
A Resilient Approach for Distributed MPC-Based Economic Dispatch in
Interconnected Microgrids
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Abstract— Economic dispatch of interconnected microgrids
that is based on distributed model predictive control (DMPC)
requires the cooperation of all agents (microgrids). This paper
discusses the case in which some of the agents might not comply
with the decisions computed by performing a DMPC algorithm.
In this regard, these agents could obtain a better performance
at the cost of degrading the performance of the network as a
whole. A resilient distributed method that can deal with such
issues is proposed and studied in this paper. The method consists
of two parts. The first part is to ensure that the decisions
obtained from the algorithm are robustly feasible against most
of the attacks with high confidence. In this part, we employ
a two-step randomization-based approach to obtain a feasible
solution with a predefined level of confidence. The second part
consists in the identification and mitigation of the adversarial
agents, which utilizes hypothesis testing with Bayesian inference
and requires each agent to solve a mixed-integer problem
to decide the connections with its neighbors. In addition, an
analysis of the decisions computed using the stochastic approach
and the outcome of the identification and mitigation method is
provided. The performance of the proposed approach is also
shown through numerical simulations.

Index Terms— Economic dispatch, distributed MPC, dis-
tributed optimization, resilient algorithm, scenario-based ap-
proach

I. INTRODUCTION

An application of distributed model predictive control
(DMPC) methods that has increasingly gained attention is
as a control approach of power networks, particularly to
solve economic dispatch problems [1]–[3]. DMPC methods
are perceived to be suitable for a power network, which is
of large-scale nature, especially when there exist distributed
generation and storage units. In a distributed setting, there
exist a number local controllers, responsible to control a
part of the system and can communicate among each other.
Therefore, the computational burden to compute the con-
trol inputs, which might be quite high, can be distributed.
Furthermore, a distributed scheme is also scalable and can
deal with failures better than the centralized counterparts
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[4]. For an economic dispatch problem of a power network,
a distributed scheme can be implemented by decomposing
the network into a group of interconnected microgrids [5].
Then, a distributed optimization algorithm, e.g., [2], [3], can
be employed to solve the optimization problem behind the
DMPC scheme. In this regard, generally, a DMPC strategy
requires cooperation of all agents (microgrids), i.e., all agents
must agree to perform the algorithm accordingly and comply
with the obtained decision.

This paper discusses a cooperation issue of DMPC strate-
gies for an economic dispatch, in which some agents in
the network, denoted by adversarial agents, do not always
implement the control inputs obtained from the distributed
algorithm. By performing such actions, adversarial agents
can perform better at the expenses of the performance of
the other agents. In order to tackle this issue, we develop
a combination of passive and active methodologies, which
is introduced in [6]. As a passive method, we formulate
the dispatch problem such that the computed decision is
robust with respect to the adversarial actions. To that end, in
[6], we consider the adversarial actions (attacks) as bounded
disturbances and formulate a robust program to ensure the
feasibility of the solutions in the presence of the attacks. On
the other hand, the active method identifies the adversarial
agents and blocks the attacks. The identification approach
consists in implementing the hypothesis testing based on
Bayesian inference. Furthermore, each agent must also solve
a local mixed integer programming problem to decide the
connection with the neighbors.

In this paper, we develop further our methodology by
considering a stochastic approach [7] as the passive method
such that we do not need to assume that the bounds of the
attacks and system disturbances are known. The stochastic
approach, explained in Section III, consists of two steps.
The first step is to compute the probabilistic bounds of the
disturbances using a scenario-based program. In the second
step, a robust program is formulated using the computed
probabilistic bounds. Furthermore, the probabilistic bounds
are used in the active scheme to detect an adversarial
action. Hence, the main contribution of this paper is the
improvement of the methodology that we propose to deal
with the compliance issue for DMPC strategies applied to
the economic dispatch problem. Furthermore, in Section V,
we characterize the computed control inputs obtained by
the proposed approach and we show analytically how the
active method is able to identify the adversarial agents in
the network. Additionally, a numerical study is also carried
out to show the performance of the proposed approach.
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Notations: The sets of real numbers and integers are
denoted by R and Z, respectively. Moreover, for any a ∈ R,
R≥a denotes the subset of R that is defined by {b : b ≥
a, b ∈ R}. A similar definition is used for Z≥a and the strict
inequality cases. The vector 1n denotes [1 1 · · · 1]> ∈ Rn.
The set cardinality and Euclidean norm are denoted by |·| and
‖·‖2, respectively. Supposing that Ωi, for i = 1, 2, . . . , n, is
a subset of Rni , then the Cartesian product over the sets
Ωi is defined by

∏n
i=1 Ωi = Ω1 × . . . × Ωn. Furthermore,

P(·) denotes the probability measure, and P(·|·) denotes
the conditional probability measure. Finally, discrete-time
instants are denoted by the index k.

II. DISTRIBUTED ENERGY MANAGEMENT AND
ADVERSARY MODEL

A. Dynamic Economic Dispatch Problem

Let the network of microgrids be described by an undi-
rected graph G = (N , E), where N denotes the set of
microgrids and E denotes the set of edges, which represents
the physical interconnection of the microgrids. Furthermore,
denote the set of neighbors of microgrid i by Ni = {j ∈
N : (i, j) ∈ E}. We consider that each microgrid i ∈ N
consists of a dispatchable generation unit, a non-dispatchable
generation unit, a storage unit, and an aggregated load.
Moreover, each microgrid can operate in the grid-connected
and island modes. Furthermore, two connected microgrids i
and j, i.e., (i, j) ∈ E , can also transfer power, and microgrids
that are connected to the main grid can also import power
from it. We follow a similar formulation of the dynamic
economic dispatch problem as in [6], but we will not consider
any assumption on the bounds of the uncertain variables.

Firstly, let the decision variables of each microgrid i ∈ N
be defined by pgi,k, p

st
i,k, p

im
i,k, p

t
ji,k ∈ R, which denote the

total power generated by the dispatchable units, the power
delivered by/to the storage, the imported power from the
main grid, and the power transferred between microgrids i
and j, respectively. Secondly, let the dynamics of the storage
unit in microgrid i be represented as follows:

xi,k+1 = aixi,k + bip
st
i,k, (1)

where xi,k denotes the state of charge (SoC) of the storage
unit, ai ∈ (0, 1] denotes its efficiency and bi = − Ts

ecap,i
,

where Ts and ecap,i denote the sampling period and the max-
imum capacity of the storage unit, respectively. Moreover,
consider the operational constraints of the components of
microgrid i as follows:

xmin
i ≤ xi,k ≤ xmax

i , −pchi ≤ psti,k ≤ pdhi , (2)

pg,min
i ≤ pgi,k ≤ p

g,max
i , 0 ≤ pimi,k ≤ p

im,max
i , (3)

−pt,max
i ≤ ptji,k ≤ p

t,max
i , ∀j ∈ Ni, (4)

where xmin
i , xmax

i ∈ [0, 1] denote the minimum and the
maximum SoC of the storage unit, respectively; pchi ∈ R≥0
and pdhi ∈ R≥0 denote the maximum charging and discharg-
ing power of the storage; pg,min

i , pg,max
i ∈ R≥0 denote the

minimum and the maximum of the total power generated by
the DG units of microgrid i, respectively; pim,max

i ∈ R≥0

denotes the maximum imported power from the main grid;
and pt,max

i ∈ R>0 denotes the maximum energy that can
be transferred between microgrids i and j. Additionally,
consider the power balance equations of each microgrid
i ∈ N as follows:

pdi,k − psti,k − p
g
i,k − p

im
i,k −

∑
j∈Ni

ptji,k = 0, (5)

ptij,k + ptji,k = 0, ∀j ∈ Ni, (6)

where pdi,k denotes the uncertain power disturbance that
represents the difference between the uncertain load and the
power generated by the non-dispatchable units.

Finally, collect the decision variables of microgrid i as a
vector, denoted by ui,k = [psti,k pgi,k pimi,k uc>

i,k ]>, where
uc
i,k = [ptji,k]>j∈Ni

. Based on the preceding model of the
system, the dynamic economic dispatch problem behind the
DMPC scheme is stated as follows:

minimize
{{ui,`|k}i∈N }

k+hp−1

`=k

∑
i∈N

k+hp−1∑
`=k

Ji,`(ui,`|k) (7a)

subject to Fiui,`|k ≤ fi,`, ∀i ∈ N , (7b)

uc
i,`|k +

∑
j∈Ni

Giju
c
j,`|k = 0, ∀i ∈ N , (7c)

for all ` ∈ {k, . . . , k + hp − 1}, where hp ∈ Z≥1 denotes
the prediction horizon. The stage cost function in (7a) is
defined as Ji,k = u>i,kRiui,k, for all i ∈ N and k ∈ Z≥0,
where Ri = diag([csti cgi cimi cti1

>
|Ni|]) > 0, in which

csti , c
g
i , c

im
i , cti ∈ R>0 denote the per-unit cost of storage

operation, producing energy, buying energy from the main
grid, and transferring energy to/from the neighbor due to
losses, respectively [1]. Moreover, the local constraints (7b)
with the appropriate Fi and fi,` are constructed from (1)-
(5) and only depend on local decision variables whereas the
coupled constraints (7c) with the appropriate matrices Gij ,
for all j ∈ Ni, are formed from (6).

B. Distributed Optimization Method

We solve Problem (7) in a distributed manner by assuming
bidirectional communication between neighboring agents.
Many distributed optimization algorithms can be applied as
the DMPC strategy for this problem, e.g., [2], [3]. For clarity
of the explanation, we consider the dual-ascent method
(Algorithm 1). Since (7b)-(7c) form a polyhedral set and (7a)
is strictly convex, the solutions coming from Algorithm 1,
denoted by u?

i,`|k, for all i ∈ N and ` ∈ {k, . . . , k+hp−1},
converge to the optimal solution of Problem (7) [6], [8].

C. Adversary Model

It is considered that some of the agents (microgrids) might
perform adversarial actions. The adversary model of the
system is stated by the following definitions and assumptions.

Definition 1: An agent i is regular if it always implements
its control input according to the decision obtained from the
DMPC strategy, i.e., ui,k = u?

i,k|k, for all k ≥ 0. Otherwise,
agent i is adversarial. Furthermore, denote the set of regular
agents by R and that of adversarial agents by A. 2



Algorithm 1 Distributed dual-ascent algorithm, for i ∈ N
1: Set r = 1, ζi ∈ R>0, and initialize λ(r)

i,` .
2: while

∣∣∣∣[ψ>i,k · · · ψ>i,k+hp−1

]∣∣∣∣
2
> ζi do

3: Receive λ(r)
j,` for all ` ∈ {k, . . . , k + hp − 1} from all

neighbors j ∈ Ni, and send λ(r)
i,` for all ` ∈ {k, . . . , k+hp−1}

to the neighbors.
4: Solve the local optimization problem

minimize
{ui,`|k}

k+hp−1

`=k

k+hp−1∑
`=k

(
Ji,`(ui,`|k) + Λi,`u

c
i,`|k

)
subject to ui,`|k ∈ Ui,`, ∀` ∈ {k, . . . , k + hp − 1},

where Λi,` =
(
λ

(r)>
i,` +

∑
j∈Ni

λ
(r)>
j,` Gji

)
.

5: Receive the decision uc
j,`|k for all ` ∈ {k, . . . , k + hp −

1} from all neighbors j ∈ Ni, and send uc
i,`|k for all ` ∈

{k, · · · , k + hp − 1} to the neighbors.
6: Update λi,` for all ` ∈ {k, . . . , k + hp − 1} as λ(r+1)

i,` =

λ
(r)
i,` +αiψi,`, where ψi,` =

(
uc

i,`|k +
∑

j∈Ni
Giju

c
j,`|k

)
and

0 < αi < 1.
7: r ← r + 1
8: end while

Definition 2: Given f ∈ Z≥1, the set of adversarial agents
is f -local if |A ∩ Ni|≤ f , for all i ∈ N . 2

Assumption 1: Each agent i ∈ N has at most one adver-
sarial neighbor, i.e., f = 1. 2

Definition 3: An attack is an event at which an adversarial
agent i ∈ A implements a control input that is different
than the decision obtained from the distributed strategy, i.e.,
ui,k 6= u?

i,k|k for some k. 2
Assumption 2: The probability of attack, for each i ∈ A,

is lower bounded by a positive scalar denoted by pai > 0. 2
The case of f = 1 imposed by Assumption 1 is indeed

restrictive and the more general case is left for future
studies. By performing an attack defined in Definition 3,
an adversarial agent might gain benefit from its neighbors.
For instance, an adversarial agent may produce an energy
quantity smaller than the amount that has been decided
from the distributed algorithm. It then asks its neighbors to
compensate the deficiency of power. This attack is possible
since these agents are connected and the power balance
equations must be met.

III. TWO-STEP SCENARIO-BASED ROBUSTIFICATION

Since the power disturbances of each microgrid, pdi,`, for
all ` ∈ {k, . . . , k+hp−1}, cannot be known in advance, we
can only consider the forecast of pdi,`, denoted by p̂di,`, and
assume the difference between the forecast and the actual
value as an uncertain variable denoted by wd

i,k ∈ R, i.e.,

wd
i,k = pdi,k − p̂di,k. (8)

Similarly, an attack can also be considered as another source
of uncertainty, which is denoted by wa

i,k ∈ R. Hence, the
uncertainties of microgrid i can be denoted by wi,k =
[wd

i,k w
a
i,k]> and we assume that this uncertainty is a random

process as follows.

Assumption 3: Let Ωi ⊆ R2, for each i ∈ N , be an
uncertain set bounded and endowed with a Borel σ-algebra.
For each microgrid i ∈ N , wi,k ∈ Ωi, is an independent and
identically distributed (i.i.d) random process. 2

The energy storage units can help to deal with the
uncertain disturbance. In order to take into account this
strategy and the disturbance, the formulation of the dynamic
economic dispatch problem in Section II-A is adjusted as
follows. Let p̂sti,k denote the nominal power delivered to/from
the storage unit and consider that

psti,k = p̂sti,k + 1>wi,k, ∀i ∈ N . (9)

By introducing wa
i,k in (5) and from (8) and (9), we obtain

the local power balance equation as follows:

p̂di,k − p̂sti,k − p
g
i,k − p

im
i,k −

∑
j∈Ni

ptji,k = 0. (10)

By considering (9) as additional constraints, as well as (10)
instead of (5), we specify how the disturbance affects the
system. In particular, it can be seen that the satisfaction of
constraints (2) now also depends on the disturbance.

Furthermore, we reformulate Problem (7) as a chance-
constrained problem as follows:

minimize
{{ui,`|k}i∈N }

k+hp−1

`=k

∑
i∈N

k+hp−1∑
`=k

Ji,`(ui,`|k) (11a)

subject to (7c), ∀` ∈ {k, . . . , k + hp − 1},
P(Fiui,`|k + Fw,iwi,` ≤ fi,`|wi,` ∈ Ωi,

∀` ∈ {k, . . . , k + hp − 1}) ≥ 1− εi, ∀i ∈ N , (11b)

where ui = [p̂sti,k p
g
i,k p

im
i,k u

c>
i,k ]> ∈ R3+|Ni|; the inequality

Fiui,`|k + Fw,iwi,` ≤ fi,` is a compact form of the
local constraints (1)-(4), (9), and (10), with appropriate Fi

and Fw,i matrices and fi,` vector; and εi ∈ (0, 1) is the
maximum violation level. Any solution of Problem (11) is
referred to as an ε-level solution, where ε =

∑
i∈N εi and we

follow a stochastic approach [7] to compute such a solution.

A. Computing Probabilistic Bounds

In this step, we solve a randomized program to compute
a set that probabilistically bounds the uncertainty of the
chance-constrained problem. Since in Problem (11), each
microgrid has a sequence of uncertain variables, i.e., wi,`,
for all ` ∈ {k, . . . , k + hp − 1}, let the set that bounds a
portion of the probability mass of [w>i,k · · ·w>i,k+hp−1]> be
denoted by B?i,k. We define B?i,k to be a polyhedral set, i.e.,
B?i,k =

∏k+hp−1
`=k {τ ∈ R2 : τ ?

i,`|k ≤ τ ≤ τ ?
i,`|k}, where

τ ?
i,`|k, τ

?
i,`|k ∈ R2 denote the lower and upper bounds of

wi,`, respectively, and consist of two components since there
are two sources of uncertainty.

In order to compute B?i,k, we follow a probabilistic ap-
proach based on the so-called scenario approach of [7]. In
particular, this is done by first posing a chance-constrained
problem to obtain the probabilistic bounds and then ap-
proximating the solution of that problem by solving an



optimization based on sampling in the uncertain set as

minimize
{τ i,`|k,τ i,`|k}

k+hp−1

`=k

k+hp−1∑
`=k

1>
(
τ i,`|k − τ i,`|k

)
subject to

w
(s)
i,` ∈ [τ i,`|k, τ i,`|k], s = 1, . . . , ns,i,

(12)

for all ` ∈ {k, . . . , k+hp−1}, where w(s)
i,` denote a scenario

of wi,`, generated according to the probability measure for
wi,` in an i.i.d. manner, and ns,i is the number of scenarios.
According to [7], for the desired level of confidence βi ∈
(0, 1), we must choose ns,i satisfying

ns,i ≥
e

εi(e− 1)

(
4hp − 1 + ln

1

βi

)
. (13)

With some abuse of notation, let the set B?i,k be constructed
from the solution of Problem (12). This set is a solution of
the chance-constrained problem to obtain the bounds with
probability at least 1− βi.

B. Robust Reformulation
Based on the bounds B?i,k, for all i ∈ N , we formulate

a robust counterpart of Problem (11). Since the local con-
straints are convex, we can apply the vertex enumeration
method, i.e., substituting the uncertain variable wi,` with
the vertices of B?i,k [7]. The robust formulation associated
to Problem (11) is stated as follows:

minimize
{{ui,`|k}i∈N }

k+hp−1

`=k

∑
i∈N

k+hp−1∑
`=k

Ji,`(ui,`|k) (14a)

subject to (7c),
Fiui,`|k + Fw,iwi,`|k ≤ fi,`, (14b)
wi,`|k ∈ V(B?

i,k, `), (14c)

for all ` ∈ {k, . . . , k + hp − 1} and i ∈ N , where
V(B?i,k, `) = {τ ?

i,`|k, τ
?
i,`|k} is the vertex set computed in the

previous step (Section III-A). Problem (14) is convex, with a
strictly convex cost function and local non-empty polyhedral
constraint sets. Therefore, we can obtain the optimal solution
of Problem (14) using Algorithm 1, where Ui,k is defined by
constraints (14b) and (14c).

IV. ATTACK IDENTIFICATION AND MITIGATION

Now, we present the attack identification and mitigation
method, which is based on [6]. However, since we do not
have the exact bounds of the uncertain variables, we use the
probabilistic bounds obtained from Section III-A.

A. Attack Detection

Firstly, a regular agent must be able to detect an attack. To
this end, a regular agent uses its SoC information to compute
the total disturbance, denoted by δi,k, as follows:

δi,k = xi,k+1 −
(
xi,k + b>i ui,k|k

)
, ∀k ∈ Z≥0, (15)

where bi = [bi 0>2+|Ni|]
>. By definition, δi,k = bi1

>wi,k.
The probabilistic bound B?i,k can now be used as the thresh-
old to define whether an attack occurs. Recall that τ ?

i,k|k =

[τd?i,k|k τa?i,k|k]>, where τd?i,k|k and τa?i,k|k denote the lower
bounds of the disturbance associated to the load and to an
attack, respectively, and similarly τ ?

i,k|k = [τd?i,k|k τa?i,k|k]>,
where τd?i,k|k and τa?i,k|k denote the corresponding upper
bounds. Then, the attack detection is defined as follows.

Definition 4: For each regular agent i ∈ R and k ∈ Z≥0,
let dai,k ∈ {0, 1} be the indicator that detects attacks. If

τd?i,k|k ≤ δi,k/bi ≤ τ
d?
i,k|k, (16)

then there is no attack detected by agent i and dai,k = 0.
Otherwise, dai,k = 1, implying an attack is detected. 2

For this attack detection mechanism, we further introduce
the notations of detectable attacks and false attack detections.

Definition 5: An attack is detectable if wa
i,k 6= 0 such

that (16) does not hold. On the other hand, an attack is
undetectable if wa

i,k 6= 0 such that (16) holds. 2
Assumption 4: The probability of the undetectable attacks

received by agent i ∈ R, denoted by puai , is less than 1. 2
Definition 6: A false attack detection occurs if wd

i,k ≤
τd?i,k|k or wd

i,k ≥ τd?i,k|k when wa
i,k = 0. 2

B. Identification and Mitigation Method

We suppose that regular agents do not have prior knowl-
edge of the occurrence of the attacks, but they have an
initial expectation on the probability of attacks, denoted by
p̂ai ∈ (0, 1), for each i ∈ R.

Each agent, i ∈ R, considers the set of hypotheses given
by Hi = {H0

i ,H
j
i : j ∈ Ni}, where the hypotheses are

defined as follows:
• H0

i : There is no adversarial agent,
• Hj

i : Neighbor j is an adversarial agent,
for all j ∈ Ni. The Bayesian inference is used as the model
to update the probability of the hypotheses as follows:

Pk+1(H
j
i ) =

Pk(H
j
i )Pk(d

a
i,k|Hj

i )

Pk(dai,k)
, (17)

for all Hj
i ∈ Hi, where Pk+1(Hj

i ) is the a posteriori
probability of Hj

i given the event dai,k, i.e., Pk+1(Hj
i ) =

P(Hj
i |dai,k); Pk(Hj

i ) denotes the probability of hypothe-
sis Hj

i at time instant k; Pk(dai,k) denotes the marginal
likelihood of dai,k; and Pk(dai,k|H

j
i ) denotes the probability

of observing dai,k given hypothesis Hj
i . The probability

Pk(dai,k|H
j
i ) is formulated as follows:

Pk(d
a
i,k = 0|Hj

i ) =

{
1, for j = 0,
1− vji,kp̂

a
i , for all j ∈ Ni,

Pk(d
a
i,k = 1|Hj

i ) =

{
0, for j = 0,

vji,kp̂
a
i , for all j ∈ Ni,

(18)

where vji,k ∈ {0, 1}, denotes the decision whether agent i
connects to and negotiates with neighbor j, i.e., vji,k = 1 if
agent i connects to neighbor j, whereas vji,k = 0 otherwise.
The probabilities of all hypotheses are initialized as follows:
P0(Hj

i ) = p̂ai /|Ni|, for all j ∈ Ni, and P0(H0
i ) = 1 − p̂ai ,

implying that it is initially considered that each neighbor is



Algorithm 2 Resilient distributed algorithm, for i ∈ R
1: Initialize the hypothesis probabilities.
2: for k = 0, 1, 2, . . . do
3: Choose ns,i according to (13).
4: Solve (12) to compute the probabilistic bound B?

i,k.
5: Solve (19) to compute V?

i,k.
6: if 1|Ni| ∈ V

?
i,k then

7: Choose v?
i,k = 1|Ni|.

8: else
9: Choose randomly v?

i,k ∈ V?
i,k.

10: end if
11: Compute u?

i,k|k using Algorithm 1, considering Ui is
formed by the constraints defined in (14c) and (19b), where
vj
i,k = vj?

i,k.
12: Implement u?

i,k|k and v?
i,k.

13: Measure xi,k+1.
14: Compute dai,k based on Definition 4.
15: Update the probability values of the hypotheses according

to (17).
16: end for

equally likely to be adversarial. Note that p̂ai does not need
to be equal to paj , for j ∈ Ni ∩ A.

In order to compute vji,k, for all j ∈ Ni, agent i solves a
local mixed-integer optimization problem as follows:

minimize
vi,k,{ui,`|k}

k+hp−1

`=k

k+hp−1∑
`=k

Ji,`(ui,`|k) + Jv
i (vi,k) (19a)

subject to (14c),

Fiui,`|k + Fw,iwi,`|k + Fv,ivi,k ≤ f lc
i,`, (19b)

vi,k ∈ {v ∈ {0, 1}|Ni| : 1>v ≥ |Ni|−1}, (19c)

for all ` ∈ {k, . . . , k + hp − 1}, where vi,k = [vji,k]>j∈Ni
∈

{0, 1}|Ni|. The cost function Jv
i (vi,k) : R|Ni| → R penalizes

the decision of having a connection with the neighbors,
i.e., Jv

i (vi,k) = γin
a
i,k

∑
j∈Ni

Pk(Hj
i )v

j
i,k, where γi ∈ R>0

denotes a weight that must be predefined and nai,k denotes
the number of attacks that agent i has detected, i.e., nai,k =∑k

`=0 d
at
i,`. Moreover, (19b) is obtained from (1)-(3), (9), (10)

and from the following expression:

−pt,max
i vji,k ≤ p

t
ji,` ≤ p

t,max
i vji,k, ∀j ∈ Ni, (20)

for all ` ∈ {k, . . . , k+hp−1}, whereas, the constraint (19c)
implies that agent i can only disconnect from at most one
neighbor. Finally, let V?

i,k ∈ {0, 1}|Ni| be the set of mini-
mizers of Problem (19) and suppose that v?i,k = [vj?i,k]>j∈Ni

is
chosen from V?

i,k, i.e., v?i,k ∈ V?
i,k. Hence, in order to include

the connection decision in the robust problem (14), the local
constraints (14b) are switched by (19b) with vi,k = v?i,k, for
all i ∈ N .

V. ANALYSIS OF THE OVERALL METHOD

The overall method is summarized in Algorithm 2. Related
to the part of implementing v?i,k, we consider that any agent
can temporarily disconnect the physical links between itself
and its neighbors, respecting the decision of v?i,k. This fact
implies that two agents, i and j, where (i, j) ∈ E , can only
exchange energy if and only if vj?i,k = vi?j,k = 1. Now, we

provide some analysis results of the algorithm, in terms of
the characteristics of the obtained solution (Proposition 1)
and the result of the identification method (Proposition 2).
Prior to stating these results, we introduce Assumption 5.

Assumption 5: The feasible set of Problem (14) is non-
empty. Moreover, this set contains a subset in which ptij,` =
ptji,` = 0, for all ` ∈ {k, . . . , k + hp − 1}, and (i, j) ∈ E . 2

The existence of a nonempty feasible region in Problem
(14) depends on the scenario realization, which determines
the construction of the probabilistic bounds. Therefore, each
agent can compute the bounds such that Assumption 5 holds.
Furthermore, the second part of Assumption 5 implies that
each microgrid can operate in the island mode.

Proposition 1: Suppose that Assumptions 3 and 5 hold.
Furthermore, suppose that each agent i ∈ N applies steps
4, 5-11 of Algorithm 2 to compute u?

i,k|k. Then, the imple-
mented decision, u?

i,k|k, for each i ∈ R, is an ε-level solution
of Problem (11), with level of inexactness ζi and probability
at least 1− β, where ε =

∑
i∈N εi and β =

∑
i∈N βi. 2

Proof: Due to the space constraint, we outline the main
ideas of the proof. The feasible set of the problem solved
in step 11 of Algorithm 2 is a subset of feasible solutions
of Problem (14). Then, the characteristics follow from the
results of implementing Algorithm 1 and the stochastic
method explained in Section III.

Proposition 2: Suppose that Assumptions 1-5 hold, a reg-
ular agent i ∈ R applies Algorithm 2, and there exists an
adversarial neighbor of agent i. If there is no false detection,
then agent i correctly identifies the adversarial neighbor. 2

Proof: Due to the space limitation, we provide a sketch
of the proof. We evaluate the evolution of each hypothesis
probability Pk(Hj

i ) based on (17), particularly when a regular
agent i keeps blocking one of the neighbors. Once the adver-
sarial neighbor is blocked, it can be shown that it will always
be blocked at the later time instants and the convergence
of each hypothesis probability can be analytically shown.
On the other hand, when a regular neighbor is blocked,
the agent will receive an attack and it will later choose
to block a different neighbor, until the adversarial agent is
blocked. Hence, only the hypothesis probability associated
to the adversarial neighbor eventually converges to 1.

VI. CASE STUDY

We consider the PG&E 69-bus distribution network with
additional dispatchable generation, solar-based power gener-
ation, and storage units. The network is partitioned into eight
microgrids (agents) [9]. The topology of this interconnected-
microgrid system is shown in Fig. 1. Furthermore, the param-
eter values of the components of each microgrid are given
in Table I. We suppose that microgrids 1, 2, 5, and 6 have
industrial load profiles whereas the others have residential
profiles. The load and solar-based generation profiles are
based on realistic data [10], [11]. In addition, we consider
that agents 2, 6, and 7 are adversarial and they attack with
pai = 0.3. The attack strategy of the adversarial agents is to
reduce the production of their dispatchable generation units
randomly. It is set that the simulation time is one day (96
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Fig. 1. The PG&E 69-bus distribution network [9]. Squares indicate the
distributed generation units, i.e., � and 2 represent a renewable generation
unit and a dispatchabale generator, respectively, whereas crosses, ×, indicate
the storages.

TABLE I
PARAMETERS OF THE MICROGRIDS

Parameters Value Unit Agent

xmin
i , xmax

i , xi,0 30, 80, 50 % all

pchi , pdhi 300, 300 kW all

pg,min
i , pg,max

i 0, 1000 kW 3, 4, 7, 8
0, 2000 kW 1, 2, 5, 6

pt,max
i , pim,max

i 110, 2000 kW all

ecap,i 500 kWh 3, 4, 7, 8
1000 kWh 1, 2, 5, 6

csti , cimi , cti 1, 250, 0.1 - all

cgi 5 - 2, 4, 6, 7
10 - 1, 3, 5, 8

ai, εi, βi 0.98, 0.01, 0.05 - all

steps), Ts = 15 minutes, hp = 4, and ζi = 5, for all i ∈ N .
Low-level local controllers are placed at each microgrid that
control the dispatchable generation and storage units such
that the set points computed are met. Figs. 2 and 3 show
some plots of the simulation results. From the top plot of
Fig. 2, it is observed that the SoC value of agent 1 stays in
the limit for all time steps, showing the robustness of the
decisions with respect to the attacks and system disturbance.
Fig. 3 shows how agent 1 manages to identify and disconnect
from its adversarial neighbor (agent 2) using Algorithm 2.

VII. CONCLUSION AND FUTURE WORK

A combination of passive and active schemes to deal
with non-compliance in a distributed energy management
of interconnected microgrid systems has been presented and
analyzed. The passive scheme uses a two-step stochastic
method to robustify the decisions against the uncertain at-
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Fig. 2. The evolution of SoC of agent 1.
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Fig. 3. The evolution of each hypothesis probability of agent 1 (top plot)
and the connection decision of agent 1 at each time instant (bottom plot).

tacks and system disturbances. On the other hand, the active
scheme employs a hypothesis testing method to identify the
adversarial agents. As an ongoing work, the proposed method
is extended for more general cases, i.e., f ≥ 1, and attacks
that are hard to detect.
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