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C/Llorens i Artigas 4-6, 08028 Barcelona.

{aandriella, asuarez, jsegovia, torras, galenya}@iri.upc.edu

Abstract. Social Assistive Robots are a powerful tool to be used in
patients’ cognitive training. The purpose of this study is to evaluate a
new methodology to enable caregivers to teach cognitive exercises to the
robot in an easy and natural way. We build upon our existing framework,
in which a robot is employed to provide encouragement and hints while a
patient is physically playing a cognitive exercise. In this paper, we focus
on empowering the caregiver to easily teach new board exercises to the
robot by providing positive examples.
The proposed learning method has two main advantages i) the teaching
procedure is human-friendly ii) the produced exercise rules are human-
understandable. The learning algorithm is validated in 6 exercises with
different characteristics, correctly identifying and representing the rules
from a few examples.
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1 Introduction

The increase in life expectancy is one of the most important achievements of the
21st century. However, ageing and age-related diseases are a mounting challenge
for families, social, economic and healthcare systems [15]. One of the biggest
challenges of the modern world associated with the ageing population is demen-
tia [13]. According to the Word Health Organization the number of people with
dementia will rise from 50 mil in 2018 to 82 mil in 2030, and more than 150 mil
in 2050 [1].

Currently there is no treatment available to cure dementia or to modify
the progression of the disease [7]. The limited efficacy of the pharmacological
therapies is the reason to explain the arising interest for non-pharmacological
interventions for dementia patients. The non-pharmacologic intervention aims
to enhance or at least maintain the individuals cognitive function, enabling to
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(a) First loop of interaction (b) Second loop of interaction

Fig. 1. Illustrative images. (a) A caregiver sets the patient’s mental and physical im-
pairment and the robot’s initial behaviour. (b) The robot assists the patient while
he is playing the cognitive exercise. Frames from the video in https://youtu.be/

zqcLSdl0UcE.

address behavioural symptoms that often exist in people affected by dementia,
such as depression [7]. These interventions can be divided into four categories
outlined by [9]: holistic techniques, brief psychotherapy, cognitive methods, and
alternative methods. In our project, we focus on cognitive therapies, specifically
on Cognitive Training (CT) exercises. CT is one of those activities that seeks,
through repetitive practice, to train specific cognitive processes via standardized
exercises [6].

Socially Assistive Robotics (SAR) is a branch of Robotics that aims to endow
robots with the capability to aid people through individual social assistance,
rather than physical, in convalescence, rehabilitation, and training [16]. Robots
not only can be available twenty-four hours a day, but they may also help with
the growing shortage of personnel support and, moreover, ease the workload of
human therapists. Research has already shown that SAR can help improve the
quality of life for older adults and bridge the gap when human assistance is not
available [20].

In this paper, we extend our previous work [4] in which a SAR is employed
by a caregiver to provide encouragement and motivation, through speech and
gesture, to a patient while he is playing a cognitive exercise. There, two main
loops of interaction are proposed. In the first one, the caregiver sets the patient’s
cognitive and physical impairment and the initial preferences on the robot’s be-
haviour (see Fig. 1a). In the second one, the robot, given the caregiver’s settings,
provides assistance to the user through encouragements and hints based on his
performance (See Fig. 1b).

Most of the current works in SAR are focused on the second loop of inter-
action (robot - final user) in which the robot, partially or entirely replaces the
caregiver’s role [2]. On the contrary, we target our attention to the first loop as
we envisage a central role for the caregiver.

In previous work [4], the caregiver could provide information about the pa-
tient with the intent to personalize the robot’s behaviour (see Figure 1a). How-
ever, she/he could not extend the repertoire of exercises. Programming a robot,
in fact, is a tedious process that requires a considerable amount of technical ex-
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pertise. With that in mind, the practice of configuring new exercises is exclusive
to the competent personnel and this represent a limitation in reality.

In this paper, we present a way to equip the caregiver with an easy and
natural human-like approach to teach new exercises simply by playing them.
From few moves taught by the caregiver, the robot is able to learn the rules
of the new exercise. This enables the robot to monitor patients who perform
this same exercise. Furthermore, the learned rules are available in first-order
language. This provides an explainable and intuitive way of understanding what
the system has learned, since rules can be easily translated to natural language.

The proposed exercises are inspired by the Syndrom Kurztest [17], and they
have been thought specifically to combine cognitive and motor functions on vi-
suomotor skills like grasping and manipulation [11]. Six different exercises are
defined: sorting odd numbers in ascending order, sorting numbers in ascend-
ing and descending order, an exercise where position within the board matters,
composing a word, and sorting letters in alphabetical ascending order.

The main contributions of this paper are: (1) a friendly method of teaching
board exercises using natural interactions; and (2) a learning algorithm that
produces human-understandable rules.

We believe the proposed paper is a step further in the direction to pro-
vide non-expert people, and in particular therapists, with easy-to-use methods
where exercises can be programmed through playing examples, and directly rep-
resent exercise rules into an explainable symbolic high-level language such as
STRIPS [12].

2 Related Work

In the last decade, a lot of effort has been put in developing robotic systems
programmable from non-experts.

Graphical programming and user-friendly interface have been developed to
provide non-experts with a way to understand and program without investing
much time in learning. Pieska et al. [18] present an interesting review about
the state of the art on user-friendly interface for robots and in their work they
develop a platform suitable for both programming experts and people with no
robot programming skill. The platform is based on a set of ready-made plugins,
whose plugins can be connected through a graphical interface to generate a robot
program.

There are also a few attempts to introduce user-friendly programming to
Robotic Operating System (ROS)-based systems. Crick et al. [10] introduce ros-
bridge, a middleware abstraction layer to enable ROS accessible to programmers
that are not them-self roboticists. Tiddi et al. [23] develop a user interface for as-
sisting non-expert users to design complex robot behaviours and control robotic
systems based on ROS. Zubrycky et al. [24] present a graphical programming
interface called Robokol, based on ROS and Snap, that enables non-technical
professionals to program robots and internet-of-things devices.

In the field of education robots, there are also examples of introducing easy
interfaces to program robots. One of the most well-known is Choregraphe, a



4 A. Andriella et al.

(a) (b) (c)

Fig. 2. (a) Empty Board: goal row in white, storage rows in blue. (b) Tokens randomly
placed in the storage rows from the caregiver. (c) Tokens moved in the goal row in
ascending order from the caregiver.

graphical environment developed by Aldebaran Robotics for programming their
humanoid robot, NAO [19]. Choregraphe enables non-experts to create robot
behaviours using a Box library. It contains from high-level (walking, dancing, etc)
to low level robot’s functionalities (sensors, LEDs, etc) that can be assembled
and linked based on user’s own need to create a custom robot’s behaviour. All
these approaches have in common the idea of a graphical interface to link basic
behaviours. On the contrary, we propose to use simple real demonstrations.

Real demonstrations have been used before to teach physical tasks using
Learning by Demonstration techniques [5]. This approach has been extensively
used in the literature for learning low-level robot motions [8], and also for in-
crementally learning assembly tasks [22]. In our work, we are not interested in
teaching the motion trajectories but the logical rules of the exercise from a few
user’s gameplay demonstrations.

3 Method

A practical system ought to be naturally programmable by caregivers and prac-
titioners. Thus, we propose that the caregiver shows the robot some successful
runs of the exercise, and then let the robot discover the underlying rules. The
board exercise is of the form of several tokens arranged (see Fig. 2b) in the stor-
age rows (see blue cells in Fig. 2a) that have to be displaced to the goal row
(see white cells of Fig. 2a) based on rules taught by the therapist (see Fig. 2c).
This setup is very flexible, as the tokens can be labelled with numbers, letters
or symbols, allowing the generation of multiple exercises. In this paper, we have
used 6 different exercises to show the generality of the approach. We will present
them in Sec. 4.

3.1 Perception

The most common approach is to use computer vision to monitor the changes in
the environment [14]. However, from our experience in real environments, simple
vision algorithms able to run embedded in common robots are not reliable enough
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ascending order.jpg

Fig. 3. Example of two traces or play-outs, provided by a caregiver to teach the “as-
cending order” exercise. Both traces are meant to demonstrate the same exercise. In
(a) the caregiver teaches how to sort the five smallest numbers while in (b) he teaches
how to sort the five largest numbers. In both traces, the initial token position (t = 0)
is random. Later steps (t > 0) show the progress of the caregiver in the current trace.

in natural environments. Furthermore, most of the current robotic platforms are
equipped with only one camera that is generally located in their head, thus if
the camera is used to detect the board state then, for instance, it cannot be used
to monitor the user’s affective behaviour.

For this reason, we built an electronic board based on RFID technology . Each
token is univocally identified with an ID. The board consists of 20 Grove - NFC
boards one for each board cell, 3 Adafruit TCA9548A, 1 to 8 I2C multiplexers,
and 1 Arduino Nano. The Grove NFC has a highly integrated transceiver module
PN532 which handles contact-less communication at 13.56MHz. Finally, Grove
NFC is controlled using I2C communication protocol.

Using this board we have experienced no errors in detecting the tokens and
in creating reliable traces. A trace is a sequence of valid pick-and-place actions
in which the demonstrator moves tokens from one location to another one (see
Fig. 3). For each timestamp t, our driver records the current move as a triplet
(token id, orig, dest). It is worth to be mentioned that although the board is
capable to detect more than one move at the same time, in this context we don’t
allow the demonstrator to teach more than one move at a time.

3.2 Actions and Rules

In every board scenario, all 10 tokens are distributed among the storage and goal
cells. The particular arrangement conforms the current state of the exercise. The
state is described in terms of propositional variables (e.g. when contains (lij , A)
is true, it means that token A is in the cell (i, j)). An action is defined as a 2-
tuple 〈precondition, effect〉, where precondition is a logic formula that must hold
in the current state for the action to be applicable, and effect is a set of variable
assignments that modify the current state. The exercise’s rules determine the



6 A. Andriella et al.

Action: move-v19-t1(from, to)

Precondition: to = l11∧
contains(from, v19) ∧ empty(to)

Effect: ¬ contains(from, v19)∧
contains(to, v19) ∧ empty(from)∧
¬ empty(to)

(a)

Action: move-v23-t2(from, to)

Precondition: to = l12∧
contains(from, v23) ∧ empty(to)∧
∃v′ (contains(l11, v′) ∧ less-than(v′, v23))

Effect: ¬ contains(from, v23)∧
contains(to, v23) ∧ empty(from)∧
¬ empty(to)

(b)

Fig. 4. (a) the action for moving token v19 (the token with value 19) as the first move
requires that the destination is the top left corner (location l11); (b) the action for
allocating token v23 requires that the destination is at location l12 (at the right of the
top left corner) and that there is a token at location l11 with lower numeric value.

set of applicable actions for each state, while the inapplicable actions are those
against the rules. Therefore, learning the rules of an exercise reduces to learn
the preconditions of the different actions.

Rules are expressed in terms of observable features that describe the charac-
teristics of individual tokens (e.g. odd) or pairs of tokens (e.g. less-than). These
features aim at being generic enough to provide the capability of defining in-
teresting cognitive exercises. For a particular exercise, the rules involve only a
subset of these features, while the rest are distractors. Since exercises require
only 5 movements, it is possible that up to 5 tokens are irrelevant, or that ex-
ercises have more than one correct solution (e.g. sorting 5 tokens out of 10 in
ascending order). The fact that tokens can be randomly arranged in the initial
state adds extra complexity, so learning the rules must generalize over any input
order.

Once rules are learned, they can be used for validating actions performed by
the patients. In validation, the robot checks if the preconditions of the applied
action are met in the previous state. If not, the patient is informed the action
performed is invalid and the movement is undone by the robot.

As a means to give intuition about actions and rules, let us consider the
board setting from Fig. 2b and the exercise of sorting tokens with numbers in
ascending order. Fig. 4 shows 2 out of the 30 actions that are needed to solve the
exercise. Notice how the preconditions are quite different from each other and
are in direct correspondence with the rules of the exercise. The first movement
must be moving one of the 6 tokens (19-23-32-34-36-46) with lowest value to
the top left corner cell. Further movements must fill successively the rest of the
goal row with tokens making sure that the cells at their left have lower numeric
values. Our next section outlines how our method is capable of learning such
rules from exercise traces.

3.3 Learning Method

Our learning method infers the precondition of all actions from exercise traces
given by the caregiver (Fig. 5). An action has the form move-value-timestep
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Fig. 5. A user teaching a new exercise to the robot.

(from, to), where value is the value of the token associated to the action,
timestep is the move index in the sequence of moves in which the action is
meant to be executed, from is the source cell parameter and to is the destina-
tion parameter. Since every exercise has 10 tokens and solutions require 5 time
steps, problems will consist of learning preconditions of up to 50 pick-and-place
actions.

The input is a set of traces or examples provided by the caregiver. Initially, we
include all possible restrictions in all of the 50 actions’ preconditions. Therefore,
actions are initially inapplicable because some propositional variables interfere
(e.g. the preconditions require that a token is in multiple locations at the same
time). Our method then uses the available traces to progressively relax the pre-
conditions, leaving them just restrictive enough so they can be used to explain
the transitions of all the given traces. This is done via symbolic planning with
Madagascar [21], in a way that is reminiscent of the approach taken and detailed
by Aineto et al. [3]. Namely, we pose a planning problem in which the goal is to
relax the preconditions in order to validate all the given traces.

Exercises like the odd ascending (introduced later in Sec. 4) do not need to
use the whole set of actions, because many actions cannot ever be executed (like
those actions for moving tokens with even numbers) and will not show up in any
trace. Other exercises, like placing any sequence of 5 tokens in ascending order
with no parity constraints, have many solutions and, thus, require more traces
to learn the rules. Overall, the lower the complexity, the easier it is to learn the
rules.

Fig. 3 shows two example traces that can be used to learn the rules of an
ascending sorting exercise. These two traces serve to discard some of the irrele-
vant features (e.g. the initial position of the tokens). When exposed to enough
traces, our learner infers the rules depicted in Fig. 4.

4 Experiments

We set up our system to gather exercise traces and learn human-understandable
rules from them using the board presented in Sec. 3.1. We used 6 self-described
exercises as a proof of concept: (i) sorting five odd numbers in ascending or-
der; (ii) sorting five numbers in ascending order; (iii) sorting five numbers in
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descending order, (iv) moving first storage row to goal row, (v) spell “CURIE”
word choosing 5 of 10 available letters, and (vi) sorting five letters in lexico-
graphical order. Exercises from (i) to (iv) use tokens with integer values, while
exercises (v) and (vi) used tokens with letters.

4.1 Trace generation for new exercises

In order to learn new exercises, we need to extract traces such as those from
Fig. 3. When an exercise is being demonstrated via traces, we transform the
information from perception into symbolic states. Transitions between states
are the result of actions taken by the caregiver. The number of required traces
to learn the ground truth of the exercise will depend on the intrinsic complexity
of exercise and solution space.

The minimum number of traces required to demonstrate an exercise depends
on its complexity. Exercises (i) and (v), only require 2 traces where all tokens
are in different initial locations, as only one solution is possible. Exercises (ii),
(iii) and (vi) need 12 traces that summarize all the possible ways of sorting 5
pieces out of 10. Finally, exercise (iv)’s rules only involve locations, so we have
to observe all 10 tokens moving from every column in the first storage row to the
goal row, and this can be done with 10 traces. Experimentally, we found that
only expert users are able to provide this minimum number of demonstrations.
Interestingly, our system can use all the traces that are provided, even if they
are not the most informative ones.

Additionally, our system provides an interface to decide beforehand which
features are relevant for learning the next exercise (for example, an exercise may
not require the less-than feature). When used, it reduces drastically the number
of traces that are needed.

Fig. 6a gives an intuition on how the system’s actions progress over time, as
more and more traces are demonstrated. This plot is associated with the exercise
(ii). When a few traces are shown, the system deduces overly restrictive rules.
As more traces are shown, the system relaxes the preconditions and comes up
with the correct set of rules.

4.2 Human Readable Rules

Figure 6b shows an example of the underlying rules behind an action in exercise
(ii). We describe the method to generate human-understandable rules with a
particular example: from the learned rules (Fig. 4b) an intermediate explanation
is generated; using this intermediate representation, a complete sentence can be
assembled. These rules can be displayed in natural language, so the caregiver
can easily understand them.

Space restrictions do not allow to show all the generated rules. In terms
of time, computing the complete set of rules and explanations for this kind of
exercises take less than 2 seconds in an average computer.
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(a)

Action: move-v23-t2(from, to)

Inferred rules:
Destination (to) goal is cell l12
Source (from) contains token v23
Destination (to) is empty

Location l11 token is less than 23.
Descriptive text:

In the second movement, if the token
marked with number 23 is in its
original position then has to moved
to the goal cell 2 only if it is empty
and the token in cell 1 is less than 23.

(b)

Fig. 6. (a) percentage of correctly learned rules for exercise (ii) given the number of
traces demonstrated by the caregiver (this is the percentage of actions whose precondi-
tion matches exactly the ground truth of the exercise); (b) rule from Fig. 4b (belonging
to exercise (ii)) explained in natural language, as output by our system.

5 Conclusions and Future Work

The main contribution of this paper lies in proposing an approach to teach
a robot new exercises through human demonstrations. The proposed method
enables non-technical professionals, such as caregivers and therapists, to program
new cognitive exercises to a robotic system, that can afterwards administer the
exercise. Notably, the learned rules are easily readable and explainable because
they can be expressed in logic language using well-understood features such as
order relationships.

In the future, we will extend the current learning algorithm to cope with
more complex rules. We would like to explore further its ability to generalize
from examples, and reduce the number of traces needed to learn the rules.
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