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Service to others is the rent you pay for your room here on Earth.

(Muhammad Ali)

Avoiding climate breakdown will require cathedral thinking. We must lay the foundation while we may not

know exactly how to build the ceiling.

(Greta Thunberg)



Abstract

Transitioning from fossil fuel classical generators to intermittent, non-synchronous sources like solar

and wind presents a series of technical challenges to be overcome on large scale. A specific issue is

related with the concept of inertia of the electrical system: the less the number of generators with

rotating masses connected to the grid, the less the value of total inertia of the system.

Solar driven generating units such as PV present no mechanical inertia, therefore their increase in the

electricity generation mix decreases the total inertia of the system, which lower the overall reliability

of the system. Logically, it is of fundamental importance to ensure that PV power plants are more and

more capable to provide ancillary services to improve the stability of the grid, especially in terms of

frequency. The need for faster frequency regulation and voltage control in the electrical system can

be ensured effectively by energy storage systems. In the purpose of this study it is addressed the pos-

sibility of large battery systems to overcome the variability of the solar resource, and the forecasting

error, resulting in higher profit for a PV plant operator.

Themethodology consists in the formulation and the resolution of a Non-Linear Programming (NLP)

problem, implemented in GAMS, applied to a 9.4 MW PV power plant. The output of the simulation

determines the parameters that characterize the optimal Hybrid Storage System, in order to increase

the profit during one typical day of solar radiation (01 April), while participating actively in the PFC.

The result of the investigation determines that themost profitable hybrid storage system to be coupled

with the PVPP is formed by a 883 kWh Lithium Ion Battery and a 32 kWh High Speed Flywheel.

The analysis is finally complemented with a realistic simulation in Simulink environment in which is

developed and implemented a prototype of EMS.
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1 Introduction

The recent publication of the Intergovernmental Panel on Climate Change on the impacts of global

warming of 1.5 °C above pre-industrial levels [1] raised the attention towards fast transition of the

entire energy system towards zero emission. Decarbonization of the electricity sector through energy

sources is only part of the solution to achieve this ambitious plan: no zero-carbon emission scenario

can be reachedwithout implementing substantial change in the way society produce goods, transport

things and people, consume energy and design homes [2].

From a technical point of view, inter-connection of electrical systems, demand-side response and de-

centralization of energy sources must all play a role in the transition of the global electrical archi-

tecture. Finally, analyzing recent predictions based on 100% renewable energy system in 2050, PV

power plants represent the technology that will cover the highest share of electricity supply across

the world [3].

The scope of the thesis is to investigate how hybrid storage solutions can cooperate together with large

solar power plants, in order to comply with recent regulations on Primary Frequency Control, while

providing ancillary services and increase economic profit through a more intelligent use of the solar

resource.

1.1 Research area

The business applications in which a battery can be exploited are different and for different actors.

Distribution grid operators can make use of mid-scale batteries for power quality and reliability ser-

vices, resulting in postponing or avoiding structural network upgrades [4]. Thanks to the increasing

affordability of storage devices, also households, especially the ones who own a PV system, choose to

maximize self-consumption trough small-scale batteries [5].

At the utility level, storage solutions increase their flexibility to operate within energy markets, gain

from arbitrage and ancillary services [6]. Moreover, renewable power plants can benefit from the

smoothing effect provided by storage systems ensuring they always comply with regulations such as

Active Power Ramp Rate. Specifically, in case of PVPP, ramp rate control is usually provided through

a moving average method that gradually change of output active power of the PV inverter [7]. The

1
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main advantage of coupling an Energy Storage System in this case ,is that losses can be stored when

the power is increasing rapidly, while less reserve has to be curtailed in period of drastic energy output

reduction.

Nevertheless, the effective integration of conventional storage devices in the energy system is hin-

dered by economic and technological issues. Although the capital costs of storage devices has seen a

steep decrease in the last decade [4], its cost is still significant compared to the capital of the PV power

plant [8]. The minimization of the battery capacity represents one of the main instrument to decrease

the capital cost of the ESS. Many different minimization objectives can be used in order to set the ca-

pacity of the battery: from technical requirements such as power fluctuations minimization to overall

profitability. Hybridization of different storage technologies can be a cost-effective solution in order

tominimize capital costs, maximizing profit and achieve technical requirements such as technological

lifetime or primary frequency control regulations.

1.2 State of the Art

One of the most attractive services for a large-scale battery operator is without doubts primary fre-

quency control (ancillary service) and arbitrage (bulk energy service). While PFC results to be one of

the most lucrative application of large batteries in European markets where this service is paid [9],

arbitrage is highly dependent on the daily market price trend, therefore the revenue stream is diffi-

cult to predict on a long term time range. Nevertheless [10] demonstrates that increased profits can

be achieved optimizing the dispatch planning for German intra-day market on 15 and 60 minutes

range. On the other hand, several papers investigated the possibility to increase the revenue stream

in the use of storage devices operating in multiple markets: in particular [11] explores the increase

in revenue stream adding on top of arbitrage service alternative sources such as the reserve services

in the UK electrical market. These papers assess the economic revenue from the use of the storage

system alone, without investigating the added benefits from coupling the battery with a large scale

PV Power Plant.

In [12] these benefits are taken in account calculating the revenues change on annual basis from the

improved generation, peak power generation, and reduced line losses, while accounting for storage

costs. Moreover the analysis output is compared for two different battery chemistries to further cor-

roborate the model feasibility. In [13] the main goal is to achieve a smoothing strategy through the

2
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use of a Hybrid Storage System (composed of a vanadium redox battery and a supercapacitor bank).

A statistical approach is used to properly size the batteries and ensure that the HSS is most of the time

capable of ensuring the smoothing effect on power ouput fluctuations. Main limits of the study are

the low input data resolution (every 30 mins) and no reference to economic benefit. Data resolution

is central in case frequency control has to be ensured and simulated, therefore lower time step is re-

quired.

Instead in [14] a grid-connected microgrid is considered, with 1-minute resolution data and a HSS

coupled with PV power plant in order to decrease the reliance on grid input energy. Flywheel has

been considered in order to decrease high current to be discharged from the battery, limiting the stress

on the battery itself resulting in a significant increase in storage expected lifetime estimated through

a post-processing Rainflow algorithm.

1.3 Objectives and Expected Outcomes

The contribution of this study is to investigate the possibility for HESS to be coupled with grid-

connected PVPP for primary frequency control and the forecasting error minimization. Sizing and

operational optimization take as model the approach contemplated in [15], adding complexity to the

GAMS model with the introduction of a second storage device as in [14]. Given the limitations of

optimization processes, in which is difficult to implement an algorithm like the Rainflow [16], it is

therefore investigated a way to include a simple but effective Degradation model (in Section 4) in the

optimization process. The Operational Strategy resulting from the first phase is post-processed in

order to highlight Operational guidelines for the EMS. Moreover, the result obtained from the op-

timization is further developed through an accurate model, that simulates time-responses. In this

way the EMS takes in account the physical model and the capabilities of the battery while ensuring

the best operational strategy. In the opinion of the author, the expected outcome should highlight an

economic benefit from the implementation of the HESS. In fact, hybridization results in an increase

of profits while keeping the investment costs lower: a small storage device, such as the flywheel, is

supposed to provide high power ratings for relatively low overall cost, while a large battery can en-

sure the energy capacity is provided when a large under-frequency deviation arises. The operational

strategy, and consequently the EMS should activate the storage devices depending on their different

capabilities (especially time-response and SoC) and their respective degradation calculated costs.

3
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1.4 Structure of the Research

The research will focus on hybrid storage solution that can be complemented to the PVPP to success-

fully complywithUKPrimaryBandControl andEuropeanGridCode. The investigation is articulated

in different steps:

• Section 2: Grid code and economic Framework for Primary Frequency Control;

• Section 3: the technology chosen is briefly presented;

• Section 4: it is discussed the topic of aging models for Lithium Ion batteries and are presented

two simplemethods to account for the calendrical degradation of the battery in the optimization

phase;

• Section 5: solution is modelled in an optimization environment, where input from the techno-

economic analysis are used to quantify the economic return of the implementation in a real

electricity market process.

• Section 6: results fromGAMS optimization are shown highlightingmain results and developing

a partial sensitivity analysis.

• Section 7 the storage model obtained is finally simulated taking in account more technical con-

straints, ensuring the best economic operational strategy while preventing the battery from be-

ing stressed resulting in a contraction of its technological lifetime.

• Section 8: project budget and environmental impact estimation.

• Section 9: conclusions and future work.

4
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2 Economical and Regulatory Framework

Electricity markets were in the past tailored for large scale, centralized power plants that supplied

electricity with low intermittence and relatively low forecasting error. Considering the present and

future transition of the energy system, market regulation developments are key in order to unlock

the economical possibilities for storage technologies and renewable generation. On this regarding,

it is useful to depict an overview on Frequency containment reserve regulations and indications at a

European level (ENTSO-E), but at the same time quantify the revenue stream with a specific national

market. Therefore the Spanish and the UK grid codes are analyzed, evaluating which is more suitable

and economically proficient for the scope of the project.

It must be highlighted that terminology currently in use to designate different type of reserves may

vary across different network codes:

• Frequency Containment Reserves (in UK Primary Band Control) referred as Primary Reserve;

• Frequency Restoration Reserves referred as Secondary Reserve;

• Replacement Reserves referred as Tertiary Reserve.

2.1 ENTSO-E Regulatory Framework

2.1.1 Frequency Containment Reserve

Definition

FromArticle 3(2)(6) of the EUNetwork Code on SystemOperation FCR is defined as "the active power

reserves available to contain system frequency after the occurrence of an imbalance”. This category

typically includes operating reserves with activation time "up to 30 second" and are usually activated

automatically and locally. When the time limit is reached, and if the deviation is still in place, FCRs

are substituted by Frequency Restoration Reserves [17].

Market information

Each TSO shall determine the imbalance price for:

• each imbalance settlement period;
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• its imbalance price areas;

• each imbalance direction.

The payment of the activated volume of balancing energy for the frequency containment process shall

be defined as described in Article 55 of the Commission Regulation (EU) 2017/2195 of 23 November

2017 depending on the imbalance direction as in Table 1.

Balancing energy price positive Balancing energy price negative

Positive balancing energy Payment from TSO to BRP Payment from BRP to TSO

Negative balancing energy Payment from BRP to TSO Payment from TSO to BRP

Table 1: Payment for frequency containment process

The imbalance price for positive imbalance shall not be greater than, alternatively:

• the weighted average price for negative activated balancing energy from frequency restoration

reserves and replacement reserves;

• In the event that no activation of balancing energy in either direction has occurred during the

imbalance settlement period, the value of the avoided activation of balancing energy from fre-

quency restoration reserves or replacement reserves.

2.1.2 Frequency Restoration Reserves

Definition

These reserves are defined as active power reserves available to restore system frequency to the nom-

inal frequency with an activation time typically between 30 seconds up to 15 minutes (depending on

the specific requirements of the synchronous area) [18] . FRR can be distinguished between reserves

with automatic activation (aFRR) and reserves with manual activation (mFRR).

Market Information

On the official website of ENTSO-e is reported that the average price for the FRR has "commercially

sensitive interconnection with the imbalance price" [18] but no other indication is given on this pur-
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pose.

2.2 Spanish Regulatory Framework

2.2.1 Primary Band Control

Red Electrica Espana does not include this service as an ancillary one: in fact the primary reserve

is mandatory and not paid. According with the Union for the Coordination of the Transmission of

Electricity (UCTE), each generating unit has to provide an upward reserve to be used for downward

frequency drops: the reserve magnitude varies between 1.5% to 10% of the active power produced

[19]. It is important to highlight that, for current regulations, the time period in which the service is

required correspond to the period of the day in which the PVPP is actively producing power.

Every time step presents a frequency deviation value from 50Hz, therefore the generating unit is

forced to curtail or increase the energy output by an energy amount: this value can be calculated

following frequency control droop established by the ENTSO-E, following limits and constrains in-

stituted by the Spanish Grid Code.

The result is summarized in Table 2

Table 2: Primary Frequency Control Regulation.

∆f ∆P (t)/P (t) Comments

≤ −∆fmax 0.1 Supply of 10% of the available power

≥ −∆fmax ∧ ≤ −0.02 Following chosen slope ENTSO - E usually sets to 5 %

≥ − 0.02 ∧ ≤ + 0.02 0 Dead Band: no reserve provision

≥ + 0.02 ∧ ≤ ∆fmax Following chosen slope -

≥ ∆fmax 0.1 Curtailment of 10% of the available power

Current regulations moreover does not regulate the maximum frequency drop or increase (∆fmax),

that can be chosen depending on the Inverter capabilities and other factors. For the purpose of this

study ∆fmax = 0.5.

Asmost of European regulators (Ireland, Germany...) theminimum capability of actuation of primary
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reserve is 15 minutes [20].

2.2.2 Secondary Band Control

The scope of this band control is tomaintain generation-demand balance correcting deviations lasting

more than 20 seconds up to 15 minutes. This service is remunerated by means of market mechanisms

via two concepts: availability (control band) and usage (energy). The regulation deviation is mea-

sured by the TSO and the requirements for each regulation is distributed every four seconds [21].

Mechanism of action

After the upward reserve market is closed, the SO procures FRR capacity for each of the 24 hours

of the day-ahead. Generators committed in this market receive the marginal price of the market (in

€/MWh) for the capacity and an energy price (in €/MWh) in case the SO activates FRR. "This energy

price is given by the marginal price of the RR energy that would be required to replace the activated

FRR according to the Replacement Reserves energy bid ladder" [22].

2.2.3 Forecasting Error

If the utility is not able to supply the contracted energy in the DA market (not even throgh intra-day

transactions), this kind of market is activated to penalize generation errors. The Figure 1 summarize

the compensation scheme that penalize or reward errors depending on the system necessity.

Figure 1: Spanish imbalance prices according to different system and Generating unit circumstances

[23]
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2.2.4 Diversion Management Market

This market is activated if the SO measures a loss in the energy delivered by producers larger than

300MW. It covers the period between intra-day market sessions, participation is optional, and alloca-

tion is assigned on an economic merit order basis.

2.3 UK Regulatory Framework

2.3.1 Primary Band Control

According to the European legislation, the primary reserve is a service that should be paid as a result

of the imbalance direction and the volume of energy provided during the deviation.

To better assess the revenue possibility offered by the primary reserve control and properly size the

storage system, it is investigate the UK electrical regulation. The british Electrical System Operator

(ESO) provides an accurate payment mechanism for the frequency control.

Frequency services are mandatory for large generators (for national grid > 100MW ), but suppliers

are remunerated for the volume of energy supplied (£/MWh) and the availability (£/h).

Definition

The analysis focus on a PV Power Plant of 9.4MW, therefore the primary frequency control is not

mandatory and is regulated by the market mechanism called "Firm Frequency Response". Here the

main requirements:

• deliver minimum 1MW response energy;

• have suitable operational metering;

• pass the FFR pre-qualification assessment [24];

Market Information

Response represents the ability to modify generation or demand to compensate for changes in system

frequency within 2-30 seconds, depending on FFR service type. The FFR service is split into two

physical products, Non-Dynamic (static) and Dynamic frequency response. There are three main

Dynamic service types: primary, secondary and high. Figure 2 shows the response speed and length
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of response. Primary and secondary response are employed for negative frequency deviation, while

the high frequency response refers to positive frequency deviations.

Figure 2: Firm Frequency Response overview

The compensation is calculated hourly, as in Equation 1

λUFR(h) = λM (h) · 1.25 (1)

The availability fee has been extracted from an historical tender data where a battery energy storage

system of 2.4 MW has been nominated for FFR [25]. The fee is quantified to be 42 £/h, using the

monetary change at the 3.05.2019 1.17€/£ the availability fee is λav = 20.48 [€/MW ] for every hour of

availability.

Conclusion

From the analysis of the Spanish and UKmarket regulations is assessed that UK code is more promis-

ing for the quantification of the revenue stream. In particular it is investigated how the Dynamic

service can increase the profits of the PVPP owner.
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3 Techno-Economical Analysis

3.1 Primary Battery

For the purpose of the study high quality Lithium-Ion batteries are decided to be implemented as

primary battery, beingmore suitable for fast regulating primary frequency control than low cost Lead

Acid: sudden changes in current rate can lead to temperature increase of the storage, decreasing

significantly the SoH of this type of batteries [26]. Lithium Ion is a proven technology for Primary

Frequency Control on large scale: in fact all large scale BSS projects until late 2018 in Germany use

Lithium Ion Technology [27]. On the other hand, flow battery technology has been considered but

this choice was discarded because the experience from field test is relatively low [28].

3.2 Lithium Ion Technology

Lithium-Ion family of batteries hosts a wide range of different chemistries: the battery performance

characteristic varies significantly through the different types. The most common electrolyte used is

typically a liquid organic solvent mix with dissolved lithium salts (like Manganese, Phosphate. . . ).

The main drawback of this technology is the higher specific cost, if compared with Lead Acid, but

superior technical qualities make this technology more reliable under stress conditions.

Common characteristics are low self-discharge, high-rate and high-power discharge capability, excel-

lent round-trip efficiency, a relatively long lifetime and a high energy density [29]. The latter although

is not particularly interesting for stationary application where the weight is not a critical parameter

as in EV’s applications.

Some drawbacks are instead the higher upfront cost and thermal stability: once the battery cell over-

passes the so-called “runaway point” (around 67 °C), the cell may catch fire. A thermal management

system constrains the charging current to an upper bound in order to prevent these types of faults,

resulting in higher control complexity. In fact, the BMS system of a Lithium Battery is generally more

elaborated than a Lead acid battery. Moreover, another parameter that drives up the cost of Lithium

technology is the presence of Cobalt and nevertheless this adds a human cost as well [30].
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3.3 Secondary Battery

Following as amodel the solution developed by [14] the secondary battery is decided to be a flywheel.

This technology presents a high cycle life, long operational life and high round-trip efficiency (>85%).

Industrial producers have tested and proven these high quality characteristics over several projects

[31]. Moreover technology is characterized by an overall low environmental impact [32]. Finally,

FESSs are demonstrated to be suitable for producing and be charged by medium and high powers

(kW to MW) during short time-periods (seconds) [33] making them a good candidate to ensure fast

PFC.

3.4 Flywheel

One of themost important characteristic of this technology is the velocity at which the device is able to

rotate without overcoming the maximum tensile strength. This last factor characterizes the capacity

of the flywheel to withstand centrifugal forces acting on the disc and can be calculated by different

and complex equations, depending on rotor geometries, but the proportionality is always verified

between the density of the material and the square of the peripheral speed, r ·ω, where r is the radius

and ω the angular velocity.

For this reason flywheel technology hosts two main classes of devices:

• High Speed FESS: in these devices are used lightmaterials to lower density increasingmaximum

achievable speed (over 100.000 rpm).

• Low speed FESS: robustness in terms of maximum tensile strength is preferred over speed (up

to 10.000 rpm).

It is demonstrated that higher energy capacities are reached for devices with low density and high

tensile strength (High Speed class). At the same time faster FESSs are characterized by better over-

all efficiency but require use of advanced technologies that drives up prices (especially in terms of

bearings).

Depending on the type of application one type is preferred over the other: for example in transporta-

tion applications, the first type is preferred to lower the total mass of the device. The choice of the

type of flywheel, and more specifically of the of materials used will be a result of a post-processing
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analysis.

For the application of this study it could be preferable to choose choose a low speed flywheel. The

preference is guided by the fact that "the price of high speed flywheels can be up to five times higher

than the cost of low speed flywheels". [32] [34]
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4 Models of Degradation

The optimization aims to improve battery life through an effective calculation of the cost of the degra-

dation of the storage devices. The degradation model complexity depends greatly on the type of

storage used: while a simple correlation can be used for flywheel, more complex dependencies has

to be taken in account for Lithium-Ion technology. In fact, electro-chemical batteries are complex

devices, and degradation is dominated by high degree of non-linearity.

4.1 Degradation Model for Lithium Ion Battery

Typically the aging process of the battery can be divided into two components: calendrical aging and

Operational aging [35]. Calendrical aging is time-dependent and is mainly affected by

• Ambient Temperature;

• Open Circuit Voltage: directly proportional to the State of Charge;

4.1.1 Calendrical aging

Generally, storing energy at high SoC and High Temperature reduces battery life-time. While the

Ambient Temperature can be controlled by means of AC systems, the effect on degradation by the

mean SoC has to be taken in account. From literature review and empirical studies it can be quantified

the effect of the average State of Charge on the Irreversible Capacity loss of the battery [36] [37] [38].

For example, the loss in SoH of Lithium-Ion cells results to be considerably more pronounced for SoH

higher than 40% [39].

The irreversible loss keeping fixed the temperature at 40°C is greatly affected by the average SoC of

the battery: the results observed by [36] from accelerated aging tests, are observable in Figure 3.
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Figure 3: Cumulative Energy Loss [36].

After ca 10 months of storage the unrecoverable loss is 10.5% at 90%, while only 6.4% if kept at 30%

of its maximum SoC.

4.1.2 Operational aging

Operational aging is the usage-dependent component of degradation, mainly dependent on:

• C Rate;

• Average State of Charge.

It was investigated the degradation based on cycleswith a cycle depth of 10% around different average

SOC. Results can be observed in Figure 4.
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Figure 4: Normalized capacity vs. equivalent full cycles for cells cycled with 1 C at a cell temperature

of 35 °C [38].

4.1.3 Battery Degradation Model Applied

In a first stage, to apply a model simulating the degradation of the battery during the optimization

phase in GAMS, a simple strategy has to be applied. The preferred choice takes in account the calen-

drical degradation component, being simple and effective for computational requirements. The first

parameter to be calculated is namedAverage Cost of DegradationCave [€/kWh], which represents the

capital specific cost of the battery [€/kWh] (specific capital predicted cost in 2030 λBat2030) divided by

the time steps of the expected lifetime of the device currently used [40]. This cost does not represent

correctly the real degradation during one time step, since it does not include any information on the

operational conditions at which battery is operated, or in other words, at which SoC(t) the battery is

kept for that instant of time. The correlation is developed in two ways: a simple linear model and a

quadratic function, resulting from a curve fitting process.

Linear Model

The linear model correlation is defined assuming that the Cave is associated with an average State

of Charge equal to 50%. This choice was guided by the fact that Lithium Ion batteries experience

lower stress from discharge cycles around 50% [36]. At this point is simply assumed that a value of
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SoC = 0% is associated with no degradation of the battery. Finally the Linear degradation cost can

be expressed in Equation 2

CDB = 2 · Cave ·X (2)

• X is the average State of Charge, in kWh during the day.

Quadratic Model

The quadratic function takes in account the input data provided by the accelerated aging tests in [38].

The specific cost of calendrical degradation applied for the time period of one day, for one kWh of

Lithium-Battery is calculated as the following quadratic function:

cDB = 0.00976 · x2 + 0.01896 · x+ 0.00223 (3)

where:

• cDB is expressed in €/kWh;

• x is the average state of charge in p.u.

This value is finally multiplied by the size of the battery to obtain the real economical loss of degra-

dation:

CDB = CapB · cDB (4)

4.2 Degradation Model for Flywheel

For the flywheel a simple model is taken in account, assuming that the energy throughput will be

unchanged varying the operational strategy:

cDF =
C2030

Et
(5)

The calculation takes in account the expected specific cost of flywheel technology in 2030 [40], dividing

it by the energy throughput ET , calculated as:

Et = Ncycles · CapF (6)

For the purpose of the calculation the term CapF indicating the energy capacity of the flywheel is

taken to be the unity in kWh. Therefore the cost of degradation is expressible in €/kWh.
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5 Optimization Model

5.1 Overview

The problem to be solved is articulated in two areas of resolution:

• Size of HSS;

• Definition of the operational strategy.

The degree of complexity of the optimization is increased by the fact that both resolutions have to

be solved simultaneously. Moreover, given the economical and regulatory framework described in

Section 2, the author opted to consider in the investigation the Day-Ahead Market scheduling and

the Deviation Imbalance payments. In Figure 5 can be observed the Market phases highlighting the

stages taken in account for the purpose of this investigation.

Figure 5: Market strategy adopted.

It is important to highlight that in a real market operation, particular weight is given also to Intra-day

market operations, that present scheduling adjustment possibility and a largemargin of improvement

in terms of profitability for a PVPP operator. Given the choice of the market strategy, the optimization
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problem is therefore split into two time-based problems:

• Day-Ahead Schedule;

• Real time Deviation Management.

In other words, these problems are articulated and have to be pragmatically solved through the com-

putation of two optimization steps:

1. Given aweather forecast prediction, is calculated a predicted oower output of the PVPP. Through

the first optimization step it is calculatedwhatwould be the optimal Day-AheadMarket strategy

and the size of the HSS that will allow to maximize the profit.

2. The predicted market strategy is fed in a second optimization, that takes in account the real

irradiation data, and calculates, once again, both the operational strategy and the size of the

HSS, maximizing the profit but taking into account also the deviation due to forecasting error.

The computation of the HSS size in the second optimization step, is constrained to some degrees

around the first solution found. This strategy is chosen on the one hand to better adapt the size of

the storage, while on the other hand to not alter substantially the hybrid scheme setup. In Figure 6

the double optimization process described is referred asOffline since historical data can be processed

and fed into the optimizations to correctly size the HSS.
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Figure 6: Overview of the Solution Developed

The results obtained are compared with a base case scenario in which no storage system is coupled

with the PVPP.

5.2 Assumptions

As already discussed in Section 2.3.1, the minimum power to be bid in the FCR market is 1 MW.

Bids are performed monthly, therefore there is possibility for the plant operator to adjust the bidding

power reserve Pbid and the time range hbid to the optimal solutions provided by the optimization.

On this regard, it has to be taken in account that the solution is referred to one day only: irradiance

data can vary largely throughout the year, leading to different optimal values of Pbid and hbid. More-

over, due to the optimization problem definition, it was necessary to define these two values, before

the resolution as starting points. A meaningful choice should take in account the following consider-

ations:

1. Once set, bothPbid andhbid will deeply affect the size and the operational strategy of the solution.

2. As a matter of fact and consequently: a lower choice of Pbid leads to lower storage capacities.
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Logically, both lower Pbid and hbid lead to lower energy input to the HSS to be able to supply

enough reserve in the bidding time - period.

While the operational strategy can be changed day by day depending mainly on the solar resource

prediction and the market conditions, the size is a fundamental limit for the the capability of the

system to provide FCR service, and therefore to the profitability of the plant.

On the other hand, it is important to emphasize that FCR is intended a secondary service to be coupled

with normal PVPP operations: from simulations results it is observed that most of the yearly earnings

comes from the energy sold in the daily ahead market (not from ancillary services, as it could be

expected). Therefore, both from a technical and an economical perspective,the assumption of Pbid

and hbid should have a double aim:

• Decrease as much as possible the initial investment cost;

• Maximize the yearly period of time in which the FCR service can be performed profitably.

These two aims are directly connected: in fact the choice to minimize the investment cost, therefore

the size of the HSS, ultimately reduces also the risk to oversize the reserve for periods of the year

with less solar resource (less solar radiation, less PFC power requirements etc.). Moreover, it is clear

that, once the system is sized, the capability to provide FCR service depends only on the operational

strategy adopted.

As a consequence of the analysis presented above, and after analysing the solar resource data for the

month of April (use case) it is assumed that:

• the Power Reserve Pbid is constrained to the minimum viable value of 1 MW.

• the amount of hours to be bid hbid during the day is chosen to be 4 hours.

The strategy is graphically showed in Figure 7.
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Figure 7: Overview of the chosen sizing strategy.

A sensitivity analysis on this regarding is the object of Section 6.5.

5.3 Input Data

5.3.1 Irradiation and Power output

The power plant investigated is 9.4 MW, a real case of PVPP in Romania [41]. The input data for the ir-

radiation is extrapolated for simplicity fromNREL database, taking in account the Global Horizontal

Irradiation data from theOAHUSolarMeasurement station [42]. The data-set has a second-by-second

resolution: for the intended outcomes of the investigation, the data is filtered every 15 seconds, reduc-

ing data to 5760 irradiation values. At this stage it is necessary to create a simple model to evaluate

the power output, given the irradiation as input. It is known by literature that PV power output fluc-

tuations reduce as the plant size increases [43]. Therefore the irradiation is fed in a low-pass filter

model to obtain directly an estimated power output. The transfer function is shown in Figure 8.

Figure 8: Proposed transfer function for a PV plant with an area equal to S [43].
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The area estimated for this power plant is S = 52Ha. The gain K is used in order to scale the power

output and is equal to the nominal power rating of the plantK = 9.4 MW.

The output can be observed in Figure 9.

Figure 9: Input data: Irradiation and PV Power Plant output.

5.3.2 Day-Ahead Prediction

The prediction of the power output to schedule the bidding in the day ahead market is not a trivial

problem.

"High-quality weather forecasting can accurately predict output on a two- to six-hour interval, greatly

improving system reliability. Today, forecast errors typically range from 3% to 6%of the rated capacity

an hour ahead and from6% to 8% aday ahead on a regional basis (as opposed to for a single plant)." [4]

It is clear that even a slight increase in forecasting accuracy has great potential to result in large eco-

nomic benefits. "By using the significant processing power afforded by modern ICT, such as cloud-

based computing, improvedmathematical models (which produce forecast results for 5 or 15minutes

instead of an hour) and artificial intelligence, together with the big data collected on past weather pat-
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terns and generation outputs, accuracy and locational resolution of VRE generation forecast could be

improved." [4]

Indeed, for the scope of this project a simple forecasting method is chosen: it is possible to calculate

the rRMSE (relative Root Mean Square Error) of the power output of the plant given the irradiance:

the relationship showed in Figure 10 shows a direct proportion between the error and the magnitude

of the sun irradiance.

Figure 10: Firm Frequency Response overview [44]

Therefore the input for the prediction is the average hourly irradiation: this is used to calculate for ev-

ery hour the rRMSE. The hypothesis takes in account that the weather forecast can accurately predict

hourly irradiation in the short term (day-ahead), but it is impossible to predict the irradiation with

the time step used in the simulation (15 s). To calculate the rRMSE the average hourly irradiation is

normalized with the maximum irradiation value of the day and is multiplied by 19% [44]. The error

is then used to calculate the predicted hourly energy produced: through a random binary variable,

each hour the error is applied summing or subtracting the error made in the prediction. Equation [?]

synthesizes the approach followed.

Epred(h) = Emax · Ireal(h) · (1 + rRMSE(h) ·B(h)) (7)
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where:

• Epred is the hourly predicted energy output;

• Emax is the maximum energy registered in a time step;

• Ireal(h) is the average hourly irradiation;

• rRMSE(h) is the relative Root Mean Squared Error;

• B(h) is a random integer variable that can assume values (-1;+1).

Finally, every 15 seconds a noise is added to render the data more realistic. The noise is calculated

through a normal distribution, using as a standard deviation the hourly standard deviation of the

real energy produced. The final result has been adapted with a low-pass filter (time constant=30 s)

in order to take in account the softening effect of the large size of the PVPP. The energy trend can be

observed in Figure 11.

Figure 11: Predicted energy day ahead
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5.3.3 Frequency

The ancillary service provided by the Energy System (PVPP + HSS) studied in this thesis is primary

frequency control, following UK market guidelines as in detail explained in Section 2.3.1. The fre-

quency input data is supplied by UK TSO, that offer frequency values with 1-second resolution [24].

For the purpose of this research, and to decrease the computational power needed to solve the opti-

mization the values is extrapolated each 15 seconds. The input data is shown in Figure 12.

Figure 12: Frequency on 01.04.2019 in UK grid.

Referring to Section 2, it is chosen a market mechanism that compensate the FCR as the UK Firm Fre-

quency Response but respect the indication of the ENTSO-E and the Spanish Regulatory Framework

in terms of time-response and frequency control droop.

Assumptions

Given these choices there is still one degree of freedom in market regulations: the frequency control

droop does not state clearly the value of the reserve magnitude, that is explained in Section 2.2.1 to

be allowed between 1.5% to 10%. The worst case scenario is chosen: in each time step the PVPP has

to provide PR with 10% of the available power output continuously and free of economical compen-

sation.
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Calculation of the frequency response

At this stage the frequency trend during the day under analysis, together with the PV power output of

the PV plant, is used to quantify the power requested to ensure the Primary Frequency Control. The

plant has to provide part of the actual power output for frequency deviation, following indications in

Table 2. But when the plant is actively participating in the FFR service (UK regulation), the power to

be provided is not anymore dependent on the power produced, but proportional to the Power reserve

bid in the AncillaryMarket. The final result of power needed for frequency control is shown in Figure

13.

Figure 13: Power response for PFC every 15 s. It is highlighted the time range in which the power

response is not dependant on the PV production or bidding time.

It is possible to observe that this day is characterized by an overfrequency behaviour.

5.3.4 Market and Prices

The prices taken in account for the purpose of this study refer to the Spanish Market. Data are down-

loaded from the ESIOS website [45], in particular the following data are necessary to economically

quantify the revenue stream from the service provided by the PVPP Operations:

• Daily-Ahead Market price: defined hourly in the Daily Ahead auction Market. Indicated as
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λM (h) [€/MWh];

• System necessity, defined hourly. For the purpose of the optimization is defined as a binary vari-

able N (h). When the system is experiencing an overproduction, or in other words, the demand

is lower than the generation, N = 1;

• Deviation price (in case of overproduction) and deviation cost (in case of lower production).

It is important to highlight that the price variability throughout the day investigated is small compared

to other days of the month, as it is possible to observe from Figure 14

Figure 14: Price trend during April 2019 [45].

From this evaluation can be concluded that arbitrage will not be preferred as a main strategy for

the HSS, since shifting energy from one hour to another could be not a remunerative choice for the

optimization program.

5.4 Model Definition

The optimization models built in GAMS are here presented. As already discussed, each scenario

presents two phases: prediction and real time optimization. For this reason, the equations in the next
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sections are presented (where necessary) in two versions:

• a. Prediction: in which are used the results from Section 5.3.2;

• b. Real time: making use of the real input data.

The objective function is the Profit P : revenues R of the plant minus the total costs C over the time

period considered.

P = R− C; (8)

The function profit P has been optimized on an annual basis in order to take in account the different

expected technological lifetimes of the flywheel and the battery.

5.4.1 Base Case Scenario

The first scenario modeled assume no HSS coupled with the PVPP: as explained in Section 5.1, the

base case serves as an economical instrument to measure the effectiveness of the solution adopted.

Objective Function

Since no FCR service is provided, as described for UK regulations, the only source of income for

the plant comes from the energy sold in the day-ahead market. Daily revenues are calculated in the

following ways:

• a.

R = RM =

5760∑
t=1

λM (t) · EM (t); (9)

• b.

R = RM =

5760∑
t=1

λM (t) · EM (t)−
24∑
h=1

D(h); (10)

where:

– λM (t) is the market price at time t in €/MWh;

– EM (t) is the energy sold to the wholesale market in MWh, defined in Equation 11.

– D(h) is the hourly deviation from the Day-aheadMarket, result of the Base Case Optimiza-
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tion a. The calculation of the term is shown in Equation 11

D(h) =

[
EM (h)− EMpred(h)

]
·
{[
G(h) ·N(h) · λup(h)

]
+

[(
1−G(h)

)
·N(h) · λM (h)

]
+

[
G(h) ·

(
1−N(h)

)
· λM (h)

]
+

[(
1−G(h)

)
·
(

1−N(h)

)
· λdown(h)

]}
where:

– EM (h) is the hourly energy to be sold during the day of the study in MWh;

– EMpred(h) is the hourly energy predicted to be sold in the DAM in MWh;

– G(h) is a binary variable calculated comparing the actual hourly generation with the pre-

dicted energy to be sold on the DAM: it is equal to 1 when the generation is greater than

the prediction
(
EM (h) > EM (h)pred

)
;

– N(h) is a binary variable that gives information regarding the system necessity: is equal to

1 when there is an excess of generation in the electrical system;

– λup is the upward imbalance price in in €/MWh, corresponding to condition 4 in Figure 1;

– λdown is the downward imbalance price in €/MWh, corresponding to condition 2 in Figure

1;

Since all scenario evaluated in this thesis take in account the samePVPP sizewith the same operational

costs, in the base case scenario no costs are subtracted to Revenues R, therefore is set C = 0.

Global Balances

1. Market Energy:

EM (t) = PVOUTmax(t)− PVRES(t)− PVOFR(t) (11)

where:

• PVOUTmax is the maximum energy output from PV plant in each time step t in MWh;

• PVRES(t) is the upward reserve in MWh, by regulation calculated as:

PVRES(t) ≥ 0.1 · PVOUTmax (12)

PVRES(t) ≤ 0.15 · PVOUTmax (13)
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• PVOFR is the energy in MWh for primary frequency control due to upward frequency

deviation. The frequency increase forces the inverter to decrease the energy production

sold in the Energy Market.

2. Ramp Rate: the value of the ramp rate is 10% of the nominal power each minute, in accord

with real applications in several countries [41]. Traditionally, moving average method is used

to gradually change of output active power in PV inverter [7], but this strategy is been proved

difficult to apply in GAMS environment. Therefore a more restrictive constraint is evaluated: in

each time instant the ramp rate constraint is applied equally and proportionally to the duration

of the time-step itself (compared to the minute-constraint). The Equations 14 and 15 shows the

expression.

EM (t+ 1)− EM (t) = 0.025 · PPV

s
(14)

EM (t)− EM (t+ 1) = 0.025 · PPV

s
(15)

where:

• PPV is the nominal Power of the PVPP in MW;

• s is the number of time-steps in one hour.

5.4.2 Linear Degradation Scenario

The Linear model is only applied since the optimization process for the Quadratic Degradation sce-

nario appeared to be slow, particularly in the real time phase.

Objective Function

Daily revenues are calculated adding to the market revenues, the frequency compensation for the

primary frequency service:

R = RM +RF (16)

where:
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• RM is the market revenue, calculated as:

• a.

RM =

5760∑
t=1

λM (t) · EM (t); (17)

• b.

RM =

5760∑
t=1

λM (t) · EM (t)−
24∑
h=1

D(h); (18)

where:

EM (t) is the energy sold in the Day-Ahead Market calculated as in Equation 25

• RF is the frequency revenue, calculated as follows:

RF = λUFR(t) · EUFR(t) + λav · Pbid · hbid (19)

where:

– λUFR(t) is the frequency response price at time t in €/MWh for under-frequency events;

– EUFR(t) is the energy required for frequency control during the bidding period in case of

downard deviation in MWh;

– λav is the availability fee in €/MW · h for providing 1MW of power capacity for primary

frequency control for 1 hour, defined as in Section 5.3.4;

– Pbid is the power reserve in MW that the Power Plant is able to supply for the bidding

period.

– hbid is the time period daily bid in for FCR services, in hours.

The yearly Cost function C is described by following terms:

C = CC + CD (20)

where:

• CC is the capital investment cost of the HSS:

CC = CE + CP (21)

where:
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– CE is the capital investment cost of the HSS in terms of energy excluding power electronics

(divided into battery and flywheel respective costs):

CE = CapBat · λBat + CapFly · λFly (22)

where:

∗ CapBat andCapFly are respectively the Battery and Flywheel EnergyCapacity in terms

of kWh;

∗ λBat and λFly are respectively the Battery and Flywheel specific costs of the energy

storage devices.

– CP is the cost in terms of power capacity and includes the price of power electronics:

CP = PHSS · λP (23)

where:

∗ PHSS is the overall storage Power capacity in terms of kW;

∗ λP is the specific cost of the power electronics devices.

• CDB is the degradation cost, that accounts for the use of the battery and its consequent degrada-

tion. This cost has been discussed in Section 4, and it has to be intended as a virtual cost: since

the degradation does not produce any real neither present cost, but can influence the time in

which the battery has to be substituted, this cost has been obtained by the expected cost of the

battery in 2030. As already discussed, the cost of degradation of the battery CDB depends on

the mean state of Charge, and it is calculated as in Equation 2. Flywheel degradation cost CDF

is proportional to the energy output of the flywheel:

CDF =

5760∑
t=1

cDF · FUfr(t) (24)

where cDF has been calculated in Equation 5 while FUfr is the energy output of the flywheel,

described in Equation 29.

Global Balances

1. Market Energy:

EM (t) = PVout(t) +BM (t) · εBout −BPV (t)/εBin − FPV (t)/εFin (25)

33



Hybrid Storage System coupled with PV Power Plant for Primary Frequency Control

where:

• PVOUT is the net energy released from the PV in MWh calculated in Equation 30;

• BM (t) is the energy in MWh discharged from the battery for deviation imbalance mini-

mization and arbitrage service; calculated as in Equation 37;

• εBout accounts for losses of discharge of the battery;

• BPV (t) is the share of energy input to the battery directly injected from the PV, and adding

up to the SOC in MWh;

• εBin accounts for losses of charge of the battery;

• FPV (t) is the share of energy input to the flywheel directly injected from the PV, and adding

up to the SOC in MWh;

• εFin accounts for losses of charge of the flywheel.

After successive GAMS iterations it was decided to add on top of the PFC, the capability of

arbitrage for the Battery, represented by the E : M in order to freely optimize the energy use

throughout the day, reducing forecast errors and shifting the Energy sold in DAM when more

convenient. The arbitrage function of the battery is investigated furthermore in Section 6.2.

2. Ramp Rate: the Equations 14 and 15 defined for the Base Case are valid for this model too;

3. Reserve for ENTSO-E Regulation:

PVres(t) +Bus(t) · εBout + Fus(t) · εFout ≥ 0.1 · PVoutmax(t) (26)

This constraint ensure that in any moment there is sufficient energy to cover a large frequency

drop. Differently from the Base Case Scenario this energy can be supplied from the HSS.

• Bus(t) and Fus(t) are the operable energy in each time step t in MWh, defined in Equations

43 and 52;

• εFout accounts for losses of discharge of the flywheel;
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4. Reserve for FCR Primary and Secondary Service:

Bus(t) · εBout + Fus(t) · εFout ≥
Pbid

s
(27)

In this case the energy to be ensured is contained in the reserves without making use of the

solar reserve: this is taken as a safety measure in order to ensure the capability to respond to the

worst frequency drop in any moment, independently from the instantaneous PV power output.

5. Under-frequency energy out from bidding range of time:

FUfr(t) · εFout = PVUfr(t) (28)

∀t ∈
{

1 , bidstart
}
∧
{
bidend , tend

}
,

• FUfr(t) is the energy provided by the flywheel for under-frequency events;

• PVUfr(t) is the energy requested for downard frequency deviation, depending on the avail-

able powerPVOUTmax(t) and calculated following indications in Table table:frequencyspain

• bidstart is the instant of time in which start the bidding period: in the case study is 10AM ;

• bidstart is the instant of time in which start the bidding period: in the case study is 2PM .

• tend is the instant of time corresponding to the end of the simulation (t = 5760).

Only the flywheel is responsible for under-frequency events in this time range, while the battery

and the PV reserve will complement during large frequency deviations. This mechanism is

further explained in Section 7, where the BMS is defined.

6. Under-frequency energy in bidding range of time:

PVUfr(t) +BUfr(t) · εBout + FUfr(t) · εFout = BidUfr(t) (29)

∀t ∈
{
bidstart , bidend

}
, where: where:

• PVUfr(t) is the share of PV reserve in MWh used for downward frequency deviations,

defined in Equation 33;

• BUfr(t) is the energy output inMWh from the battery for downward frequency deviations;

• BidUfr(t) is the energy requested for downward frequency deviation, independent from

the available power PVOUTmax(t) but proportional to the power reserve bid Pbid.
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In this case the frequency variation leads to higher values of energy requested for FCR, therefore

it chosen to use the overall HSS including the reserve of the PV panels.

PV Balances

Net Energy from PV:

PVout(t) = PVoutmax(t)− PVres1(t) (30)

where:

• PVres1(t) is the reserve that the PV has to provide to provide constantly taking in account also

over-frequency events as follows:

PVres1(t) = PVres(t) + EOfr(t) (31)

PVOfr(t) = EOfr(t)− FOfr(t)/εFin (32)

where

– EOfr(t) is the energy requested for over-frequency events;

– FOfr(t) is the share of energy that charge the flywheel during over-frequency events: in-

stead of being curtailed, this energy can be temporarily stored in the flywheel.

• Under-frequency definition:

PVUfr(t) ≤ PVres(t) (33)

Meaning that the energy for downward frequency deviation cannot overcome the reserve stored

through PV output curtailment.

The reserve is constrained as it follows:

PVres(t) ≤ 0.15 · PVoutmax (34)

Battery Balances

1. State of Charge Definition:

SOCB(t)− SOCB(t− 1) = Bin(t)−Bout(t)−Bloss(t) (35)

where:
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• SOCB(t) is the State of Charge of the battery at time t, expressed in MWh;

• Bloss is the loss due to battery discharge in MWh defined as follows:

Bloss(t) = γB · SOCB(t) (36)

where γB is the share of SoC that is lost due to self-discharge during a time step of 15s [40].

• Bout is the energy discharged from the battery in MWh, defined as follows:

Bout = BM +BUfr (37)

In this optimization phase it is not known the battery capacity, therefore the SOCB is expressed

in kWh.

2. Limit of the state of Charge:

SOCB(t) ≤ αB+ · CapB (38)

SOCB(t) ≤ αB− · CapB (39)

where:

• alphaB+ is the highest State of Charge allowed.

• alphaB− is the lowest State of Charge allowed [46].

3. State of Charge Constraint:

SOCB(1) = SOCB(tend) (40)

The battery is forced to be at the same state of charge at the end of the optimization, in order to

perform effectively another day of operations.

4. Average State of Charge:

SOCB =
5760∑
t=1

SOCB(t) (41)

where SOCB is an absolute quantity in MWh;

5. Arbitrage time-constraint:

BM (t) = 0 (42)

∀t ∈
{

1 , prodstart
}
∧
{
prodend , tend

}
, where:
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• prodstart is the instant of time corresponding to the beginning of the first hour in which it

is registered solar production. In this case 7:00:00 AM;

• prodend is the instant of time corresponding to the end of the hour in which it is registered

solar production. In this case 8:59:45 PM

This constraint limit the possibility of arbitrage of the battery inside the time range in which

PVPP is actively bidding for theDAM. If the constraint is not applied it is observed a discharging

behaviour in the beginning of the day that increase by a small amount the objective function,

but is not realistic for the use case.

6. Battery Usable Energy:

Bus(t) ≤
SOCB(t)

s
4

(43)

∀t ∈
{

1 , prodstart
}
∧
{
prodend , tend

}
, since the Spanish regulation set the event detection time

to 15 minutes as described in Section 2.2.1.

Bus(t) ≤
SOCB(t)

s
2

(44)

∀t ∈
{
bidstart , bidend

}
, since the UK National regulator set the event detection time up to 30

minutes for Primary and Secondary FCR as already explained in Section 2.3.1.

7. Simultaneous charge and discharge:

Bin ·Bout = 0; (45)

This constraint does not allow the system to charge and discharge at the same time the battery.

Flywheel Balances

1. State of Charge Definition:

SOCF (t)− SOCF (t− 1) = Fin − FUfr − Floss (46)

where:

• SOCF (t) is the State of Charge of the flywheel at time t, expressed in MWh;

• Fin overall energy input to the flywheel adding up to the SoC in MWh, and defined as

follows:

Fin(t) = FPV (t) + FOfr(t) (47)
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• Bloss is the loss due to battery discharge in MWh defined as follows:

Floss(t) = γF · SOCF (t) (48)

where γF is the share of SoC that is lost due to self-discharge during a time step of 15s [40].

The state of charge definition is similar to the onemodelled for the battery in Equation 35 but the

definition of each variable is different. In fact, given the different characteristics of the flywheel,

such as high power capabilities and fast responsive behaviour, the device is set to be in charge of

frequency deviations. Without the flywheel this energywould be simply curtailed by theMPPT

control of the PV, as shown in Equation 31.

2. Limit of the state of Charge:

SOCF (t) ≤ αF+ · CapF (49)

SOCF (t) ≤ αF− · CapF (50)

where:

• αF+ is the highest State of Charge allowed.

• αF− is the lowest State of Charge allowed.

3. State of Charge Constraint:

SOCF (1) = SOCF (tend) (51)

Also the Flywheel is constrained in this way to maintain its state of charge at the beginning and

at the end of the day.

4. Battery Usable Energy:

Bus(t) ≤
SOCB(t)

s
4

(52)

∀t ∈
{

1 , prodstart
}
∧
{
prodend , tend

}
Bus(t) ≤

SOCB(t)
s
2

(53)

∀t ∈
{
bidstart , bidend

}
5. Simultaneous charge and discharge:

Fin · FUfr = 0; (54)
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5.5 Parameters

The techno-economic parameters chosen from literature review are shown in this section and sum-

marized in Table 3.

Parameters

Quantity Value Unit

s 240

λBat 420 €/kWh

λBat2030 150 €/kWh

λFly 3000 €/kWh

λFly2030 1959 €/kWh

λP 160 €/kW

εBin = εBout 0.975

εFin = εFout 0.917

αB+ 1

αB− 0.1

αF+ 1

αF− 0.15

Table 3: Chosen Parameters for GAMS model
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6 Optimization Results

In this section are shown the results from the GAMS optimizations and it is evaluated the strategy to

build up the control system for the battery and the flywheel.

6.1 Base Case

The base case scenario present low or no degree of freedom in terms of operational strategy.

1. The prediction step aims simply tomaximize the energy sold in themarket, given the constraints

in Equations 11 and 12

2. The real time phase strategy aims to maximize EM while minimizing the error from forecast,

given the possibility to adjust the MPPT of the solar converter as in Equations 12 and 34

Prediction

Figure 15 shows the maximum solar resource for the case of prediction, the reverse to comply with

Spanish operator and the actual Energy sold on the market.
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Figure 15: Prediction step: Power trend over the day.

It is observable that the reserve level of the PV through the MPPT is quite consistent and represents

an economical loss for the plant operator. One question that could be raised at this point is: how

much of this reserve for frequency deviation is actually being used? To answer to this question it was

compared in Figure 16 the normalized reserve level with the under-frequency energy request.
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Figure 16: Prediction step: Share of reserve used for under-frequency deviation.

From this visualization it can be seen that during operating hours, the reserve is practically never

used over the 30% of its value actual. One key output to acknowledge is that this reserve can be

greatly decreased thanks to the HSS, and increase in output production could change significantly

the economical revenues of the plant.

From the prediction phase it is extracted the predicted Market strategy for the DAM, used in the real

time phase and shown in Figure 17. The norm used foresees that the energy accounted for one hour

(e.g. 10AM) sums up the energy sold until the beginning of that hour (from 9:00am to 9:59AM).
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Figure 17: Prediction step: Hourly Energy for DAM.

Real Time

The real time phase presents a greater variability of the solar resource, as shows Figure 18
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Figure 18: Real time step: Power trend over the day.

In the real time phase can be appreciated the market energy deviation due to forecast error, distin-

guished case by case as explained previously and synthesized in Figure 1. In Figure 19 is shown the

result of the Base Case scenario, highlighting favourable and unfavourable deviations for the electrical

system.
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Figure 19: Real time step: Hourly Energy sold in DAM

It is meaningful to observe that any imbalance that is numerically negative, even if favourable for the

electrical operator, represents a loss on the expected plant income, and therefore should beminimized.

The primary aim of the HSS is to reduce this negative imbalances and maximize positive imbalances

that represent (in any case) an increase in the predicted profit. At the same time, and in the limit of

the economical operational benefit, the HSS optimization aims to reduce unfavourable deviations.

6.2 HSS Implementation

Prediction

The optimization is here suppliedwith the same input data that in Section 6.1: this time the optimized

HSS offers larger possibilities of flexibility. In Table 4 is presented the storage system calculated by

the the optimization.

46



Hybrid Storage System coupled with PV Power Plant for Primary Frequency Control

Table 4: HSS Prediction: Storage optimization output.

HSS IMPLEMENTATION: Prediction

Battery Flywheel Unit

Rated Capacity 518.1 32.0 kWh

Rated Power 971.7 255.9 kW

In Figure 20 is visible how the PV Reserve and the energy sold in the Market are greatly affected by

the implementation of the flywheel and the battery.

Figure 20: Prediction: Power trend over the day with HSS.

In particular, the reserve that has to be provided proportionally to the instantaneous power produced

by the PV plant, is not anymore supplied solely by means of the MPPT, but main part of it is provided

by the energy contained in the charge the storage systems. As it is possible to observe better from
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Figure 21 the Energy sold in the Market is larger in every hour of the day, apart from time slots of

the 10AM (9:00AM-9:59AM) and 11AM (10:00AM-10:59AM). In particular 10Am slot precedes the

bidding time-range: during this time the HSS has to be charged in order to be able to withstand the

worse under-frequency deviation for a period of 30 minutes (especially the battery).

Figure 21: Prediction: Hourly Energy for DAM, comparison with Base case scenario.

The SoC evolution of the battery in particular is observable from Figure 22, while Figure 23 shows the

Flywheel Energy trend.
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Figure 22: Prediction: SoC of the Battery throughout the day vs. Power Input Output.
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Figure 23: Prediction: SoC of the Flywheel throughout the day vs. Power Input Output.

As expected, the calendrical degradation cost dependent on the mean State of charge force the op-

erational strategy to keep the battery SoC lower when no reserve is needed. At this point is useful

to observe how the system is supplying the FCR service required for the day investigated. Figure 24

shows the overall trend of the frequency deviation response.
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Figure 24: Prediction: Frequency deviation response by the PVPP and HSS.

Further investigation and analysis is dedicated for the Real-time phase on this matter in order to build

a FCR control in the simulation final phase (see Section 6.3).

Real Time

In Table 5 is presented the storage system calculated by the the Optimization for the Real time phase.

Table 5: HSS Real time: Storage optimization output.

HSS IMPLEMENTATION: Prediction

Battery Flywheel Unit

Rated Capacity 883.1 32.0 kWh

Rated Power 981.4 255.9 kW

This last optimization trial is particularly slow in producing an optimal solution (from 2-6 hours de-

pending on the type of solver used, the initial starting points evaluated and the degree of freedom
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allowed for decision variables). The strategy used to accelerate this final attempt was to feed-in as

initial point the ones obtained from the Prediction phase. Nevertheless, the optimal value of Battery

capacity for this use case differs largely from the one obtained for the prediction stepwith a difference

of +60%.

In Figure 25 is shown the overall power trend throughout the day, highlighting the bidding time-

range.

Figure 25: Real time: Power trend over the day with HSS.

Comparing the energy sold in DAM in this case (Figure 26) scenario with the onewithout HSS (Figure

19) is immediately clear that more energy has been sold thanks to the implementation of the storage

system: the overall difference is +%10.5.
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Figure 26: Real time: Hourly Energy sold in DAM.

Moreover as expected the HSS implemented reverse some of the forecast deviation: instead of less

energy sold compared to the forecast, many hours are characterized by finally more energy sold. The

State of Charge evolution of the Battery is shown from Figure 27, while Figure 28 shows the flywheel

energy trend.
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Figure 27: Real-time: SoC of the Battery throughout the day vs. Power Input Output.

Figure 28: Real-time: SoC of the Flywheel throughout the day vs. Power Input Output.
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Lastly in Figure 29 it is shown the overall PVPP frequency deviation response.

Figure 29: Real-time: Frequency deviation response by the PVPP and HSS.

6.3 Frequency deviation

From Figure 29 can be seen that most of the low-frequency events are solved by flywheel discharge.

More specifically flywheel is providing for more than 80% of the total energy required for under-

frequency deviations, while the PV power plant is injecting 15.6% of it. This result is a direct conse-

quence of the optimization constraint settings: in Equation 29 the under-frequency events happening

out from the bidding time-range are on purpose faced solely by the flywheel. Moreover as it is possible

to observe from Figure 13, during bidding time the average frequency deviation requires a decrease

of power output (f > 50Hz), therefore low energy need have to be ensured by means of the battery

and/or the PV converter.

On the other hand the PV is mainly responsible for over-frequency events (≥ 90%). It is necessary
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at this point to remember that the degradation cost is a virtual cost, and the optimization tends to

limit the use of the storage resource if the investment for a charge cycle (in this case the cost of the

equivalent degradation) is not balanced by a higher profit, finally increasing the objective function.

On this regards it has to be said thatwith other boudary conditions, especiallywith less solar resource,

the risk not to use over-frequency events to charge the the HSS, can compromise the energy security

of the FCR: at the instant of time bidstart the HSS could not have enough energy reserve to withstand

the worst under-frequency deviation. Therefore the author opted for a control strategy that privileges

and prioritize the role of theHSS to absorb from the PV output the energy required for over-frequency

control.

Another important aspect to be taken in account is that the devices tend not to share the under-

frequency neither over-frequency load, but to act one by one separately. In Figure 30 is shown how

the over-frequency energy deviations are faced by the different energy systems.

Figure 30: Real-time: Normalized over-frequency energy request shared amongst HSS and PV con-

verter.

6.4 Economical Output

The yearly economical results for each case analyzed are summarized and shown in Table 6.
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Table 6: Economical Comparison.

BASE CASE

Profit [M€] Initial Investment [M€]

Prediction 1.244 /

Real Time 1.279 /

HSS IMPLEMENTATION

Profit [M€] Initial Investment [M€]

Prediction 1.382 0.510

Real Time 1.401 0.665

The implementation of the HSS result in an overall increase in yearly economic gain of +9.5%. It has

to be once again highlighted that the profit is considering degradations cost too, representing the SoH

of the battery, and taking in account share of replacement cost already in account for the current year.

6.5 Sensitivity Analysis

In this section is discussed how it is affected the economical result of the prediction phase optimiza-

tion, varying two factors, namely the bidding time period hbid, and the bid power reserve Pbid.

Firstly, it is investigated keeping hbid = 4 h what is the optimal Pbid value, not considering the mini-

mum constraint Pbid ≥ 1 MW. From the results shown in Figure 31 it is possible to conclude that the

minimum requirement set by UK regulations in terms of power reserve is very close to the optimal

value of Pbid for the case study modelled, and the objective function decrease its value by only a small

percentage.
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Figure 31: Sensitivity Analysis: Power Reserve.

Subsequently other values ofPbid have been taken in accountwith small variation in terms of profit but

very large variation in terms of battery capacity: while doubling Pbid the optimization is able to find

a solution just 0.6% less profitable than the optimal, the battery size result to be more than doubled

(see Figure 32). This result is in line with the fact that the battery capacity is mainly responsible for

the FCR reserve, while the flywheel is not changing in size, varying Pbid .
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Figure 32: Sensitivity Analysis: Power Reserve.

Instead in Figure 33 it can be observed how, increasing of one unity the hour in the bidding period

range, the profit is not increasing with the same trend: the tendency of the points shows that a point

of maximum is approaching.

Figure 33: Sensitivity Analysis: Bidding time-range.
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A conservative strategy has been chosen to select the hbid factor since is very likely that the profit

function could decrease consistently in other days of themonth due to solar scarcity out from sunniest

period of the day.

It can be concluded that the variables analyzed in the sensitivity analysis are quantified as follows:

• Pbid = 1 MW;

• hbid = 4 h.
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7 Simulation Model

In this Section is modeled and tested a Simulink model comprehensive of the following features:

1. Battery Management System: through a linear regression model and a slow PI controller acts

on battery side converter voltage, to control the State of Charge of the battery, and ensure a

minimum energy level is kept for FCR;

2. Current controllers: through fast PI controllers control the current, therefore the power input

and output both for the flywheel and the battery;

3. Under Over-frequency controllers: produce a current control signal that is passed to theCurrent

controllers in order to respond to frequency deviations.

The structure of each element is described first, together with assumptions building controllers and

finally results of simulations are discussed.

7.1 Design of Components

Firstly, to correctly model the HSS is necessary to design the devices assuming physical constraints

and market options.

More specifically the Lithium Ion Battery has to be designed assuming battery cell characteristics and

pack voltage in order to limit the rated current. On the other hand flywheel has to be designed in

terms of composing material, in a way that the device can withstand the maximum stress given by

the rotating velocity. For the same reason the rotation minimum and maximum speed have to be

constrained, together with the radius of the disk and consequently a motor has to be chosen. The

results of the design are shown in Tables 7 and 8.
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Battery Design

Value Unit

Series 140 n

Parallels 880 n

Pack Voltage 504 V

Pack Current C/1 1760 A

Table 7: Battery Pack Characteristics

Flywheel Design

Value Unit

Material Carbon AS4C /

Outer Radius 0.21 m

J 10.94 kg ·m2

wmax 46 krpm

wmin 14 krpm

Table 8: Flywheel Characteristics

The flywheel had to be oversized in terms of Rated Power, up to ≈ 4 · Pflywheel, the value calculated

in the optimization because the normalized inertia was too large (the P/E ratio was too small).

7.2 Model of the Battery

The model developed in Simulink is shown in Figure 34.

Figure 34: Overview Battery model.

The scope of the component indicated as BMS is to calculate, depending on some boundary condi-

tions, the optimal SoC of the battery. The structure of the subsystem is shown in Figure 35
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Figure 35: Battery Management System: SoC Prediction.

TheMatlab Function block uses a linear regressionmodel built starting from the Optimization results

obtained in the HSS Real Time Implementation. The output is therefore filtered through a rate limiter

that limits the change in SoC as a function of the rated power of the battery. The saturation block

saturate the control signal to the maximum and minimum value admissible of SoC level. The control

signal is sent to the "Battery model OCV" subsystem that, through an interpolation computes the

value of Open Circuit Voltage "batocvcontrol". This value is the control signal for the voltage controller

described in Section 7.3

7.2.1 Linear Regression Model

In supervised learning, the scope of a regression is to infer a function from labeled training data

consisting of a set of training examples [47]. In this case the training data are the variables input (on

the left) in Figure 35 and the regression function is built in a way it can predict effectively the optimal

SoC of the battery calculated through GAMS optimization. In this process, the aim is to make use of

the GAMS optimization result to train a function able to set in real time (continuously fed by incoming

input data) an optimal battery charging-discharging behaviour. In this sense it can be said that the

controller developed is an online controller, since all the input data chosen to build the regression

function are easily extracted by the same simulation, since all the variables are known.

The resulting prediction of the Battery State of Charge, for the day investigated is shown in Figure 36

compared to the optimal value calculated every 15 seconds by GAMS optimization.
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Figure 36: Battery SoC Prediction: Linear regression output vs. Optimal SoC.

The linear regression is set to contain an intercept term, linear and squared terms for each predictor,

and all products of pairs of distinct predictors: in total the equation is formed by 16 terms. It is

important to highlight that this regression function is effectively predicting the Battery State of Charge

solely because the TrainingData is the same as the TestData. The linear regression should fed bymany

input Training days of battery use to be able in a second step to test a new Test day and effectively

verify the capabilities and the effectiveness of the regression model. For limited time resource it was

not possible to create many Optimization results, and the author preferred to limit the analysis to

make use of the data obtained, mainly to describe a process strategy rather than an accurate numerical

solution. Following, in Figure 37 are shown themain effects of the input factors on the predicted State

of Charge.

64



Hybrid Storage System coupled with PV Power Plant for Primary Frequency Control

Figure 37: Battery SoC Prediction: Expected change in output given change in input factors.

The circles show the magnitude of the effect and the blue lines show the upper and lower confidence

limits for the main effect. For example, if the flywheel reaches its maximum SoC, the expected predic-

tion increases by 250 kWh compared to when the flywheel is completely discharged, given all else is

held constant. Once again, it is possible to see how the confidence interval of some factor is very large,

and the dependency with the output prediction is definitely distorted. The prediction would benefit

from more input data: in this case the author expects less effect from factors such as the frequency

deviation.

7.3 Voltage Controller

TheVoltage Controller accepts as an input the error between the actual value of theOCVof the battery

(indirect measure of the Battery SoC) with the optimal value calculated by the BMS block. If the error

is positive, means that the battery should be charged to increase its energy content. Figure 38 shows

the controller scheme.
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Figure 38: Voltage controller overview.

The controller is equipped with a anti-windup control to limit undesired effects from large change in

set-point and consequent significant error derived by the integral term. The groups of subsystems on

the right have two main aims:

1. In case of under-frequency event, and the battery is responsible to provide the equivalent energy,

the chargin-discharging behaviour to follow to optimal SoC is automatically nullified;

2. In case the operations happen inside the bidding time-range, the voltage controller is constrained

to a saturated current output equals to 10% of the rated current.

The first aim is necessary in case a sudden under-frequency event happens and the optimal SoC re-

quires to charge the battery: the two signal are in contradiction and the result has been tested to be not

accurate, even if the Voltage controller current is constrained to low values. This is logical since the

current requested by the frequency deviations are usually in the range of 5-10% of the rated power of

the battery. The second aim has been thought to limit the change in SoC once reached the minimum

value to provide FCR: in this way, even if the prediction could output a lower signal of SoC (mainly

due to prediction error), the effect of the control signal is slowed down by a smaller battery reaction

in terms of current signal. The code that exemplify the switching blocks contained in the subsystems

is shown in 10.1
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7.4 Current controller

The current output from the voltage controller is summed up with two other inputs as shown in

Figure 39, the Under-frequency andOver-frequency current input, consequently an error is calculated

through the use of the actual current in the battery pack.

Figure 39: Calculation of the error for the Current Controller.

The subsystems in red and light green simply receive the energy requested for frequency deviation

from the main Frequency deviation controllers (described in Section 7.8) and through the value of the

battery voltage output the value of the current to be produced in order to obtain the energy requested.

In a nutshell, the output from the DC/DC Converter Controller just examined is the voltage to be

produced by the converter uc, on the battery side, in order to comply with the current controller (fast

reaction, under-over frequency control) and the voltage controller (slow reaction, optimal predicted

SoC).

7.5 Tuning of the PIs controller

The tuning of the PI controller is aimed to minimize the current injected or ejected from the battery,

while being enough reactive to increase the SoC in order to provide reserve throughout the Bidding
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period. In fact, even if the model developed in Section 7.2.1 predict the overall trend of SoC with an

acceptable level of precision, the noise in the signal is quite large.

At the same time, when the reserve is needed, the current injected in the battery has to be large enough

to charge the battery in time and comply with the minimum reserve requirement calculated in the

optimization.

7.6 Model of the flywheel

The flywheel is modeled starting from the following set of equations:

Etot =
1

2
· J ·

(
ω2
max − ω2

min

)
(55)

P = Telectrical · ω(t) (56)

Losses

Losses were modelled in a way that a constant Torque Tlosses is applied to the electrical Torque. The

losses are assumed to be proportional to the actual velocity of the Flywheel: the power loss is in fact

modelled as follows:

Plosses(t) = Tlosses · ω(t) (57)

The value of Tlosses was calculated given the parameter used in the optimization of 15% loss in state

of charge (hourly). Using the Equation 56 it was calculated the final velocity that the flywheel should

have, under Tlosses only (that means 15% of energy loss).

Eloss(1h) =

∫ 1h

0
Ploss(t) · dt (58)

Substituting in the Equation 58 the expression of thePloss(t) is calculated the value of Tlosses. In Figure

40 is shown a 1 hour test of the flywheel subjected to a null load, starting from the maximum level of

SoC.
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Figure 40: Flywheel losses: after 1 hour the State of charge is near to 85%.

7.7 Control of the SoC

A simple control method is used to avoid that the flywheel is discharged when the SoCmin level is

reached and charged over the SoCmax. The Matlab function is shown in 10.2. No controller is used to

control furthermore the State of Charge of the flywheel, but a deterministic approach based on main

results from the optimization GAMS results. In Figure 41 it is shown how the deterministic strategy

has been developed in Simulink environment.
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Figure 41: Flywheel deterministic control overview.

The energy requested to the flywheel for under-overfrequency control is summed upwith the energy

contribution directly from the PV: the subsystem has two main objectives:

1. Charge the flywheel when the SoCmin is reached with a small quantity of energy, quantity set

to be 0.2kWh (50kW for each time step of 15s);

2. If in bidding time-range, the flywheel has to maintain a specific SoCBIDmin, extracted from

GAMS optimization output to be able to correctly react to sudden under-frequency events.

As described for the battery control, also the flywheel injection of energy is stopped when discharge

is required.

7.8 Frequency sharing control

The controllers responsible to share the frequency deviation response (positive and negative) upon

the different devices are quite similar in terms of strategy, but they differ in one aspect:

• As a result from the operational GAMS strategy, it was observed that the under-frequency re-

sponse is ensured mainly by the HSS only, while the over-frequency relies on the PV control.
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As a logical strategy the author decided to assign under-frequency response to HSS only and

include the PV contribution in the over-frequency controller.

In Figure 42 is shown the control subsystems with their equivalent output.

Figure 42: Frequency controllers overview.

The common strategy for the controllers is set through the use of several switching blocks as can be

seen in Figure 43, showing th Over-frequency control scheme.

Figure 43: Over-frequency controller overview.

By a way of example is shown the control for the over-frequency flywheel response in Figure 44.
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Figure 44: Over-frequency controller flywheel behaviour subsystem.

In this case the Over-frequency response is passed firstly to the flywheel control, that checks whether

the injected energy would not charge the flywheel over its rated capacity. If the condition is not

verified, and the flywheel cannot bear the energy input, the reponse is assigned in a second stage to

the battery control, that presents the selfsame control illustrated in Figure 44 for the flywheel. Finally

if none of the two device is accepting the over-frequency energy input, the energy is assigned to the

PV controller (MPPT not modeled in this study).

The under-frequency controller acts in an equivalent way.

7.9 Simulation results

The model described previously is finally fed with the same input data used for the GAMS optimiza-

tion to test the capability of the prototype of EMS described. An effective result should imitate the

GAMS optimal operation result, but it has to be highlighted that the Simulink Model lacks of one

feature that is present in the GAMS optimization. In fact, the battery controller is able to provide an

optimal SoC on average and PFC, but the arbitrage operational strategy is not built in the model. This

added feature would require another layer of control, to be coupled with the Frequency response

on the basis of a Priority algorithm, as already developed in literature [48]. For obvious reasons the

frequency control should have in fact a higher priority over the market arbitrage control.

The results of the simulation are shown for each device, highlighting overall differences with GAMS
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results.

Flywheel

In Figure 45 it can be observed that the average value of the flywheel SoC is higher than the one

calculated by GAMS optimization (see Figures 28): the FCR strategy is in fact prioritizing this device

charging it when an over-frequency event occurs (see Figure 46).

Figure 45: Flywheel simulation State of Charge.

Results show that the flywheel has to be recharged in the early morning period. A problem emerges

since no PV production is available: it is therefore necessary to charge the flywheel from the grid to

maintain the minimum level of SoC.
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Figure 46: Flywheel simulation power flow.

Battery

In Figure 47 is also visible that the battery slightly differ from the trend calculated in GAMS optimiza-

tion: also in this case the over-frequency control increase the average SoC of the battery, leaving the

Storage device with a higher energy content.
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Figure 47: Battery overall behaviour.

Frequency deviation Sharing

At this point it is useful for the purpose of the analysis to observe how the over and under frequency

deviation are shared upon the different devices. Flywheel and Battery are responsible for most of the

over-frequency control apart from the period of time in which both the device are completely charged
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(around 1PM, see Figure 48)

Figure 48: Over-frequency sharing strategy.

Instead under-frequency control is mainly ensured by flywheel apart from the early morning period

in which the flywheel has no energy available, see Figure 49.
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Figure 49: Under-frequency sharing strategy.
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8 Project Summary

The objective of this section is to estimate the research and development cost as well as the environ-

mental impact caused of the realization of the project and from the implementation of the solution

developed.

8.1 Budget Estimation

Each of project phases are characterized by hour spent and a common remuneration per hour set as

10€/h.

Human Resources Estimation

Phase Hours [h] Remuneration [€]

Literature Research 75 750

Modelling 150 1500

Simulation 200 2000

Writing 150 1500

Total 575 5750

8.2 Environmental Impact

8.2.1 Implementation of the solution

The implementation of the HSS coupled with a PV power plant has as a direct effect on the energy

system’s usage of other types of generating units, thus decreasing the reliance on fossil fuel units.

In fact, taking in account the carbon intensity perkilowatt-hour (CIPK) of catalan grid, is possible to

quantify the positive impact of the HSS implementation analyzing the added electricity sold on the

grid. The data is shown in Table 9
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Table 9: Quantification of added electricity sold daily on the grid.

Environmental Impact Estimation: Implementation

Scenario Overall electricity sold [kWh]

Base 58 665

HSS 66 190

∆ - 7 526

Taking in account estimation of carbon intensity of electricity in 2018 for grid inCatalunya it is possible

to estimate the avoided carbondioxide equivalent emissions from the energy system (see Equation 59).

Generalitat de Catalunya provides the value of 321 gCO2eq/kWh on the most recent report dedicated

to climate change [49].

CO2saving = ∆ · CIPK · 365 days · 15 yrs = 13.22 · 106 kgCO2eq (59)

8.2.2 Realization of the Project

This section analyzes the environmental impact produced by the realisation of this project. Twomain

emission sources are identified: electrical device, namely laptop, and the thermal unit for AC service.

Taking in account the same CIPK used for Section 8.2.1 it is quantified in Table [?] the overall emission

estimation.

Table 10: Quantification of the project realization carbon footprint.

Environmental Impact Estimation: Realization

Electrical Device Hours [h] Power [kW/person] CO2eq [kg]

Laptop 575 0.085 15.7

AC unit 300 0.125 12.0

Total - - 27.7
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9 Conclusions

The main economical output of the research is that the HSS implementation results in a higher profit

for the plant owner, adding 0.122 M€ on top of 0.665 M€ undertaken as upfront cost resulting in 5.45

years of payback time.

It is important to highlight that costs accounted and expressed in Equation 20 include also for degra-

dation costs which can be referred as a virtual cost, not truly undertaken by the plant owner. At the

same time costs do not include maintenance, installation and engineering costs.

Another cost that could be taken in account is the energy requested by the flywheel not to fall under

the minimum SoC level allowed. This energy has to be supplied by the grid, since no energy is avail-

able from the solar radiation at the time in which is needed. The daily amount of energy requested is

2.5 kWh. Considering on the one hand the weather variability and on the other hand the fact that the

device presents a higher value of SoC at the end of the day than than from the beginning, this amount

of energy can be taken as an average for the annual cost analysis. At the end of the year charging

the flywheel from the grid will cost the plant owner more or less 90 €.1 Taking in account the added

revenues from HSS implementation this cost can be discarded without significative difference.

Finally, it is important to highlight that great part of the added revenues in the Linear Scenario are

supplied not by the variable compensation (dependant from the actual energy delivered for FCR) but

from the availability window, that depend finally from the bid power Pbid and hbid.

9.1 Future work

PVPP Size

As a first future step, it could be investigated the result of the HSS implementation coupled with

smaller sized PVPPs. The effect of such a choice are:

1. Lower energy needed for PFC: since the power capacity is decreased, also the absolute value of

energy requested for frequency deviations;

2. Higher variation in Power output: for the purpose of this study the 9.4 MW PVPPwas modeled

1For the calculation it was considered the average price in 2018 for utilities in Spain [50].
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as a low-pass filter. This simplification no longer applies when the area of the plant is reduced.

While the first effect could represent a loss in terms of the economical revenues (even if in a marginal

way, as described previously), the second could improve the case with no battery because of the ramp

rate control. In fact, for the case studied, practically no time instant suffered from ramp rate control

curtailment, meaning that the effect of the plant size reduced the variability of power output.

If the variability increases, curtailment using PV inverter could lower furtherly the revenues frombase

case scenario. In this case, the implementation of the HSS could improve even more the economic

positive benefit of the HSS installation.

Prediction

Themethod proposed for PV power output prediction focuses on the errorminimization of the hourly

energy sold on the DAM. On the other hand, as previously discussed in Section 5.3.2, a higher quality

forecast is key in order to limit losses.

As a future work step it can be implemented a more accurate predictive method, implementing sta-

tistical approach such as Artificial Neural Networks models [51]. A better forecast prediction could

decrease the need for storage lowering forecasting error for DAM scheduling.

Quadratic Degradation Scenario

Finally, more accurate quadratic degradation cost should be applied as in Equation 3 to the GAMS

model. The difficulty faced by the author has been mainly computation requirements: it was more

strategic for the project management and thesis outcome to use linear degradation scenario output

and to proceed with simulation evaluation than to obtain more accurate input data from GAMS op-

timization.

Sensitivity Analysis

As a future step it could be assessed the viability of the power reserve service for more than one day,

given different set of irradiance data, for different weather and seasonal conditions. The thesis work

focused only on one reference day (01.04.2019) that can be taken as a reference for the month of April,

but the author proposes as a further step a monthly assessment throughout the year:

• Given the setup selected, is the HSS capable of providing the FCR service each month?

• If the service cannot be ensured during certain days, the electricity to charge the battery can be

bought from the grid. How is this strategy affecting the profitability of the project?
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• Given the results throughout the year, what is the number of daily hours bid in the Reserve

market that ensures the global maximum during the entire year?

Post-processing Rainflow Algorithm

Finally, the added economical value of the implementation of the flywheel should be quantified high-

lighting in post-processing phase the reduced stress on the battery implementing the hybrid solution

compared to a no-flywheel scenario (as developed in [14]).
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10 Matlab Codes

10.1 Voltage Controller

function y = fcn ( time , i , imax , SoC , minSoC , BUfr )

i f time <2400 || time > 3360 %s t a r t i n g b i d t ime i n s t a n t and end b i d t ime i n s t a n t

y = i ;

e lse

i f BUfr >0

y=0;

e lse

i f SoC <= minSoC

y = 0 . 1∗ imax ;

e lse

i f i <−0.1∗ imax

y=−0.1∗ imax ;

e lse

i f i >0 .1∗ imax

y=0.1∗ imax ;

e lse

y= i ;

end

end

end

end

end

end

10.2 Torque Control

function Tstar = fcn (T , SoC)

i f T>=0
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i f SoC>=1.0

Ts tar =0;

e lse

Tstar=T ;

end

else

i f SoC<=0.15

Ts tar =0;

e lse

Tstar=T ;

end

end

10.3 Over-frequency Control

function [ Ebat , Efly , EPv ] = OFRcontrol (BCap , BSoC , ofr , FSoC , FCap )

i f FSoC + of r <= FCap

Ef ly = of r ;

Ebat = 0 ;

EPv = 0 ;

e lse

i f BSoC + of r <= BCap

Ef ly =0;

Ebat=o f r ;

EPv = 0 ;

e lse

Ef ly = 0 ;

Ebat = 0 ;

EPv = of r ;

end

end

end
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10.4 Under-frequency Control

function [ Ebat , E f ly ] = UFR( t ,UFR, FSoC )

i f (2400<= t )&&( t <=3660)

i f FSoC >= 0 . 5

Ef ly = UFR;

Ebat =0;

e lse

Ef ly =0;

Ebat=UFR;

end

else

Ebat =0;

Ef ly = UFR;

end

end
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