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Abstract. Wi-Fi networks have become one of the most popular technologies 
for the provisioning of multimedia services. Due to the exponential increase in 
the number of Access Points (AP) in these networks, the automation of the 
planning, configuration, optimization and management tasks has become of 
prime importance. The efficiency of these automated processes can be im-
proved with the inclusion of data analytics mechanisms able to process the large 
amount of data that can be collected from Wi-Fi networks by powerful monitor-
ing systems. This paper presents a new self-planning methodology that collects 
historical network measurements and extracts knowledge about user signal 
quality and traffic demands to determine adequate AP relocations. The perfor-
mance of the proposed AP relocation methodology based on a genetic algorithm 
is validated in a real Wi-Fi network. The proposed approach can be easily 
adapted to other contexts such as small cell networks. 
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1 Introduction 

In the last years, mobile users are increasingly demanding new multimedia services 
(i.e. high quality video, online multimedia applications, augmented/virtual reality, 
etc.) that have high bandwidth demands and strict Quality of Service (QoS) require-
ments. To cope with this demand, network densification through the deployment of 
small cells operating cellular technologies (e.g. 4G/5G), complemented with Wi-Fi 
hotspots, which benefit from the unlicensed use of the spectrum, becomes a relevant 
solution. Indeed, the popularity of Wi-Fi technology among mobile users makes it a 
competitive option for serving multimedia demands. The amount of traffic of IEEE 
802.11 (i.e. Wi-Fi) has suffered a high increase in the last years. It is expected that by 
2021, 63% of the global cellular data traffic will be offloaded to Wi-Fi or small cell 
networks [1]. Globally, there will be nearly 549 million public Wi-Fi hotspots by 
2022, up from 124 million in 2017, a fourfold increase. Such a high increase in the 
amount of traffic volume and the number of Wi-Fi Access Points (AP)/Small Cells 
makes much more complex the planning, configuration, optimization and manage-
ment tasks of these networks. For this reason, the automation of these processes is of 
paramount importance. Legacy systems such as 2G/3G/4G already started the path 
towards a higher degree of automation through the introduction of Self-Organizing 
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Network (SON) functionalities [2], namely self-planning, self-optimization and self-
healing. However, the lessons learnt from cellular SON cannot be directly applied to 
Wi-Fi systems. Several works such as [3][4] identify challenges and use cases to in-
troduce SON paradigms in Wi-Fi networks. Concerning self-planning aspects in Wi-
Fi/Small Cells networks, most of the works found in the literature focus on the deter-
mination of the most adequate AP location and the frequency channel allocation and 
AP transmitted power. As an example, [5] presents a framework for automated cell-
planning in multi-tenant Small Cells networks that considers actions such as add-
ing/removing channels and Small Cells. Similarly, [6] presents a theoretical model to 
determine the most adequate AP location by an accurate characterization of impact of 
the environment (walls, doors, etc.) on the signal propagation. Other works, such as 
[7], deal with the determination of the most appropriate locations of Wi-Fi extenders. 

On the other side, it is envisaged that the efficiency of automated network man-
agement processes can be substantially enhanced through the exploitation of powerful 
data analytics technologies able to process the large amount of data that can be col-
lected from Wi-Fi networks by powerful monitoring systems. In this respect, (big) 
data monitoring and analytics combined with SON technologies will become funda-
mental in order to enable full scale automated network deployment and optimization 
[8]. The monitoring system provides the ability to collect information about the net-
work resources and performance of the services while the analytics system allows 
extracted knowledge of the collected data in order to support different decision mak-
ing processes over the network. As an example, [9] presents a framework for data 
monitoring and analytics for the optimization of Cloud Enabled Small Cells in the 
context of the 5G ESSENCE project. The data collected by the monitoring system can 
be valuable for the extraction of knowledge related to user habits, user mobility pat-
terns, spatio/temporal user resource demands, etc. Some examples are presented in 
[10] that evaluates user mobility models in a University campus, in [11] that makes 
use of Wi-Fi measurements to analyze mobility patterns in a Hospital or in [12] that 
assesses the spatio/temporal traffic correlation of Wi-Fi traffic data measurements and 
presents a supervised learning approach to classify the different campus spaces. 

Within this context, this paper presents a new self-planning methodology to deter-
mine adequate relocations of APs to improve the provided coverage/quality at those 
regions of the network with low signal quality and high traffic demands. The method-
ology makes use of a monitoring system that collects historical network measure-
ments and an analytics system that extracts valuable knowledge from the collected 
data. This knowledge feeds the AP relocation strategy that is based on a genetic algo-
rithm. The performance of the proposed relocation actions are validated in a real Wi-
Fi network. Although the AP relocation methodology considered in this paper focuses 
on a Wi-Fi network, it could be adapted as well to other contexts, for example exploit-
ing the monitoring and analytics framework for small cell networks defined by the 5G 
ESSENCE project in [9]. 

The remaining of the paper is organized as follows. Section 2 presents the different 
steps of the proposed self-planning methodology, while the details of the AP reloca-
tion algorithm are presented in Section 3. The performance of the proposed approach 
is empirically evaluated in Section 4, while Section 5 summarizes the conclusions. 
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2 Proposed Self-planning Methodology 

The proposed self-planning methodology assumes a Wi-Fi network with monitoring 
capabilities enabling the collection of a number of measurements reported by the 
users when connected to the different APs. The collected data is processed by a data 
analytics module to generate actionable insights to be used by the self-planning pro-
cess. As a result, the self-planning process will be able to detect those situations in 
which the network performance is not satisfactory thus requiring relocation of one or 
several APs to other positions. The network is represented as a group of K Access 
Points located at specific geographical locations (xAP,k,yAP,k). The complete scenario is 
represented with a set of pixels R, each one associated to a geographical location. 
According to Fig. 1, the Network Monitoring module collects and stores user meas-
urements during a large period of time Tmeas (i.e. weeks or even months). Each meas-
urement is associated to a particular location s (with s=1,…,S) with coordinates (xs,ys), 
i.e. one of the pixels of the scenario, so that S⊆R is the set of locations in the scenario 
with associated measurements. The location information can be obtained by means of 
different positioning methodologies which are out of the scope of this work, such as 
Time of Arrival [13] or fingerprint-based approaches [14]. With these inputs, the 
Data Analytics module generates the following metrics for each location: 

1. List of APs where the user was connected to as best server at the s-th location. 
2. Average Received Signal Strength Indicator (RSSIs) from the best AP at the s-th 
location. 
3. Average Signal to Noise Ratio (SNRs) at the s-th location.  
4. Normalized traffic volume (Vs) defined as the percentage of traffic trans-
mitted/received at the s-th location with respect to the total amount of traffic volume 
transmitted/received in all the scenario in the period Tmeas. 
5. The activity factor (Ts) defined as the amount of time in which a user at the s-th 
location is connected to the network with respect to the measurement period Tmeas. 
  
These historical measurements are very valuable for the self-planning process in 

order to decide adequate actions of AP relocation. For example, AP relocations may 
decide to enhance the performance in certain regions with high traffic demands that 
experience poor SNR or bit rate by moving APs from regions with lower traffic de-
mands (e.g. stairs and corridors of the building where users do not stay connected too 
much time and do not transmit large traffic volumes).  

The Data Analytics module also identifies the regions with relatively high traffic 
demands by selecting the set U⊆S where the normalized traffic volume Vs and activity 
factor Ts are higher than some specific thresholds Th_v and Th_t, respectively. Then, 
with the set of samples U, a filtering process is carried out to determine the set of 
samples W⊆U in which the provided coverage and quality are below some specific 
thresholds Th_RSSI and Th_SNR, respectively. Therefore, the set W represents the 
most relevant locations of the network where users transmit a high amount of traffic 
and the network coverage/quality requirements are not guaranteed. The set W is used 
to trigger the AP relocation process. Specifically, if the set W is not empty (i.e. there 
are some relevant locations with poor coverage/quality), the AP relocation algorithm 
described in Section 3 is triggered. Otherwise, if the set W is empty, (i.e. there are no 
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samples with poor coverage/quality) no AP relocation is done and a new period of 
time Tmeas starts.  

An adequate setting of thresholds Th_v and Th_t is prime important in order to ad-
equately determine the relevant sample locations considered for optimization. A too 
low value for these thresholds Th_v and Th_t may cause the appearance of false 
alarms (i.e. wrong activations of the AP relocation algorithm) since the existence of 
non-relevant locations (i.e. low traffic volume and low activity) with bad RSSI and 
SNR will unnecessarily activate the AP Relocation algorithm. On the contrary, a too 
high value in these thresholds Th_v and Th_t may cause that the AP Relocation algo-
rithm may not be activated when needed. Note also that, in case of activation of the 
AP Relocation algorithm, high values of Th_v and Th_t may cause the methodology 
to miss relevant sample locations (with relatively high traffic volume and activity), 
which will lead to a sub-optimal AP relocation. As for the thresholds Th_RSSI and 
Th_SNR, they must be selected in accordance with the RSSI and SNR values that 
ensure a certain user performance (e.g. a minimum required user bit rate). 

By observing the set of measurements W, the AP Relocation algorithm will deter-
mine a group of M Access Points (M≤K) considered as candidates to be relocated. 
These M APs are selected as the best serving APs for the samples of the set W. Then, 
the objective of the AP Relocation algorithm is to move one or several of these APs 
closer to the locations with high traffic demands (i.e. set of  samples U) but, at the 
same time, maintaining enough coverage at all the R pixels of the scenario. Since the 
APs are usually connected to the wired network and hanged on the walls, the selection 
of potential AP locations depends on how easily they can be placed. In this respect, an 
adequate filtering of unfeasible locations will determine the subset RC⊆R that includes 
only the feasible locations where the APs can be placed. This filtering will reduce the 
computational complexity of the solution search, which consists in running a me-
taheuristic algorithm that iteratively proposes and evaluates different candidate solu-
tions until a termination condition is fulfilled.  

  
Fig. 1. Self-optimisation methodology. 
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Different metaheuristic algorithms can be considered (e.g. genetic algorithm [15], 
simulated annealing [16], etc.). This paper makes use of a genetic algorithm approach 
which is described in Section 3. If the AP Relocation algorithm provides a feasible 
solution, then, the corresponding AP(s) are relocated to the identified position(s). 

3 AP Relocation Algorithm 

The AP Relocation Algorithm makes use of a genetic algorithm optimization that 
consists on iteratively proposing possible candidate solutions (individuals), each one 
consisting in a combination of AP locations, and evaluate the performance of each 
individual according to a cost function. The best individuals in an iteration (genera-
tion) are combined to obtain new individuals that are again evaluated in the subse-
quent iteration. This process is repeated during multiple generations G. Each individ-
ual is represented by a combination of the geographical coordinates of all the K APs 
in the network. During the execution of the genetic algorithm, only the M APs (M≤K) 
that are the best serving APs for the samples of the set W are candidates to be relocat-
ed, while the rest of APs will remain at the same position. To following steps summa-
rize the operation of the genetic algorithm for relocating the M APs: 
1) Generate a population of N individuals: Each n-th individual (n=1,…,N) is repre-

sented by a vector vn with the geographical coordinates of the K APs vn={xAP,1, 
yAP,1,…, xAP,k, yAP,k,…, xAP,K, yAP,K}. Each element of the vector vn is called a gene. 
For each individual, the coordinates of the M candidate APs to be relocated are de-
termined randomly with uniform distribution among the subset of feasible locations 
RC, while the coordinates of the rest (K-M) APs are fixed at their current locations in 
the real network.  

2) Execute the following sub-steps for each n-th individual: 
2.1- Determine the path loss Lu between each sample uU and its best AP, i.e. the 
AP with the lowest path loss between the position of sample u and the positions of 
the APs in the n-th individual according to a predefined propagation model. 
2.2- The cost of the n-th individual Cn is calculated as the weighted average of the 
propagation loss Lu from each u-th sample to its best AP as follows: 

 

𝐶௡ ൌ
ଵ

௎
∑ 𝑤௨ ൉ 𝐿௨௎
௨ୀଵ            (1) 

 
where the weights wu are defined to give more relevance to the regions with high 
traffic volume and low SNR. For this reason, the weights wu are defined as: 

 

𝑤௨ ൌ
ఈೠ൉ఉೠ
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ೆ
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                   (2) 
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                (4) 
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Vu denotes the normalized traffic volume demanded at the u-th sample and SNRu is 
the Signal to Noise Ratio of sample u-th. αu and βu are normalized parameters so 
that 0≤wu≤1 as shown in (3) and (4).  
According to equation (1), an individual with a lower cost Cn corresponds to a better 
network layout since it relocates the different APs so that lower values of path loss 
are observed, especially for samples with high traffic volume or low SNR. 
2.3- Two feasibility conditions are checked. The first condition checks whether the 
individual guarantees the overall network coverage or not. Then, an individual is not 
feasible if there is any geographical location in the scenario (i.e. a pixel of the set R) 
with RSSI lower than RSSIcov. The second feasibility condition checks that the pro-
posed individual guarantees that the interference generated from an AP to a neigh-
bor AP that is using the same channel is lower than a threshold Th_RSSIneigh.  

3) Selection: This step determines which feasible individuals are selected for the gen-
eration of new individuals to be evaluated in the subsequent generation. The cost of 
each individual Cn is used for the selection process by considering a roulette wheel 
[16] so that the probability of selecting the n-th individual for recombination is: 

 

𝑃𝑟𝑜𝑏௡ ൌ
భ
಴೙

∑ భ
಴೔

ಿ
೔సభ

               (5) 

 
According to this, individuals with lower cost have higher probability to be selected 
for recombination. Individuals that are not feasible according to the feasibility con-
ditions in step 2.3, are not considered in this selection process. 

4) Recombination: This process combines the different genes (i.e. elements of the 
vectors vn) of the two individuals selected in the previous step (called parents) to 
generate two new individuals (called children). The rationality of this process is to 
search for new solutions similar to the best individuals of the previous generation by 
combining their genes. The recombination process considered here is the so-called 
“1-point crossover” [16]. Considering the genes of the two parents, a crossover 
point is defined randomly and all the genes beyond this crossover point are swapped 
between both parents to obtain the children. 

5) Mutation: This operator makes small random changes in the genes of the two indi-
viduals obtained after recombination. The probability of selecting a gene for muta-
tion is 1/Ngenes where Ngenes=2M corresponds to the two coordinates of all the M AP 
that can be relocated in the individual. As a result, very few genes of an individual 
are usually modified by this process. When a gene is selected for mutation, the new 
value, which represents a new AP location, is either an increase or decrease (with 
equal probability) in one pixel, allowing only changes to locations of the set RC. 
As a result of the selection, recombination and mutation process, a total of two new 

individuals will be obtained. This process is repeated N/2 times until getting the N 
individuals for the new generation. With the newly generated N individuals, the algo-
rithm executes again the evaluation procedure and computes the associated costs. The 
process is repeated iteratively until reaching a maximum number of generations G. 
Then, the final solution of the algorithm is the individual with minimum cost that has 
been found throughout all the generations.  
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4 Performance Evaluation 

The proposed methodology has been evaluated empirically in a scenario consisting of 
a building of 40m x 20m covered by K=3 APs represented in Fig. 2. A grid with pixel 
resolution of 1m is considered. The measurements are made and reported by 241 dif-
ferent users during a period Tmeas of one month. These reported measurements are 
collected by the Cisco Prime Infrastructure tool [17]. The locations of the set of U=12 
samples in which the demand of traffic is relatively high (i.e. Normalized Traffic 
Volume higher than Th_v=1% and Activity Factor higher than Th_t=1%) are repre-
sented in Fig. 2. Table 1 presents the average SNRu, the normalized traffic volume Vu, 
the normalized parameters αu and βu and the weight wu for the identified U=12 sam-
ples. By filtering the U samples, the set W contains one sample with RSSI and SNR 
below Th_RSSI=-81dBm and Th_SNR=15dB, respectively. This sample corresponds 
to u12 located at coordinates [39,2] as shown in Fig. 2. Although it is just a single 
sample, it represents a substantial amount of traffic (i.e. 4.83% of normalized traffic 
volume) and exhibits a very low SNR compared to the rest of samples. At this loca-
tion, an average bit rate of 14 Mb/s has been observed while the bit rate at other loca-
tions inside the building usually varies between 30 and 50 Mb/s. At this location, the 
users can connect to two different APs, namely AP1 and AP3.  Then, the AP reloca-
tion  algorithm  will  evaluate  the  relocation  of  these M=2 APs  to improve the per- 
 

 
Fig. 2. Considered scenario with the set of U=12 samples. 

Table 1.- Observed metrics and obtained weight for each sample of the set U=12. 
Sample Location SNRu(dB) Vu(%) αu βu wu 

u1 [14,7] 33.04 1.83 0.006 0.050 0.004 
u2 [22,3] 30.12 1.75 0.012 0.048 0.007 
u3 [7,4] 17.54 1.68 0.231 0.046 0.118 
u4 [3,14] 27.24 8.27 0.024 0.227 0.062 
u5 [1,2] 23.95 1.77 0.052 0.048 0.028 
u6 [13,15] 29.32 3.56 0.015 0.098 0.017 
u7 [13,5] 27.13 1.68 0.025 0.046 0.013 
u8 [35,18] 23.82 1.8 0.054 0.049 0.030 
u9 [39,18] 22.80 2.34 0.068 0.064 0.049 
u10 [39,14] 22.08 1.78 0.081 0.049 0.044 
u11 [37,18] 33.70 4.96 0.005 0.136 0.008 
u12 [39,2] 14.92 4.83 0.427 0.139 0.620 



8 

  
formance at the U=12 locations, while maintaining the network coverage (i.e. RSSI of 
all the R pixels in the scenario is higher than RSSIcov=-75dBm) and keeping the inter-
ference between neighbor APs using the same channel below RSSIneigh=-70dBm. 

The genetic algorithm considers a population of N=50 individuals, each one repre-
sented by the location coordinates of the K=3 APs. A total of G=5000 generations 
have been considered. The propagation model is taken from the ITU-R [18] so that 
the path loss between the transmitter and the receiver is calculated as: 

 
             𝐿ሺ𝑑𝐵ሻ ൌ 20𝑙𝑜𝑔ଵ଴ሺ𝑓ሻ ൅ 𝑁௢𝑙𝑜𝑔ଵ଴ሺ𝑑ሻ ൅ 𝑃௙ሺ𝑛ሻ െ 28 ൅ 𝑁ௗ𝐿௢     (6) 

 
where f=2.4GHz is the carrier frequency, No=30 for office areas, Pf(n) is the floor 
attenuation factor considered here 0 dB since all the APs and the users are located at 
the same floor, Nd is the number of obstacles (i.e. walls and doors) between the 
transmitter and the receiver and Lo=2dB is the path loss associated to each obstacle. 
After executing the AP relocation algorithm, the best solution found is illustrated in 
Fig. 3. It consists in moving AP3 to the location [32,2] while keeping AP1 in its cur-
rent location. This solution has a cost of 75.58 which is considerably better than the 
cost of 93.6 that was obtained before the execution of the AP relocation algorithm. 
     

 
Fig. 3. Solution proposed by the Genetic Algorithm. 

 
In order to empirically validate the solution proposed by the genetic AP relocation 
algorithm, several RSSI measurements have been done at 47 different locations of the 
building before and after the AP relocation (i.e. with AP3 located at coordinates 
[20,4] and [32,2], respectively). For each location, the RSSI averaged in a period of 2 
minutes is obtained. Fig. 4 and Fig. 5 present the average RSSI measurements ob-
tained before and after the AP relocation, respectively. After the AP3 relocation, an 
average RSSI=-67dBm has been measured at u12 (i.e. coordinates [39,2]) which is 
considerably better than an average RSSI=-82dBm at the same location before the 
AP3 relocation). Moreover, the AP relocation guarantees an RSSI higher than the 
threshold RSSIcov=-75dBm for all the locations of the scenario. Some other validations 
have been done by moving AP3 to different locations and collecting the new values of 
the average RSSI measurements. For example, moving AP3 closer to the location of 
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sample u12 (e.g. to coordinates [37,2]) is not a feasible solution since it causes some 
coverage problems at region around [17,8]. Similarly, relocating AP3 to coordinates 
[28,2] (i.e. not so close to u12]) guarantees the coverage RSSI requirements at all the 
locations of the building but, an average RSSI=-73dBm is measured at u12, which is 
not as good as the average RSSI=-67dBm obtained when implementing the best solu-
tion proposed by the genetic AP relocation algorithm.  

 

Fig. 4. RSSI measurements obtained before the AP Relocation i.e. AP3 at [20,4]. 
 

 
Fig. 5. RSSI measurements obtained after the AP Relocation i.e. AP3 at [32,2]. 

5 Conclusions 

This paper has presented a new self-planning methodology to determine adequate 
relocations of APs in a Wi-Fi network based on information about signal quality and 
user traffic demands extracted from network measurements collected and processed 
by a monitoring and analytics system. From these measurements, the proposed meth-
odology identifies regions with poor RSSI/SNR and high traffic demand, determines 
candidate APs to be relocated and applies a genetic algorithm optimization to recom-
mend new locations for these APs. The paper has presented an empirical validation of 
the algorithm performance, making use of measurements collected from a real Wi-Fi 
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network and comparing the obtained RSSI at different locations before and after the 
execution of the AP relocation.   
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