long task, where the
design was not clear at the beginning and the specifications were sometimes changed during
the development of the project. The scope of the work was ambitious from the beginning. It
included not only the design, but also the integration and the test of the product developed. All
these tasks where archived until the point of first working tests, with some work still to do in

this aspect, as mentioned in previous chapters.

From a personal point of view, the project as also been quite challenging but also very attractive
and stimulating. With my background as a physicist who worked in the microelectronics industry
I had some knowledge about electronics, communication protocoles and layout design, but I had
never worked with PCB design at this level of precision. During the time working in the NanoSat
Lab, I learned by myself, and with the help of other colleges there, how to design a project like
this using Altium, creating a Bill of Materials to buy and then integrate them. I also learned
how to solder, both SMD components and chips with the hot air gun and the furnace. And

finally how to create a test campaign, being exhaustive with method and care.

Also during the project, I felt motivated with the idea of creating a real product that, eventually,
could be launched in orbit around the Earth. Since the beginning of this Master’s Thesis I
wanted to do something “real”, something that would be useful in the future, not a simple
theoretical work. And after this time I think I’ve archived my objective of, at least, prepare the

way to continue improving and using this OBC. I also felt motivated in the environment of the
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laboratory because they engaged me to continue working on this, letting me know their interest

in using my work in future opportunities.

The product created I think would not stop here and would be improved or adapted to future
missions because when it will be fully functional, it would be a better option than some com-
mercial options, with the advantage of being cheaper and also created by us, letting us know
the complete features and limitations of the design. Also my work will not stop here. If I can,
I would continue giving support to the future users of this OBC and it is also my purpose to

advise in the design of the next version of the board, if I'm not the one actually doing it.

4.2 Future work and improvements

This project had an overall successful result, obtaining a full design and physical implementation
that actually worked fine. But this result were reached because, in some points, some errors or

mistakes in the design were partial or totally corrected, as detailed in previous section 3.2.

The idea of the work that has been done, is to not stop here but keep debugging, correcting and
improving the design to give this board the possibility of being used in actual future designs

and even been tested in orbit, which is its original purpose.

So, at first instance, the work to be done is identifying which are the critical errors (if existing),
that does not allow to continue the debug. At this point, the state of the debug process is
that the bootloader can not load the Linux image from the SD card. Maybe is related with
the problem of the power supply explained in the previous section, even having being done the
change in the power supply, substituting the 1.8V with the VMMC1 power coming from the
SoM with an external wire. Or, maybe, it could be a software problem related with the kernel

image and the bootloader.

Once we can successfully boot the Linux environment, there is still work to do with debug-
ging all the interfaces (SPI, 12C, UART, ADCs, GPIO), temperature readings, attitude sensors

communication, SD card read/write.

So, the idea is to continue debugging as much as we can, since we found something really

impossible to overcome without changing the schematic/PCB. In this moment, all the corrections
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and improvements mentioned during these chapters would be applied.

4.2.1 Other minor improvements

The next lines accounts for some minor changes that are not critical for the proper work of the

OBC but that would somehow improve the use of the OBC, and the overall result of the project.

Change voltage supply of attitude sensors. As explained in the chapter 2.3.4 when talking
about the attitude sensors, it was mentioned that a LDO regulator has been used to stabilize
and adapt the power supply of these sensors, also reducing possible digital noise coming from

the SoM, as they use the same 3.3V point of load.

The improvement here is to change the voltage in which these sensors are supplied from 3.3V
to 3.0V, as the LDO would work better if the input is higher than the output, ideally, the
specifications of this LDO regulator advises 1V of difference. In this case that is not possible
because the higher input voltage for one of the sensors is 2.375V. But just using the 3.3V may
be enough to effectively increase the PSRR (Power Supply Rejection Ratio) of the regulator,

and obtain a cleaner power supply for the sensors, probably improving its performance.

Add more text indications on the PCB. Sometimes it was found during the integration
and test phases that some labels and indication were missed to have a better understand of the
board. The idea is to design a board that any future user could understand and use it without

lot of study of the board documentation.

In this way, for example it was missed a label for the input power pines polarity. Maybe it can

also be added a protection circuit in case of switching the polarity.

Reduce stacking height. The current stacking height of the Submarine on top of the Moth-
ership is a bit larger than needed. None of the components on both faces are near to touch
between them. The work to do here is to calculate the minimum stacking distance possible, and
taking into account the available inter-board connector heights and giving a security margin,
stablish a new smaller stacking height in order to reduce the overall volume of the system.
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Consider alternative inter-board connector. During the soldering phase, as mentioned
in previous chapter, one of the components that resulted more difficult to properly solder was
the SAMTEC LSHM series 80-pin connector. This point relates with the previous one as the

connector used would impact in the stacking height of the Submarine board.

Adding availability for a second SD Card. During the schematic design section, it was
mentioned that there are some nets on the sumbarine-SoM interface that are not routed, and
that allows the possibility of connecting a second SD/MMC card. This would imply new 7 signals
that might be routed to the Mothership board, which may imply a redesign of the inter-board
connector, to increase the number of pines. This update is something to discuss, considering the

real need of increasing the storage capacity of the OBC.

Consider adding a connector interface for the second un-used daughterboard The
space left for a second Submarine-like board is almost empty of components and routing, but
it misses the possible connector to interface this board. The work to do here is to study the

viability of using the same connector as the Submarine or using a different approach.

Adding support for other interfaces Other interfaces could be added to the OBC if re-
quired. For example it could be interesting to add a PWM controller for actuate on magnet-
orquers or reaction wheels. And also interesting would be to add more, more precise ADC
inputs to read external sensors with better precision than the 10-bits that internal SoM Torpedo

provides.

4.2.2 Future use of the design

This design is intended to be used as the main brain for future CubeSats missions and the idea
is to fully re-use it, with just minor adaptations. The most adaptable features are the interfaces
ports. Some of they may be removed or substituted by others, sometimes just with software

tricks using the available signals (see Torpedo SoM documentation for that).

Also, in the Mothership board it was planned an empty space to attach a second Submarine-like

board, that may be used to integrate another subsystem or payload. One of the possible ideas is
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to use it to design a COMMS module that directly communicates with the OBC intelligence.
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Appendices

C Gantt Diagram

The following pages shown the project plan followed in this project a Gantt diagram.
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Top level power supply
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5V Power supply
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3.3V Power supply
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1.8V Power supply
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UART interfaces
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External interfaces
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SYS BOOT configuration bits

VDDI8
1 3 5 7 9
SYS BOOTO
SYS BOOTI
SYS BOOT3
SYS BOOT4
SYS BOOT5
[l]ﬂm [1]0114 [1]0116 [1]0118 [1](7&10
_L_
GND

Title

Size Number Revision

£ 1.0

Date: 29/09/2019 [ Sheet 9 of 11

File: C:\Users\..\3CAT-NXT _OBC_motherboa}dDsgwibBot: SClallos Molina Ordoiiez

2 3 ‘ 4




1 2 3 4
H1 H2
¥—1 2 GPIO 97 1 2 GPIO 105
¥—3 49— GPIO 95 3 4 GPIO 96
¥—5 65— GPIO 167 5 6 GPIO 94
»—17 88— GPIO 129 7 8 GPIO 128
N ¥— 9 10 —X GPIO 106 9 10 GPIO 111
x— 1 12 —x x—1n 12 ——x
SN »— 13 14 —X »— 13 14 ——X
»— 15 16 —X »— 15 16 ——X
STOTPER ¥— 17 18 —X — 17 18 SPI2_CSO
- »¥— 19 20 —X *—1 19 20 SPI2_CS1
¥— 21 22 —X ¥—1 21 22 SPI2_ CLK
- 23 24 - S¢e—1 23 24 SPI2 SIMO
SRR 25 26 IoEE »—1 25 26 SPI2_SOMI
- 27 28 - ¥—1 27 28 —X
29 30 29 30
—31 32 3V CHRY SPI3_SIMO 3 R
UARTB RX OUT } 33 34 SPII_CLK SPI3_SOMI 33 34 —X
[ UARTB_TX OUT 35 36 SPII_SIMO SPI3_CS0 35 36 —
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Second board connector

Mechanical miscelanoeus board
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keep the RTC alive [0t 27 | DGND RIDE) CRID) | o 183 | LCD_DO(BI) 149
e 10V = DGND M 55 LCD D1(B2) MCBSP2 CLKX ==
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DGND uP A3 p—— o LCD_D4(BS) MCBSP2_FSX
q uP A4 p-E— Tig< LCD_D5(GO) 17
—— MIC_IN4 uP_AS 25— —3¢< LCD_D6(G1) MCSPI4_CLK e
= 75 uP_A6 DT T4 LCD_D7(G2) MCSPI4_SIMO D—T
D) 53~ LCD BACKLIGHT PWR uP A7 p— —55< LCD D8(G3) MCSPI4 SOMI (<o5—
LCD_PANEL_PWR uP A8 p—==—o —5< LCD DY(G4) MSTR nRST (< =—
B uP A9 P <7< LCD D10(GS) MCSPI4_CSO [
==~ MCBSP3 CLKX uP_Al0 B—— —o LCD DIIR1) e
WD MCBSP3_DR 5 T LCD_DI12(R2) RFU Q‘TT
=~ MCBSP3 DX uP_DO <1é7— —Tec LCD DI3(R3) RFU (<e5—
—&®1 MCBSP3 FsX uP DI <1é3— —7g LCD DI4(R4) RFU (<ese—
—= MCBSP4 DR uP_D2 <1é9— —3¢ LCD_DIS(RS) RFU |<==—
o WP D3 <1%9— 202 LD DIR(SYS BOOTO) -
SPI1_CLK =1 MCSPIL_CLK uP D4 [<E=— 50 LCD_DI9(SYS BOOTI) SDI_CMD <335
SPI1_CSO 5o MCSPIL_CS0 uP_D5 <1é3— 120 LCD_D20(SYS BOOT3) SD1_CLK [> | SD_CMD
SPI1_CS1 96 MCSPII_CSl uP_D6 <1é5— 150 LCD_D21(SYS BOOT4) 43 SD CLK
SPI1_CS2 ag ] MCSPIL_CS2 uP_D7 <1é9— LCD_D22(SYS_BOOT5)  SD1_DATAO T SD_DATAQ
SPI1_CS3 e MCSPIL CS3 uP_D8 <w§1— TR0 SD1_DATAI i SD DATAI
SPII SIMO ——————————23< MCSPI1 SIMO uP_D9 <1%3— —506° SYS_BOOTS(LCD 22) SD1_DATA2 = SD DATA2
SPI1 SOMI |————————=5 MCSPIl_SOMI uP D10 [<E=— —==>{ SYS BOOTO(LCD D18) SD1 DATA3 <DIGD SD DATA3
uP DIl |e— SD CD
SPI2 CLK g; MCSPI2_CLK WP DI2 <u%;— }23 TV_OUTI TWL 32K_CLK_OUT D%
SPI2_CSO =< MCSPI2 €S0 uP D13 [<tzr— TV_OUT2 uP_CLKOUT1 26MHz ———
SPI2_CSI =< MCSPI2 Cs1 wP D14 <re— o 05
SPI2 SIMO _————————¢<] MCSPI2 SIMO uP DI5 |B>=— 97" uP_12C2 SDA USBI D |<trs—
SPI2 SOMI p————=2= MCSPI2_SOMI 9 57> uP_12C2 SCL USBI_D+ |<troo—
o4 uP_nCSO p—7— 795 uP_12C3_SDA USBILID [<irs—
SPI3_CSO 56 MCSPI3_CS0 uP_nCS1 p—or— 2> uP_12C3 SCL USBI_VBUS [<igi=—
SPI3_CSI 95~ MCSPI3 Cs1 uP nCS2 p—— e USB1_VBUS (<=
SPI3 SIMO —————————5< MCSPI3 SIMO uP nCS3 p-S7— —02> T2 REGEN 0
SPI3_SOMI p———————== MCSPI3_SOMI uP nCS4 p55— —=2>{ SYS_nRESWARM VIO_1V8 —
uP_nCS5 DT 108 VIO _1V8
uP_nCS6 B—="—o —o™ BT_PCM DR 155
ADCINO g —=>{ BT _PCM_DX uP_UARTB CTS (< 35—
ADCINI1 uP_nOE p—2— G uP_UARTB RTS pP—oo—
ADCIN2 uP_nWAIT < =— —g7°] CSLDO uP_UARTB_RX
ADCIN3 uP_nWE p—— —57] CSLD! uP_UARTB TX f>
68 e SHILLE 176
uP_UARTA CTS <=7 — —355"] CSLD3 uP_UARTC CTS |<=77—
CODEC_INL4 uP_UARTA RTS p—r— —55"] CSLD4 uP_UARTC RTS e
CODEC_INR4 uP_UARTA_RX —53"] CSLDs uP_UARTC_RX
CODEC_OUTL uP_UARTA_TX [ —=p CSL_FLD uP_UARTC_TX >
CODEC_OUTR -
WP BUS CLK D% DM3730_AM3703 Title
WP DREQO (30— 3CAT-NXT OBC
ULAIODIR 23 Size Number Revision
uP_nADV_ALE p-5—
uP_nBEO DT A4 1.0
e BEIg——— Date: 29/09/2019 [Sheet 3 of 5
DM3730_AM3703 File: C:\Users\..\3CAT-NXT OBC core.SchDpdDrawn By: Carlos Molina Ordoiiez

1 ‘ 2 3 4




SD/MMC card connector
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Attitude determination sensors

Main magnetometer

Redundand IMU (Gyro + Magnetometer)
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