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Abstract. An energy-based work-softening visco-plastic model for zero-thickness interface elements 
has been developed as an extension of an existing elastic-perfectly-viscoplastic formulation. In the 
inviscid limit the model also collapses into a well-established fracture mechanics-based elasto-plastic 
model. The new model is verified satisfactorily for common loading cases at interfaces such as pure 
tension (mode I) opening, and shear-compression (mixed-mode) sliding, with results that in the long 
term match the predictions of the fracture mechanics inviscid model. 

 
 
1 INTRODUCTION 

Zero–thickness interface elements, sometimes also called “cohesive elements”, were 
introduced by Goodman [1] for geotechnical analysis using the FEM, and in more recent times 
are becoming popular for their many possible applications. In the simplest scenario of linear 
elastic behaviour, interface elements inserted in between standard continuum elements may be 
used to represent the presence of a thin, deformable layer without the need to use extremely 
fine meshes. If considered linear elastic but assuming sufficiently high stiffness values, 
interface elements may lead to stresses and deformations of the continuum elements practically 
identical to those that would be obtained in the same domain without any interface elements 
inserted. And that may be used as a means to obtain, besides the regular stresses and 
deformations of the continuum, also the normal and shear stress tractions transmitted across the 
planes in which interface elements have been inserted. Stress tractions may be of high interest 
for instance along interfaces in between different material layers or in between different 
materials. If equipped with non-linear constitutive laws exhibiting a maximum strength 
condition, interface elements may also be used to represent frictional sliding planes, cracks or 
fractures. For this purpose, the precise type and characteristics of the constitutive law are 
essential. A frictional contact surface may be represented with perfect plasticity, while a 
developing crack will require a constitutive model with softening which incorporates fracture 
energy parameters. In the late 90s, a model of this type was proposed by the research group [2], 
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and the same model was later developed further and improved [3].  
A useful extension of the zero-thickness interface elements and constitutive laws is in the 

field of visco-plasticity [4]. Potential applications range from representation of physical time-
dependent behavior (such as for instance failure under sustained load), to purely numerical 
strategies such as visco-plastic relaxation. In recent years, an elastic-perfectly visco-plastic 
interface model was proposed [5], together with a discussion on the schemes necessary for the 
various possible applications. In the inviscid limit (time tending to infinity) the model response 
approached an elastic-perfectly plastic version of the group’s fracture model.  

The rate-dependent (viscoplastic) formulation requires a time integration strategy to 
discretize time in increments and evaluate linearized relation between stress and strain 
increments for each time step. Usually, the algorithms proposed in the literature are strain-
driven, i.e. they are based on the initial stress scheme used in Finite Elements, in which the 
strain increments are prescribed to the constitutive equations, which then return the resulting 
stress [6-7-8].  

In contrast, stress-driven schemes are less common. After the original constant-stress 
implementation of Zienkiewicz and Cormeau [9] that may be considered the most elementary 
form of stress-driven viscoplastic schemes, to the knowledge of the authors, the only previous 
proposals of this type are [4]. The implementation of stress-prescribed schemes is conceptually 
much simpler and numerically advantageous (explicit integration of the constitutive equations 
and simple coding).  

The main objective of this paper is to describe and demonstrate an energy-based softening 
visco-plastic model for zero-thickness interface elements using a stress-prescribed integration 
algorithm for Perzyna viscoplasticity in a FE framework. In the inviscid limit the predictions 
of the model approach those of the full version of the fracture-based elasto-plastic model 
previously proposed by the group.  

 
2 ENERGY-BASED WORK-SOFTENING VISCO-PLASTIC MODEL FOR ZERO-
THICKNESS INTERFACE ELEMENTS 

As already mentioned, the new energy-based softening visco-plastic model for zero-
thickness interface elements is developed as an extension of an existing elastic-perfectly-
viscoplastic formulation [5], which is based on a hyperbolic cracking surface. This model was 
proposed originally for the behaviour of geotechnical interfaces [10], later modified for fracture 
energy-based opening and development of cracks in quasi-brittle materials (concrete, rock, etc) 
[2], and more recently extended to 3D and reformulated more efficiently [3]. 

2.1 Elasto-plastic interface constitutive model 
The existing fracture-based interface constitutive law, named Normal/Shear Cracking 

Model, is based on the theory of elasto-plasticity and it incorporates concepts of fracture 
mechanics and fracture energies. Its behavior is formulated in terms of normal and shear 
components on the interface plane � � �𝜎𝜎�, 𝜎𝜎���  and their respective relative displacements 
� � �𝑟𝑟�, 𝑟𝑟���. The interface fracture model is based on a hyperbolic cracking surface [2], Fig.1a. 
The corresponding yield (cracking) function 𝐹𝐹 is defined in terms of normal and shear stresses 
and three geometric parameters included in vector 𝒑𝒑: the strength parameters cohesion �𝑐𝑐�, 
uniaxial tensile strength �𝜒𝜒� and internal friction angle �𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�. The algebraic expression of 𝐹𝐹 
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has been changed in some versions of the model, the most convenient [3] being: 
 

��𝝈𝝈𝑐 𝒑𝒑� � ��𝑐𝑐 � 𝜎𝜎�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� � �𝜎𝜎�2 � �𝑐𝑐 � 𝜒𝜒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�2  (1) 

 

 
Figure  1 Interface model: (a) cracking surface and plastic potential, (b) evolution of cracking surface, (c) 

fundamental modes of fracture and (d) softening laws for 𝑐𝑐 and 𝜒𝜒. 

The hardening/softening laws (evolution laws of the surface geometric parameters 
𝑐𝑐𝑐 𝜒𝜒𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) are formulated in terms of a single history variable, 𝑊𝑊𝑐𝑐𝑐𝑐, defined as the energy spent 
in fracture processes. These laws, represented in Fig.1d, include as parameters the classical 
fracture energy in Mode I, 𝐺𝐺𝑓𝑓Ι  (pure tension) and a second mode named Mode IIa defined under 
shear and high compression without dilatancy, 𝐺𝐺𝑓𝑓ΙΙ𝑡𝑡 (Fig.1c). The history variable work is 
defined incrementally as: 

 

𝑑𝑑𝑊𝑊�� � � 𝝈𝝈 ∶ 𝑑𝑑𝑑𝑑𝒄𝒄𝑑𝑑                                    𝜎𝜎𝑁𝑁 � 0 �𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�
�𝜎𝜎� � 𝜎𝜎�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�𝑑𝑑𝑐𝑐���                        𝜎𝜎𝑁𝑁 � 0 �𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� (2) 

 
Equations (2) show that, in the case of tensile-dominated cracking, all plastic work dissipated 
counts towards the history variable, while in compression-shear cracking, there is also a 
frictional part which is excluded from  𝑊𝑊𝑐𝑐𝑐𝑐 (Eq.2). Note that, with the definitions above, the 
evolution of the cracking surface is as depicted in Fig. 1b: from configuration “0” with initial 
tensile strength 𝜒𝜒0 and asymptotic cohesion 𝑐𝑐0, as the history variable reaches 𝑊𝑊𝑐𝑐𝑐𝑐 � 𝐺𝐺𝑓𝑓Ι  the 
surface  moves to configuration “1” with zero tensile strength, and as it approaches 𝑊𝑊𝑐𝑐𝑐𝑐 � 𝐺𝐺𝑓𝑓ΙIa 
the surface  moves toward configuration “2” which corresponds to a pair of straight lines of 
residual friction and no cohesion. 
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2.2 Perzyna viscoplastic constitutive model for the interface. 
The visco-plastic version of the interface model is based on the assumption that the total 

visco-plastic “strain” (relative displacements) can be split into the elastic part 𝒓𝒓𝑒𝑒𝑒𝑒 and the 
viscoplastic part 𝒓𝒓𝑣𝑣𝑣𝑣 [5]: 

𝒓𝒓 � 𝒓𝒓𝑒𝑒𝑒𝑒 � 𝒓𝒓𝑣𝑣𝑣𝑣  (3) 
   

The elastic part is assumed to be related to stresses via isotropic linear elasticity: 
 

𝒓𝒓𝑒𝑒𝑒𝑒 � 𝑫𝑫𝟎𝟎 �1 ∶ 𝝈𝝈   (4) 
 

where 𝑫𝑫𝟎𝟎 is the elastic stiffness matrix, symmetric and positive definite, and 𝑫𝑫0�1 indicates its 
inverse, which is the elastic compliance matrix and it may be also denoted as  𝑪𝑪𝟎𝟎. 

The main change with respect to the previous perfect visco-plastic model proposed [5] is 
that in the current implementation the geometric parameters of the surface will evolve in a way 
similar to the inviscid elasto-plastic model of the previous section. A history variable 𝑊𝑊𝑣𝑣𝑣𝑣 is 
defined which is similar to the previous 𝑊𝑊𝑐𝑐𝑐𝑐(except that visco-plastic “strain” replaces plastic 
strain), i.e.: 

 

𝑑𝑑𝑊𝑊�� � � 𝝈𝝈 ∶ 𝑑𝑑𝒓𝒓��                                        𝜎𝜎� � 0 �𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�
�𝜎𝜎� � 𝜎𝜎�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�d𝑐𝑐�

��                             𝜎𝜎� � 0 �𝑐𝑐𝑡𝑡�𝑣𝑣𝑐𝑐𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�  (5) 

   
and the geometric parameters of the surface 𝒑𝒑 (composed by 𝑐𝑐𝑐 𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) are assumed to evolve 
with 𝑊𝑊𝑣𝑣𝑣𝑣in a way identical as they did with 𝑊𝑊𝑐𝑐𝑐𝑐 in the inviscid elasto-plastic model (Fig. 1d).  

The cracking surface 𝐹𝐹�𝝈𝝈𝑐 𝒑𝒑� � 0 determines the limit between elastic state �𝐹𝐹 � 0� and the 
visco-plastic state �𝐹𝐹 � 0� state, in which a Perzyna visco-plastic “strain” rate is assumed: 

 

𝒓𝒓� 𝑣𝑣𝑣𝑣 � 1
𝜂𝜂 �𝜓𝜓 �𝐹𝐹�𝝈𝝈𝑐 𝒑𝒑�

𝐹𝐹0
�� 𝒎𝒎   (6) 

   
where 𝜂𝜂 is the viscosity of the material, 𝐹𝐹0 is a reference value of the yield surface, 𝑄𝑄 is the 
visco-plastic potential typical of non-associated formulations and the flow rule is 𝒎𝒎 �
𝜕𝜕𝑄𝑄 𝜕𝜕𝝈𝝈⁄ . 

Finally, the accumulated visco-plastic strain ∆𝒓𝒓𝑣𝑣𝑣𝑣 (Eq.3) can be obtained by integrating in 
time the visco-plastic strain rate, i.e.: 

 

∆𝒓𝒓𝑣𝑣𝑣𝑣 � � 𝒓𝒓� 𝑣𝑣𝑣𝑣𝑡𝑡1

𝑡𝑡0
𝑑𝑑𝑡𝑡 � � 1

𝜂𝜂 ��𝐹𝐹�𝝈𝝈𝑐 𝒑𝒑�
𝐹𝐹0

�� 𝒎𝒎
𝑡𝑡1

𝑡𝑡0
𝑑𝑑𝑡𝑡  (7) 

 
For the numerical integration of the new interface visco-plastic constitutive model, the 

methodology is a generalization of the procedure previously proposed for perfect visco-
plasticity [5]. In that integration scheme it is assumed that the stress increment ∆𝝈𝝈 (that takes 
place during a time increment ∆𝑡𝑡) is prescribed, and the corresponding “strain” (relative 
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displacement) is calculated. In this case, though, the geometric parameters of the yield function, 
𝒑𝒑 (composed by 𝑐𝑐𝑐 𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) are not constant, but have to be continuously updated using the 
softening laws in terms of 𝑊𝑊𝑣𝑣𝑣𝑣, which is also continuously changing. This requires a sub-
stepping scheme. In the case that for a given substep 𝜂𝜂�𝝈𝝈���𝑐 𝒑𝒑���� � 0 , the integral of Eq.(7) 
is approximated by first order expansion as: 

 

∆𝒓𝒓𝑣𝑣𝑣𝑣 � ∆𝑐𝑐
𝜂𝜂𝜂𝜂0

��� � 𝜃𝜃�𝜂𝜂�𝝈𝝈𝑖𝑖𝑐𝑐𝑖𝑖𝑐 𝒑𝒑𝑖𝑖𝑐𝑐𝑖𝑖� 𝒎𝒎�𝝈𝝈𝑖𝑖𝑐𝑐𝑖𝑖𝑐 𝒑𝒑𝑖𝑖𝑐𝑐𝑖𝑖� � 𝜃𝜃𝜂𝜂 �𝝈𝝈𝑓𝑓𝑖𝑖𝑐𝑐𝑐 𝒑𝒑𝑓𝑓𝑖𝑖𝑐𝑐�  𝒎𝒎 �𝝈𝝈𝑓𝑓𝑖𝑖𝑐𝑐𝑐 𝒑𝒑𝑓𝑓𝑖𝑖𝑐𝑐��  (8) 

   
where � � �𝜂𝜂 �𝝈𝝈⁄   and 𝜃𝜃 is a constant scalar factor that may take a fixed value between 0 
and 1. This expression, properly developed, leads to the relation between ∆𝝈𝝈 and ∆𝒓𝒓, which 
provides the constitutive tangential compliance and initial strain vector necessary for the 
iterative calculations. If 𝜃𝜃 � 0, the formula above is equivalent to the forward Euler scheme. 
The other limit case is when 𝜃𝜃 � � and the formula is equivalent to the traditional backward 
Euler scheme. Note also that, except for the case 𝜃𝜃 � 0  in which all variables are known at the 
beginning of the increment, for any other value of 𝜃𝜃 � 0 the calculation will require iterations 
at structural level, because the expression involves the stresses at the end of the increment, 
which are not known a priori. 

3 VERIFICATION EXAMPLES 
A pure tension and shear-compression simple examples have been considered in this section 

for verification purposes, and the results have been compared with those that would be obtained 
with the elastoplastic law, with which they should coincide for long visco-plastic times (inviscid 
limit of the visco-plastic model). 

3.1 Uniaxial tension opening  
The first example consists of a single interface element subject to uniaxial tension (Fig.2). 

A square continuum element has been also included in the discretization, although it does not 
play any mechanical role. Loading is composed of an alternate sequence of two kinds of steps, 
the first one consisting of a prescribed displacement increment (applied instantaneously), 
followed by the pass of a long time (which takes place at constant nodal displacements).  

 
 
 
 
 
 
 
 
 

 
 
 
 

Interface properties 

Figure  2. Geometry and properties of the uniaxial tension example. Prescribed displacements are imposed 
on nodes 3 and 4. 
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The results of the visco-plastic calculation are represented in Fig.3 in red color lines, together 
with the results obtained with the elastoplastic interface constitutive law in blue [2]. As shown 
in the figure, for each instantaneous load step, the visco-plastic response consists first of an 
elastic stress increment, which is then followed by progressive relaxation as time passes, 
leading in the long term to the same stress value as predicted by the fracture mechanics inviscid 
model for the same relative displacement. Similar behaviour is observed for each one of the 
prescribed displacement increments. Therefore, it can be concluded that in this case the 
proposed visco-plastic model in the visco-plastic limit clearly coincides with the existing elasto-
plastic model.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The formulation proposed also provides the energy spent in the fracture process. The 

following table (Table 1) shows the comparison between the energies obtained with the elasto-
plastic and with the visco-plastic models. As it can be seen, these values turn out very similar 
as expected. 
 

 
 

  Elasto-plastic model (kPaꞏm)  
𝑾𝑾𝒄𝒄𝒄𝒄 

Visco-plastic model (kPaꞏm) 
𝑾𝑾𝒗𝒗𝒗𝒗 

Energy dissipated in 
fracture processes 8.35067 ꞏ 10-6 8.34314 ꞏ 10-6 

Table 1: Comparison between energy values computed in both cases elastoplastic and viscoplastic. The total 
energy obtained in both cases are very similar as expected. 

Figure  3. Normal stress-normal relative displacement evolution curve of the interface element. Viscoplastic 
results in the long term match the predictions of the fracture mechanics inviscid model. 
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3.2 Shear-compression sliding 
The second example consists of a shear test applied on the same geometry and with the same 

material parameters as in previous section. The loading (Fig.4) consists of two parts: first, 
applying an instantaneous vertical stress on the top face of the continuum element (Fig.4a) and, 
second, applying the horizontal loading. Similarly as in example one, the horizontal loading 
(Fig.4b) is applied as a sequence of small horizontal displacements prescribed to nodes 3 and 4 
instantaneously, followed each of them by a number of time increments until stresses would be 
totally relaxed.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results of the visco-plastic calculations are represented in Fig.5a (red color lines), 

together with the results obtained with the existing elasto-plastic model (in blue) [2]. Fig.5b 
shows the evolution of the dilatancy, also computed with both elastoplastic and viscoplastic 
models. Similar to the previous case, the results show that in the inviscid limit the visco-plastic 
formulation approaches nicely the predictions of the corresponding elasto-plasticity.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5. (a) Shear stress-tangential relative displacement evolution curve of the interface element. (b) 
Evolution of the dilatancy. Viscoplastic results in the long term match the predictions of the fracture 

mechanics inviscid model. 

Dilatancy 

Step 1 Step 2 

Interface properties 

Figure  4. Geometry of the shear-compression sliding example. An instantaneous vertical stress is applied on 
the top face and also an instantaneous displacement is imposed on nodes 3 and 4. Also interface properties are 

shown. 

Shear stress – Tangential Rel. displ. 
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As in the previous example, the energy spent in the fracture process also has been calculated 
in this case. The following table (Table 2) shows the comparison between the energies obtained 
with the elastoplastic model and with the viscoplastic one, which turn out very similar as 
expected. 

 
 
 

 Elasto-plastic model (kPaꞏm) 
𝑾𝑾𝒄𝒄𝒄𝒄 

Visco-plastic model (kPaꞏm) 
𝑾𝑾𝒗𝒗𝒗𝒗 

Energy dissipated in 
fracture processes 1.56693 ꞏ 10-5 1.58374 ꞏ 10-5 

 

4 CONCLUDING REMARKS 
In the present paper, an energy-based softening visco-plastic model of the Perzyna type for 

zero-thickness interface elements has been described, as well as its basis for numerical 
implementation using a stress-prescribed integration algorithm. Numerical results have been 
also presented for two simple examples of application, the first one consisting of a uniaxial 
tensile interface opening (mode I), and the second one a shear-compression (mixed-mode) 
failure with sliding. Both may represent academic problems of rock samples with 
discontinuities. The results show that in the long term the visco-plastic results match very well 
the predictions of the fracture mechanics inviscid model. 
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