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Abstract

This paper introduces a first approach on using Generative Adversarial Networks (GANs)
for the generation of fake data, with the objective of anonymizing patients information
in the health sector. This is intended to create valuable data that can be used both, in
educational and research areas, while avoiding the risk of a sensitive data leakage. For
this purpose, firstly a thorough research on GAN’s state of the art and available databases
has been developed. The outcome of the project is a GAN system prototype adapted to
generate raw data that imitates samples such as users variable status on hypothyroidism or
a cardiogram report. The performance of this prototype has been checked and satisfactory
results have been obtained for this first phase. Moreover, a novel research pathway has
been opened so further research can be developed.
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Chapter 1

Introduction

This chapter will expose the motivation and aims of the project along with the formulation
of the main problem that will be approached along this dissertation.

1.1 Motivation

The motivation of this master thesis comes from the recent arrival of Generative Adversar-
ial Networks (GANs) and the innovative possibilities these are opening in many different
fields. GAN algorithms have arisen in 2014 [1] and, since then, have been highlighted
as potential alternatives for data augmentation and missing data problems, among oth-
ers, due to their outstanding capabilities on generating realistic data instances, specially
images.

To date, many researchers keep studying their capabilities and expanding their po-
tential application areas, which gives a positive outlook to this technology. In particular,
a question raised has leaded to this project, which is about the feasibility of using GAN
systems to generate fake data, not necessarily images, that imitates the attributes of a
private data-set. If possible, this generated machine would be a very useful tool as it
will enable unlimited similar-to-the-original data without compromising the privacy of
the original elements, avoiding any potential leakage risk of sensitive information. The
applications of this tool, as it will be seen later on, could range from educational pur-
poses to scientific simulations and investigations, as sensitive data from any field could
be available without a risk of private data leakage.
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Figure 1.1: Basic GAN architecture. Source: towardsdatascience.com/generative-
adversarial-networks-gans-a-beginners-guide-5b38eceece24

1.2 Problem Formulation

In order to answer the question exposed in the previous section, first of all it would be
necessary to understand how a GAN works. Next, a thorough listing of general and
specific objectives of the project will be feasible.

1.2.1 What is a GAN

Generative Adversarial Networks (GANs) are systems based on a min-max strategy where
two algorithms are confronted: one algorithm generates data (the generator) and the other
discriminates between fake and real data (the discriminator)

The generator’s objective is to maximize the discriminator error while the discrimina-
tor wants to minimize it. This is an iterative process that ends when the discriminator
error is 0.5, meaning that it fails 50% of the times, the baseline error in bi-classification.
We can think of a GAN as a “Cat and Mouse Game” between a cop and a money counter-
feiter [2], where the counterfeiter (the generator) tries to fool the cop (the discriminator)
creating an endless loop where both players keep improving themselves by pure competi-
tion. Figure 1.1 shows a basic GAN system.

As described, in order to generate a fake image, we always need a source of “creativity”
that in this case comes from a random noise vector (seed). On the other side, in order to
be able to discriminate between real and fake images (so that the discriminator model can
send to the generator model what is doing wrong) a database of real images is needed.

towardsdatascience.com/generative-adversarial-networks-gans-a-beginners-guide-5b38eceece24
towardsdatascience.com/generative-adversarial-networks-gans-a-beginners-guide-5b38eceece24
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Hence, the objective function of the complete network is the following:

min
G

max
D

V (D,G) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))] (1.1)

This expression represents value (V ), which is a function of both, discriminator D
and generator G. The goal is to maximize the discriminator (D) loss and minimize the
generator (G) loss. Value V is the sum of expected log likelihood for real and generated
data. Likelihoods (probabilities) are the discriminator outputs for real or generated im-
ages. Note that the discriminator output for a generated image is subtracted from 1 before
taking the log. Maximizing the resulting values leads to optimization of the discriminator
parameters such that it learns to correctly identify both real and fake data.

It is also necessary to explain that:

• Pdata: Represents the distribution of real data.

• Pz: Represents the distribution of noise (usually a Gaussian distribution) from which
we can generate a fake image.

• x and z: Represent the samples from each corresponding space.

• Ex and Ez: Represent the expected log likelihood from the different outputs of both
real and generated images.

• D function outputs a real number ranged between 0 and 1 representing the proba-
bility for data being real (1) or fake (0). On the other hand, G function outputs a
generated sample or instance.

Besides, in order to train generator and discriminator, Errors on their outputs are
propagated back into the models. These errors are propagated as gradients of the following
loss functions.

Update rule for the discriminator:

∇θd

1
m

m∑
i=1

[logD(x(i)) + log(1−D(G(z(i))))] (1.2)
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Update rule for the generator:

∇θg

1
m

m∑
i=1

log(1−D(G(z(i)))) (1.3)

where m represents the total number of samples tested in batch before updating both
models, and θd and θg represents the weights of each model. It is worth to note that
on following chapters of this project we will be referring to these errors that we are
calculanting the gradient as losses.

As a GAN is just a system structure, the choice of the elements to compose this system
(generator and discriminator) are up to the user. In this case, it is going to be used the
most popular option: using a convolutional neural network (CNN) for the discriminator
and a transposed CNN for the generator. In order to keep this project focused on the
GAN structure, CNNs will not be explained in detail.

1.2.2 GAN’s Iterative Steps

Now that purpose, elements and objective function have been described, the steps of a
training process will be enumerated. Every loop of this training process is called an epoch.
Inside this epoch, all real samples, usually images, available will be processed in batches:
each batch is a random subset of a fixed size (called batch size) from the real samples
data-set. After each batch, errors from the discrepancy between the discriminator and
the generator outputs and their expected values are back-propagated to the models and,
therefore, used to train the models. Steps inside each batch are:

1. Batch real images are feed them into the discriminator.

2. Errors from the discriminator output are calculated knowing that, ideally, these
outputs should be all 1’s as these images are all real.

3. Batch fake images are generated with batch noise vectors.

4. Batch fake images are feed into the discriminator.

5. Errors from the discriminator output are calculated knowing that, ideally, these
outputs should be all 0’s as these images are all fake.

6. Both errors calculated from the discriminator are now propagated to its model.
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7. Steps number 3 and 4 are repeated with new noise vectors.

8. This time, Errors are calculated for the generator knowing that, ideally, all outputs
from the discriminator should be 1 as these images should perfectly imitate the real
ones.

9. These errors are now propagated to the generator’s model.

10. Start again with another batch from this epoch.

As it will be shown in the following chapter, these systems can increase its complexity
by adding new elements and features to the basic structure. The most common extra
element is an encoder (usually another CNN) to feed the generator not with a random
noise vector but with another source of information, allowing the system to generate
real-like images from a descriptive text or another image, for example.

Another factor that adds complexity to the system is the need of fine-tuning configu-
rations for the different elements of a GAN in order to ease its training and optimization
process.

1.3 General Objectives of the Thesis

As a first approach, this project aims primarily to deepen into the applications and limi-
tations of GANs around fake data generation. This entails the necessity of accomplishing
the following elements:

1. Exploring the state of the art of GANs.

2. Carrying out a deep study of the available datasets and its attributes.

3. Developing a system based on GAN for the creation of believable new data from
different data-sets.

4. Carrying out a proof of concept by using this system on some data-sets and reporting
the obtained results.
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1.4 Specific Objectives of the Thesis

By breaking down the general objectives previously exposed, the specific objectives for
each of the parts are listed below.

1. State of the Art

• Understanding the main areas in which GANs are being used.

• Applicability for this project.

2. Available Databases

• Getting familiarized with the sources and types of variables a GAN system
should work with.

• Observe the quantity of samples available in each of the explored databases.

3. Developing a GAN-based System

• Getting familiarized with the tools used to code and execute a GAN system.

• Getting familiarized with the application of both CNN and Fully Connected
Networks (FCNs) for the GAN system.

• Code a basic GAN system to generate fake data.

• Modify the system to correctly read each of the available databases.

• Modify the GAN system to allow the usage of raw data instead of image data.

4. Proof of Concept

• Pre-process each data-set for its correct manipulation.

• Train a GAN system for each of the data-sets and save the output results.

• Analyze the results and define the next steps of the investigation.

1.5 Project Scope

Being this project a very first approach on using GANs for the generation of fake data
in the health domain, avoiding as far as possible images as samples, is very important to
clarify from the beginning which is the scope of the project to avoid covering more topics
than the essentially needed:
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This master thesis intends to open new lines of investigation for further studies on the
matter about data-sets in the health domain. Hence, it does not aspire to have a final
solution to a problem, but rather a first evidence of what this technology is capable of
doing. Furthermore, as it has been explained in Section 1.2.1, this project will not cover
the basic operating principles of the artificial neural networks used for the GAN system
as it is not part of the project aims.

On the chronological side, this master thesis will be carried out during the second
semester of 2018/2019.
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Chapter 2

State of the Art

In order to understand what is the settling level of this technology and how is the market
orienting it, during this chapter the most common applications of GANs will be revised.
In order to do so, these applications will be grouped in 4 different types according to the
problem they are trying to solve. These four groups are:

• Data Augmentation

• Data Anonymization

• Missing Data

• Cross-Domain Transfer GANs

2.1 Data Augmentation

Data augmentation refers to a technique for extracting the most amount of information
from a database in order to get better results in a training task. In computer vision,
this has usually been performed by rotating, flipping, cropping the original images in
order to obtain a bigger data-set to train an algorithm. An example of these basic data
augmentation techniques can be observer in Figure 2.1.

As a common problem in machine learning, data augmentation systems have been
around for a while. In this case, some Generative Adversarial Network systems have been
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Figure 2.1: Example of basic data augmentation applied to an image. Source:
https://towardsdatascience.com/image-augmentation-for-deep-learning-
histogram-equalization-a71387f609b2

designed to generate new samples of a data base. Below are listed three articles that not
only explore with success the usability of GANs for data augmentation, but also serve to
present some of the main topics of this thesis:

GAN Augmentation: Augmenting Training Data using Generative Adversarial Net-
works by Christopher Bowles et al. [3], explores how to solve the lack of availability of
large, labelled data-sets in medical imaging through GANs. This technique can offer a
novel way to unlock additional information from a dataset by generating synthetic samples
with the appearance of real images.

Medical Image Synthesis for Data Augmentation and Anonymization Using Generative
Adversarial Networks by Hoo-Chang Shin et al. [4], offers a potential solution to two of the
largest challenges facing machine learning in medical imaging, namely the small incidence
of pathological findings, and the restrictions around sharing of patient data. The last
problem will be brought out in other following articles.

Generative adversarial networks for data augmentation in machine fault diagnosis by
Siyu Shao, Pu Wang and Ruqiang Yan [5], where data augmentation techniques through
GANs are revisited about a different topic: learning from mechanical sensor signals for
further applications in machine fault diagnosis.

https://towardsdatascience.com/image-augmentation-for-deep-learning-histogram-equalization-a71387f609b2
https://towardsdatascience.com/image-augmentation-for-deep-learning-histogram-equalization-a71387f609b2
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2.2 Data Anonymization

Usually in medical environments, data privacy is a critical aspect when using patients
databases. As an unchangeable information, if a patient’s ADN or medical history gets
leaked, there is no way to reverse this action unlike a user password leakage, where a
simple password reset can resolve the problem. This is why anonymizing techniques has
been very important in data processing and analysis problems.

As it has been already seen in the previous section, both health data-sets and anonymiza-
tion problems are recurrent topics in Generative Adversarial Networks. Given our main
goal, in this project we will focus on them, taking as a reference the following articles:

Learning Anonymized Representations with Adversarial Neural Networks by Clément
Feutry et al. [6]. Statistical methods protecting sensitive information or the identity of the
data owner have become critical to ensure privacy of individuals as well as of organizations.
This paper investigates anonymization methods based on representation learning and deep
neural networks. The training procedure aims at learning representations that preserve
the relevant part of the information (about regular labels) while dismissing information
about the private labels which correspond to the identity of a person.

AnomiGAN: Generative adversarial networks for anonymizing private medical data by
Ho Bae, Dahuin Jung and Sungroh Yoon [7]. Similarly to the previous paper, a GAN
structure is introduced to improve the maintenance of privacy of personal medical data,
while also maintaining high prediction performance in their application.

2.3 Missing Data

Similar to data augmentation, another popular application for Generative Adversarial
Networks is generating new data, not as a tool to increase the number of samples in a
data-set, but for full filling the incomplete ones.

In this case, GANs are not just generating similar images to the fed ones, but pro-
ducing real-like data that must comply some restrictions given by the circumstances of
the samples. In order to do so, new elements should be added to the basic GAN system.
These elements, usually encoders, which won’t be explained in this project as they are
outside its aims, allow the generator to modify its output according to some boundary



12 GAN-based Machine for Fake Data Generation

Figure 2.2: Example of missing data in an image: GAN’s results (right) compared
to ground truth image (left). Source: https://www.researchgate.net/figure/
Comparison-with-Context-Encoder-on-high-resolution-face-completion-The-
top-row-are_fig1_322674898

conditions. As it is shown in Figure 2.2, a common usage of missing data completion is
image restoration, especially in image editing soft-wares.

Results and thorough explanations of this problem can be found in the following
papers:

MisGAN: Learning from Incomplete Data with Generative Adversarial Networks. by
Steven Cheng-Xian Li, Bo Jiang and Benjamin M. Marlin [8].

GAIN: Missing Data Imputation using Generative Adversarial Nets. by Jinsung Yoon,
James Jordon and Mihaela van der Schaar [9].

2.4 Cross-Domain Transfer GANs

Last group of related applications refers to data transformation: manipulating an input
in order to get some specific results. In this case, just as in Section 2.3, the input in

https://www.researchgate.net/figure/Comparison-with-Context-Encoder-on-high-resolution-face-completion-The-top-row-are_fig1_322674898
https://www.researchgate.net/figure/Comparison-with-Context-Encoder-on-high-resolution-face-completion-The-top-row-are_fig1_322674898
https://www.researchgate.net/figure/Comparison-with-Context-Encoder-on-high-resolution-face-completion-The-top-row-are_fig1_322674898
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Figure 2.3: Examples of generated images from text descriptions. Left: captions are
from zero-shot (held out) categories, unseen text. Right: captions are from the training
set. Source: https://arxiv.org/pdf/1605.05396v2.pdf

the generator model is not a noise vector but a rich sample that should be modified.
Applications for this type of problem are quite diverse, below are listed some examples:

Generative Adversarial Text to Image Synthesis by Scott Reed et al. [10]. In this
work, it is demonstrated the capability of a GAN model to generate plausible images of
birds and flowers from detailed text descriptions (see Figure 2.3) thanks to both text and
image modeling advances.

SEGAN: Speech Enhancement Generative Adversarial Network by Santiago Pascual,
Antonio Bonafonte and Joan Serra [11]. In this case it is shown the viability of enhancing
voice recordings by reducing noise levels with GANs instead of classic speech enhancement
methods such as spectral subtraction, Wiener filtering, statistical model-based methods.
This can be useful for cochlear implants, where enhancing the signal before amplification
can significantly reduce discomfort and increase intelligibility. Speech enhancement has
also been successfully applied as a preprocessing stage in speech recognition and speaker
identification systems. [12] [13] [14]

Medical Image Synthesis with Context-Aware Generative Adversarial Networks by
Dong Nie et al. [15]. Last but not least, authors propose a way to generate com-
puted tomographies from magnetic resonance images (CT). CT exposes radiation during
acquisition, which may cause side effects to patients. Compared to CT, magnetic reso-
nance imaging (MRI) is much safer and does not involve radiations. Therefore, recently
researchers are greatly motivated to estimate CT image from its corresponding MR image
of the same subject for the case of radiation planning (see Figure 2.4).

https://arxiv.org/pdf/1605.05396v2.pdf
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Figure 2.4: Generated CT images from an MRI scan. Second image has been generated
with a Fully Connected Netowrk (FCN) and third by a GAN. Last image is the original CT
image of the patient. Source: https://www.researchgate.net/figure/Conversion-
of-MRI-to-CT-using-GAN-38-Adapted-with-permission-Fig-5-Example-of-
a_fig3_322657913

2.5 Future Applicability

As a final section of this chapter, a more extended look on which are the future applications
will be completed. As explained in Section 2.2, this project will be focusing on data
anonymization applications. For this area, the possible implementations might be very
vast: as the main issue in this situation comes through data privacy, if it feasible to
by-pass it by anonymizing the original data what would suppose saving many sources of
health information from important restrictions. This would proliferate the study of such
data by making it more available.

On a different matter, the possibility of generating an infinite number of samples
through a GAN is also very coveted. This virtue could allow the continuous simulation
of certain variables from a patient for research purposes. This could help as well in the
training process of other types of models by augmenting the number of samples, which
are usually scarce in private data-sets. It could also be convenient in educational areas to
avoid misconceptions in the subject because of a scarcity in examples.

https://www.researchgate.net/figure/Conversion-of-MRI-to-CT-using-GAN-38-Adapted-with-permission-Fig-5-Example-of-a_fig3_322657913
https://www.researchgate.net/figure/Conversion-of-MRI-to-CT-using-GAN-38-Adapted-with-permission-Fig-5-Example-of-a_fig3_322657913
https://www.researchgate.net/figure/Conversion-of-MRI-to-CT-using-GAN-38-Adapted-with-permission-Fig-5-Example-of-a_fig3_322657913
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Chapter 3

Project Management

In this chapter the tools and course of action to assure the success of the project will be
introduced.

3.1 Procedure and Tools for Project Monitoring

In order to control the evolution of the work development, both in content and timing,
some methodologies have been used. On the timing side, a GANTT structure has been
elaborated. On the content side, a Github repository has been created for the evaluation
of the code. For the reporting, an online software, called Overleaf, has been used. On the
following sections these software tools and methodologies will be explained in detail.

3.1.1 GANTT

The GANTT structure followed by this project has been the one shown in Figure 3.1.

As it can be seen, most demanding tasks are writing down the memory, developing
the GAN system and carrying out the proof of concept, in that order.



16 GAN-based Machine for Fake Data Generation

Figure 3.1: GANTT scheme for the timing monitoring of this project. On the memory
task, it is marked in grey the second half of June and first half of August as this weeks
were not available for the project. Software used fort his purpose: GANTT Project,
https: // www. ganttproject. biz/ .

3.1.2 Github Repository

In order to publish and maintain the code of this project, a Github repository has been
created. Github1 is an online platform focused on hosting code-based files and its versions
in order to keep track of changes, secure its integrity on the cloud and public a project
when needed.

In this case, all code files are publicly available in the following URL: https://github.
com/EstebanPiacentino/GAN4DataAnonymization

It is important to highlight that the strictly necessary code to be reviewed in this
memory is also attached as an Annex. For any other code section, the Github repository
will be available for its reading.

3.1.3 Overleaf

Finally, for the monitoring of the report content and its versions a LATEXonline editor has
been used. This editor is called Overleaf2 and has the ability of saving versions and share
them between collaborators in real time. This ease considerably the reviewing process of
the document. This platform also saves image and bibliographic repositories on the cloud
without the need of a local software nor file to progress on it.

1More information about this platform can be found at https://github.com
2More information about this platform can be found at https://www.overleaf.com

https://www.ganttproject.biz/
https://github.com/EstebanPiacentino/GAN4DataAnonymization
https://github.com/EstebanPiacentino/GAN4DataAnonymization
https://github.com
https://www.overleaf.com
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Figure 3.2: Kanban flow representation. The column in which is positioned each task
–represented as a post-it– determines the status of the process. The standard status
are "To Do", "Doing" and "Done". Source: https://www.digite.com/kanban/what-is-
kanban/.

3.2 Validation Tools

For the validation of the objectives and tasks exposed above, another software, called
Trello, has been used. Trello3 is an online platform for tracking task completion based on
Kanban flows. This allows the project to keep track between collaborators of which tasks
are completed, which are active and which are to be initiated. In combination with the
project monitoring tools exposed in the previous section, this software is a key element
to ensure all checks and milestones are reached.

3.3 SWOT

Following on the Future Applicability (Section 2.5), taking into account the potential out-
comes previously exposed for this technology and also its limitations a SWOT (strengths,
weaknesses, opportunities, and threats) structure –called DAFO in Spanish– has been
performed. Elements positioned in each of the clusters are shown in Figure 3.3.

Leaving aside the strengths of the technology, which have been already reviewed (at
page 14), on the weaknesses side emphasis is made especially on the drawbacks of neural
networks technologies. The fact that neural networks can only be verified by an extensive
use of them, as its internal configuration cannot be deciphered, is a delicate factor that
could be critical when facing the threats of this technology. On a secondary level, the
long training times could be another weakness.

3More information about this platform can be found at https://trello.com

https://www.digite.com/kanban/what-is-kanban/
https://www.digite.com/kanban/what-is-kanban/
https://trello.com
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Figure 3.3: SWOT analysis for the exposed projects containing the main factors of
each of the 4 parameters (Strengths, Weaknesses, Opportunities, and Threats). Structure
template source:

On the opportunities area, the factors are highly influenced by the data revolution
of the last decade. The increase of computing power at low prices together with an
unprecedented volume of available data in every field has proliferated the usage of this
artificial intelligence tools. However, as it is shown on the threats area, in the health
sector highly demanding requirements will be encountered. This gives rise to the thought
that, if first viability evidences are found, the following investigation steps will need to
be thoroughly built on stability and reliability of the system.

3.4 Risks & Contingency Plan

As the system studied on this master thesis has different layers of complexity and a variety
of configurable variables that can be changed to modify the output, the risks of finding
problems throughout the process of generating fake data are very high. That is why
identifying the risks that this project will be potentially facing along with a contingency
plan to resolve them properly is very important.
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The main risks that could lead to an unsatisfactory result on the proof of concept are
the following:

• Insufficient original samples to train the GAN system.

• Errors in the neural networks models for either the generator or the discriminator.

• Errors in the conversion method from image to raw data in the GAN system.

• Non convergence of the generated output, leading to non realistic results.

Even though risks are many, the contingency plan will always be based on avoiding
unnecessary difficulties and divide the main system elements in independent focus prob-
lems when possible to avoid dealing with the interaction of different issues at the same
time.

In order to avoid an insufficient number of original samples, the criteria of the chosen
databases will always prioritize its number of samples. This way, the chances of not having
enough data will be low. It is not part of this first investigation to understand which is
the minimum number of samples needed to satisfactorily generate fake data.

For the rest of possible errors, the key to dodge them will be built on testing the GAN
based system developed for this project by parts: starting with the essential elements in
its more basic form to ensure a solid structure and then add gradually more complexity
and extra elements. With this strategy, issues will come one by one and debugging phases
should be easier. It is also important to mention that, when changing any parameter
of the system to increase its performance, modifications will be done one by one and
tracking the changes applied to avoid confusion on the causality between the results and
the changes involved.

3.5 Initial Cost Analysis

In the following section, the cost of this work will be calculated. Furthermore, as this first
phase of the project hasn’t supposed any cost outside the hours of dedication, an estima-
tion cost of a second phase will be done. This second phase symbolizes the immediate
next steps that should be overcome. The explanation of the next steps can be found at
Chapter 7.
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Initial Cost Analysis

Category Item Quantity
(1st Phase)

Quantity
(2nd Phase)

Units Price
by Unit

Total
(1st Phase)

Total
(Both Phases)

Project Manager
Engineer

20 50 h e18.00 (1) e360.00 e1,260.00

R+D
Engineer

380 950 h e17.00 (1) e6,460.00 e22,610.00
Research

Papers purchase 0 2 items e40.00 (4) e- e80.00
Cloud computing
service

80 (2) 300 h e30.77 (3) e- e9,231.00

Cloud storage
service

15 (2) 100 GB e00.13 (3) e- e12.60Hardware
& Services

Databases 4 6 items e- e- e-

External
Services

Medical specialist
for the validation
of results

0 12 h e35.00 (1) e- e420.00

Computer Science
Engineer

80 120 h e17.00 (1) e1,360.00 e3,400.00

GAN
System

Stability and
improvements
by specialist

0 16 h e33.00 (1) e- e528.00

Total e8,180.00 e37,541.60

Table 3.1: Initial cost analysis table. (1) Salaries estimates have been gathered from:
https://www.experteer.es/salary_calculator.(2) First phase cloud computing and
services were free of cost as Google Colab has been used. However, in further phases
more powered services will be used. (3) Prices gathered from Amazon Web Services. (4)
Average price given other papers of similar topic and magnitude.

On the Table 3.1 it can be found the first estimate of the project cost.

The total cost, taking into account, both 1st and 2nd phases, is 37,541.60 e. As
seen on the previous table, most important costs come from engineer hours of dedication
and cloud computing services for the second phase. It is interesting to highlight that
computational cost can be lower if there is a reduction on hardware specifications. The
determined hardware specifications for the second phase are: 8x Nvidia Tesla V100 GPUs
(128 GB) and 64 CPU cores in contrast with 1x Nvidia Tesla K80 GPU (12GB) and a
single core CPU of a Google Colab environment.

https://www.experteer.es/salary_calculator
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Chapter 4

Available databases

In order to test the hypothesis of generating usable anonymized personal data, databases
of personal data will be necessary. These databases will be used to train and test different
GAN models that will imitate the instances of them.

These databases will be organized in two different groups: Image directories and Data
directories. This division will ease the following chapters, where a first approach of GAN
manipulation will be focused on image generation (which is the most common usage) and
the second one on general raw data generation (which is the final goal of this project).
This way, in the transition between images and data generation, it will be possible to
focus entirely in the source of innovation of this project: how raw data can be feed into a
GAN system in order to yield good results, without the need of explaining the basics of
the system which will have been explained previously.

Before listing these databases, it is important to highlight that the main features
used to choose the aforementioned data-sets have been the number of samples and the
clarity/information about the data.
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Figure 4.1: Data samples from the Fingerprint Database. Source: http://dsl.cds.
iisc.ac.in/projects/Anguli/

4.1 Image Directories

4.1.1 Fingerprints Database

Set of high-definition auto generated fingerprints from the Anguli generator used as ground
truth samples for inpainting and denoising tools (see Figure 4.1). In this case, it will be
used as an example of private information that can be reproduced through a GAN.

Source ChaLearn (Anguli: Synthetic Fingerprint Generator)

Available Samples 75600

URL http://chalearnlap.cvc.uab.es/dataset/32/description/

http://dsl.cds.iisc.ac.in/projects/Anguli/
http://dsl.cds.iisc.ac.in/projects/Anguli/
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Figure 4.2: Data samples from the Iris Database. Source: https://www4.comp.polyu.
edu.hk/~csajaykr/IITD/Database_Iris.htm

4.1.2 Iris Database

Set of left-and-right iris images collected from the students and staff at IIT Delhi, New
Delhi, India (see Figure 4.2). This database is available in the public domain as a tool
given the recent popularity of iris based personal identification systems. In this case, just
like the fingerprint database, it will be used as an example of private information that can
be reproduced through a GAN as well. Unlike fingerprints, these images contain more
information and complexity.

Source IIT Delhi

Available Samples 2224

URL https://www4.comp.polyu.edu.hk/ csajaykr/IITD/Database_Iris.htm

https://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_Iris.htm
https://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_Iris.htm
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4.2 Data Directories

4.2.1 Thyroid Database - Static Data

As the first data oriented set of the project, the thyroid database contains user features
that are relevant for thyroid illnesses detection. All its variables are static, meaning that
for each patient there’s only one value per feature without contemplate its evolution. This
database from KEEL has been released to identify if a given patient is normal, suffers
from hyperthyroidism or hypothyroidism. The data contains both continuous and binary
features (see Table 4.1) and they will all be imitated trough a GAN for a specific type of
thyroid illnesses, hypothyroidism in this case.

Source KEEL

Available Samples 7200

URL https://sci2s.ugr.es/keel/dataset.php?cod=67

Features:

• Age (continuous)

• Sex (binary)

• On thyroxine (binary)

• Query on thyroxine (binary)

• On antithyroid medication (binary)

• Sick (binary)

• Pregnant (binary)

• Thyroid surgery (binary)

• I131 treatment (binary)

• Query hypothyroid (binary)

• Query hyperthyroid (binary)

• Lithium (binary)

• Goitre (binary)

• Tumor (binary)

• Hypopituitary (binary)

• Psych (binary)

• TSH (continuous)

• T3 (continuous)

• TT4 (continuous)

• T4U (continuous)

• FTI (continuous)

• Class (label): patient is normal (1),
suffers from hyperthyroidism (2) or
hypothyroidism (3)
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Age Binary Variables TSH T3 TT4 T4U FTI Class
0.73 0 ... 0 0.0006 0.0150 0.1200 0.0820 0.1460 3
0.24 0 ... 0 0.0003 0.0300 0.1430 0.1330 0.1080 3
0.47 0 ... 0 0.0019 0.0240 0.1020 0.1310 0.0780 3
0.64 1 ... 0 0.0009 0.0170 0.0770 0.0900 0.0850 3
... ... ... ... ... ... ... ... ... ...
0.23 0 ... 0 0.0003 0.0260 0.1390 0.0900 0.1530 3
0.69 1 ... 0 0.0003 0.0160 0.0860 0.0700 0.1230 3
0.85 1 ... 0 0.0003 0.0230 0.1280 0.1040 0.1210 3
0.48 1 ... 0 0.0021 0.0200 0.0860 0.0780 0.1100 3

Table 4.1: Data sample from the Thyroid database. Binary variables are listed above.

4.2.2 Cardiogram Database - Dynamic Data

In contrast with the previous data-set, the cardiogram database shows the evolution of its
variables throughout time. The National Metrology Institute of Germany, has provided
this compilation of digitized ECGs for research, algorithmic benchmarking or teaching
purposes to the users of PhysioNet. The ECGs were collected from healthy volunteers and
patients with different heart diseases by Professor Michael Oeff, M.D., at the Department
of Cardiology of University Clinic Benjamin Franklin in Berlin, Germany.

Each record includes 15 simultaneously measured signals (see Figure 4.3): the con-
ventional 12 leads placements (i, ii, iii, avr, avl, avf, v1, v2, v3, v4, v5, v6) together with
the 3 Frank lead ECGs (vx, vy, vz). Each signal is digitized at 1000 samples per second,
with 16 bit resolution over a range of ±16.384 mV.

The main objective of the usage of this database will be to simulate one of the ECG
leads (i) for a specific range of time feeding the GAN previously with all the samples
available from this data-set.

Source Physionet

Available Samples 549 (expandable by splitting each sample into multiple segments,
see Chapter 6.2.2)

URL https://physionet.org/physiobank/database/ptbdb/
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Figure 4.3: Data samples from the Physionet Cardiogram Database. Each
row represents the data from the 16 input channels, (14 for ECGs, 1 for res-
piration, 1 for line voltage) in a 5 seconds time range. Source: https:
//www.researchgate.net/figure/Conversion-of-MRI-to-CT-using-GAN-38-
Adapted-with-permission-Fig-5-Example-of-a_fig3_322657913

https://www.researchgate.net/figure/Conversion-of-MRI-to-CT-using-GAN-38-Adapted-with-permission-Fig-5-Example-of-a_fig3_322657913
https://www.researchgate.net/figure/Conversion-of-MRI-to-CT-using-GAN-38-Adapted-with-permission-Fig-5-Example-of-a_fig3_322657913
https://www.researchgate.net/figure/Conversion-of-MRI-to-CT-using-GAN-38-Adapted-with-permission-Fig-5-Example-of-a_fig3_322657913
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Chapter 5

Methodology & GAN System
Description

In this section, the implementation of a GAN in a specific environment will be explained.

5.1 Methodology

The environment chosen to carry out this project has been:

• Execution environment: Google Colab

• Code Language: Python 3.6

• NN library: Pytorch

Google Colab offers free cloud processing capacity with dedicated graphics cards for
training and inference tasks. On the other side, Python has been chosen because of
previous knowledge of the language and Pytorch due to its high level configuration.
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5.2 Code Sections

Below, the different sections of the GAN code model will be explained referencing them
by the row numbers of the Fingerprint script (Annex 8.1), which is the base for the rest
of GAN systems shown in this project. It is important to highlight that the base code
and structure of this script has been extracted from a Medium article by Munesh Lakhey
called Generative Adversarial Networks Demystified [16].

5.2.1 Dataset Class

After importing the required libraries into the environment, between line 45 and 69
(page 60), an extension of the Dataset class from Pytorch is implemented in order to
import the Fingerprints database correctly. It defines how the database is indexed, how
many samples there are and how to read each instance.

5.2.2 Loading the Database

Between lines 71 and 78 (page 61) the Fingerprints Dataset is instanced and fed into
the DataLoader class (which is the class that administrates the training images) with a
specific batch of 52 samples to train the discriminator and the generator for the case of
the fingerprint model. Besides that, the transform function modifies samples to met the
model specifications: it converts the image to a tensor object and normalize its values to
range between -1 and 1.

5.2.3 Discriminator and Generator Models

Between lines 83 and 127 (page 61) the discriminator and generator models are configured
and instanced. The number of layers, its size and the type of network (CNN or a linear
FCN) will depend on the test. In all tests, however, the discriminator model always starts
with an image-sized input and a single value output ranging between 0 and 1 (which is
the one that specifies if the image fed is real or fake) and the generator starts with a
noise vector (the seed for the generated image) of n dimensions (chosen by the user) and
outputs a fake image of the same size as the original one. In order to restrict the output of



GAN-based Machine for Fake Data Generation 29

the discriminator between 0 and 1 the sigmoid activation function is used. Similarly, the
hyperbolic tangent activation function is used in the generator model to range all pixel
values between -1 and 1 (just as the original images do).

5.2.4 Noise Generator Function

Between lines 129 and 132 (page 62) the function for creating noise vectors is defined.
As said before, this random vector is used as a seed for creating a new generated image.
Each random number of the seed is normal distributed with mean 0 and variance 1 and
the dimension of each seed vector is defined by the user. For this first test, seed vectors
have 100 random numbers for each of the images on the batch.

5.2.5 Selection of the Optimizer Models

Between lines 134 and 139 (page 62) optimizers are defined for both, the generator and
the discriminator. These optimizer models are the ones responsible of modifying the
net weights in order to improve the output results of both generator and discriminator
through the error gradient. The configuration of these optimizers has been left as-is from
the base code of this script [16].

5.2.6 Training Loop

Between lines 148 and 223 (page 62), the training loop is found. This is the translation of
Section 1.2.2 into code. Here, the previously listed elements are used altogether to form
the GAN iterative system. In this case, the training loop is set to 100 epochs. In each of
them, all the real images will be feed in random batches to the discriminator and train
both generator and discriminator models.

5.2.7 Saving Step Results

Between lines 225 and 252 (page 64), which are actually still inside the training loop,
both models and their respective current losses are saved in a specified frequency (every
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5 epochs by default). This way the evolution of the losses can be then studied over time
and a back-up copy of their models can be accessed if there’s any forced stop of the script.
After saving all the information, a 3-by-3 grid of images are displayed with current fake
images of the generator, which allows to see how the model improves its output over the
epochs passed.

5.2.8 Generating Final Results

Between lines 254 and 278 (page 65), a new 3-by-3 grid is rendered but this time with
final results after passing all epochs.
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Chapter 6

Project development: GAN
Application

Now that the GAN system and its implementation in the working environment have been
presented along with the databases that will be used, it is time to show the tests and
its proofs done in this project on behalf of using Generative Adversarial Networks for
anonymizing private health data.

As explained in Chapter 4, this GAN application will be organized in two separated
groups: a first part where image-like private health data will be imitated (Section 6.1) –
which should be the easier task as GANs are currently mainly used for visual applications–
and a second one where the private data to imitate will be purely numeric features from
a patient diagnose (Section 6.2).

6.1 Image Generation

In order to get a first approach on how a GAN system behaves, the initial applications
tested on this project will be image-based, which is the usual case scenario of these kind of
systems. This way, it will be easy to understand which are the capabilities and limitations
of it and, especially, what changes it will bring when using raw data instead of images in
the following chapter.

As explained in Section 5.2, for these applications the code has been structured adapt-
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ing a previous work of Munesh Lakhey for generating digits from the MNIST data-set
[16].

For both experiments below, the only changes that have been made to the original
code are the following:

• Mounting Google Drive directory in the work environment to host training images
on the cloud.

• An extension of the Dataset class (Section 5.2.1) to enable the correct reading of the
specific data-sets of this project: this had enabled the possibility of working directly
from a .zip file of all the images without the need of hosting every single sample on
Google cloud by its own (which can cause reiterative errors when reading the data
if all the images are in the same folder)

• Add-ons for visualizing and saving results live during the optimization process in
order to see the evolution of discriminator and generator losses and reuse the models
for further image generation.

• Specific generator and discriminator models for each database: both FCN and CNN
models.

6.1.1 Fingerprints Data-set

Just as the rest of the tests in this project, before introducing the sample images for the
first time in the system. These have been transformed to a grey-scale format where pixel
values are transformed from [0:255,0:255,0:255] (RGB breakout) to [-1:1]. This simplifies
and reduce the model size without losing any important information for the test (as
all image data used already had only monochrome values). A visual example of this
transformation can be found in Figure 6.1.

In this first test, the chosen model has been a linear one: the fingerprint images have
been transformed from 275 × 400 (original size) to a single output ranging from 0 to 1
(discriminator) and the generator from a 100 dimensions noise vector to a 275×400 image
through an FCN model. Both with the following layers setup (Figure 6.2). Regarding the
batch size, it was decided to leave it on 52, which was the size for the original code of the
GAN system.
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Figure 6.1: Representation of a raw sample of the fingerprint database (left) and a pro-
cessed one where image values have been normalized to range between -1 and 1. Functions
for this transformation are explained in Section 5.2.2.

The first findings of this test showed that trained FCN models are heavier than ex-
pected given the high number of links needed to connect all pixels from one layer to
another (∼ 1-2 GB). This was an important limitation, as layer’s dimensions were highly
limited to avoid excessive training times and because of hardware limitations. That’s
why, as seen in Figure 6.2, the first dimension reduction for the discriminator goes from
275× 400 to 2048.

After a 100 epoch training process, first iterations of the problem showed that losses
tend to stagnate after some epochs: sometimes before a clear output (first epochs) and
other in a more evolved epoch. This can be spotted clearly in the losses of this test (see
Figure 6.3) where after epoch 60, losses don’t change any more and results don’t improve.
As found in some articles [17] [18], this is a concurrent problem with GAN systems and it
will be found again in this project itself. For this first test, however, where the main goal
is to get used to the system and get a reasonably good first fake generated image, this
problem won’t be inquired. In Chapter 6.2.2, a first solution for this problem it is found.

Regarding the output results seen in Figure 6.4, it can be perceived how in the first
epoch there is already a defined contour of the fingerprint, where the outside of it is
purely black (as in the original figures) but the inside is just noise without any kind of
grooves. On following epochs, these grooves start to be defined but fingerprints are still
very bright as there is not a clear separation between finger lines. Finally, between 60 and
100 epochs, results have improve significantly: fingerprints are darker (because of more
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Figure 6.2: Schematic representation of the FCN models used for the Fingerprint test for
both discriminator (top) and generator (bottom). As explained in Section 5.2.3, sigmoid
and hyperbolic tangent functions are used to range output values between the desired
values.
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Figure 6.3: Loss values for both discriminator and generator throughout the 100 epoch
training. As said before, there’s a clear stagnation of the optimization process around the
60th epoch.

defined grooves) and some finger patters can be identified. However, results are still blurry
and finger lines are not as defined as the real samples. These problems could be caused
by the nature of FCN models: as fully connected layers are based on the aggregation of
linear regressions, results tend to resemble more to an average of all real samples rather
than a brand new generated sample.

In the following Section 6.1.2, where same experiments will be carried out for the
Iris data-set, in order to mitigate this problem, CNN models will be used a part from
the already known FCN ones. CNN models are non-linear and, because of its methods
to extract features (in the case of discriminator) and create patterns (in the case of the
generator) they tend to give better results. Plus, as it’s not a fully connected architecture,
models are significantly lighter (∼ 30 MB)1.

6.1.2 Iris Data-set

For the case of Iris data-set, the procedure has been the same: Images have been trans-
formed and fed into the model aiming to observe the output performance of fake images.
This time however, tests have been carried out for both FCN and CNN models to compare
results between them.

1As it has been explained on Chapter 1.2.1, it will not be explained how CNN’s nor FCN’s work as it
is outside the aims of this project.
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Figure 6.4: Generated fingerprint images samples throughout the 100 epoch training.
30 epoch has been chosen as a middle point due to loss stagnation around the 60th epoch.

FCN model

For the linear model, the main change from the fingerprint one has been the batch size,
which has been reduced from 52 to 20 as the total database is significantly smaller (from
75600 to 2224). Besides from that, as the image size of the samples has changed as well
(from 275× 400 to 320× 240), FCN model has slightly changed from last test to fit input
and output images. The structure, however, remains the same from Figure 6.2.

Comparing losses between fingerprint and iris test (see Figure 6.5), it is seen that in this
case the model doesn’t stagnate: Discriminator and generator values are still oscillating.
However, there’s a slight tendency of the discriminator going up. The generator however,
even though it has improved from epochs 40 to 60, it seems to be increasing its loss again.

Regarding the visual results, after 100 epochs, fake samples have some interesting
attributes (see Figure 6.6): Images seem to be more unique between them than fingerprint
results; each eye has a slightly different orientation, eyelids are sometimes closer than
others and the light source changes position between samples.

On the other side, both fingerprint and iris results share the blurry effect due to
the FCN model, which gives the sensation of a brush painted picture. As a medical
oriented test, this can be a problem if details such as the iris membrane or pupil shape
are important. That is why, a “pattern” oriented model as CNNs could be more suitable
for this kind of task.
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Figure 6.5: Loss values for both discriminator and generator throughout the 100 epoch
training for the linear model pm the Iris data-set.

Figure 6.6: Generated iris images samples throughout the 100 epoch training with the
FCN model.
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Figure 6.7: Schematic representation of the CNN models used for the Iris test for both
discriminator (top) and generator (bottom). Sigmoid and hyperbolic tangent functions
have the same functionality as in FCN models (Section 5.2.3). Regarding ReLU’s, they are
used to increase the non-linearity on generated images, which makes them more natural.
Lastly, the avg-pooling function has been used to average the last output matrix into a
single value (1× 1× 1).

CNN model

That being said, a CNN model for the Iris data-set was created. The structure of it, both
for the discriminator and the generator is displayed in Figure 6.7. Due to the non-square
nature of the iris database, CNN layers need to be set up meticulously to smoothly shift
from a square image (noise vector) to a rectangular one (generated image) or vice versa.
CNN layers configuration for this test are shown in Annex 8.2. As explained in page 35,
CNN models are lighter, which makes the training process significantly faster. Because of
that, the model has been trained for 200 epochs instead of 100. Visually, decent results
seemed to take longer to rise than FCN models.

Regarding losses (see Figure 6.8), it is shown here one of the popular problems about
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Figure 6.8: Loss values for both discriminator and generator throughout the 200 epoch
training for the convolutional model om the Iris data-set.

GAN systems [17]: the discriminator gets too successful that the generator gradient van-
ishes and learns nothing, which it will be called Diminished Gradient.

However, throughout the training process eyes kept turning more realistic (see Fig-
ure 6.9). One of the key improvements over the 200 epochs has been the renderization of
a single pupil in an image: as seen on the 100th epoch samples, the pupil was still split
in two or even nonexistent in some of the generated images. On the final results, it is
important to observe that fake images are remarkably more detailed than the ones from
Figure 6.6. However, the overall shape of the eye seems less natural than on the previous
iteration, which leads us to the main problems of the CNN model: as a patterned model,
all samples are less unique between them. One example of this can be found on the eye-
lashes of the final fake images, which are mostly all made of the exact same pattern. Just
like the blurriness of the FCN samples, having the same patterns for the iris membrane
or the pupil shape is neither good. Actually, another of GAN’s problems is the Mode
Collapse [17], where the generator collapses producing a very narrow varieties of samples,
which could be an important problem for health environments.



40 GAN-based Machine for Fake Data Generation

Figure 6.9: Generated iris images samples throughout the 200 epoch training with the
CNN model.

6.2 Data Generation

On this section of the project, focus will shift from images to raw data generation. This
conversion is not trivial, however. Data, unlike images, can have many different dimen-
sions and contain values within many different ranges. Images, on the other side, are
mainly represented in a range value of 0 to 255 for every pixel and with just 2 or 3
dimensions depending if it is RGB or not.

Hence, in order to use the same tools as for image samples, changes will be needed to
uniform data and represent them in a visual way to the GAN system. This issue will be
divided in two tasks:

• Data standardization: Bringing all features of the data-set to the same range
value, which will be from 0 to 255, and trimming all samples to same same amount
of features if needed.

• Data arrangement: Deciding the layout of the data, meaning how features are
placed, in a square shaped space.

A domestic parallelism of this problem could be how humans visualize data in order to
understand it themselves better and quicker. Feeding the original data to the GAN system
in the correct way could be as important as representing an electrocardiogram data to a
doctor in a proper –and visual– way.

That being said, on the code level, the main changes that will be done to the previous
scripts will be:

• Data wrangling processes on the original samples in order to address the issues
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explained above.

• Creating converters from processed data to image files and vice versa.

Besides that, the Following sections will be divided in two: static and dynamic data.
This separation is necessary to differentiate the type of data it is being simulated. On
the first section, static data, each feature is an independent variable that it is supposed,
within the scope of the project, to be constant over time. Opposed to that, the dynamic
data section contains features that are different values over time of the same variable.
In other words, on dynamic data each row is the sequence of values from a time-series
sample. While on static data each row is a list of independent attributes that describes
the sample itself.

6.2.1 Static Data

The first data-set that will be imitated is Thyroids’ from KEEL’s repository. As explained
in Section 4.2.1, this database contains both continuous and binary features from patients
thyroid-related health status. The main objective of using a GAN on this repository is
to generate new anonymous users with the same conditions as the original patients. In
order to do so, a method to translate the data into an image format needs to be designed.
This way it will be possible to pass all patients information to the GAN system and then
receive the generated patient samples accordingly.

Following the requirements presented in Section 6.2, below are the steps followed before
training the GAN system with the original data:

Data standardization

In order to give the same importance to all variances within each of the continuous
features, all units need to be standardized to a common range. This is because the range
of each feature in the data-set varies widely and this can be a problem in the objective
function domain due to the weight of each variable range. This action is also called feature
scaling or normalization.

In order to do so, the distribution of all continuous variables has been studied to check
its max and min values and evaluate if there are anomalous extreme values (outliers)
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Figure 6.10: Thyroid’s features distribution histogram. Every vertical axis represents
the total amount of samples in each feature sub-range.

that can be removed from the data-set to avoid losing resolution on the variability within
the most populated range. An example for this could be the following: given a feature
where its values are within 0 and 10 but there is one anomalous value at 100, if the
feature is standardized to a [0,1] range taking into account the anomalous sample, the
most populated range –and therefore them most important– will be reduced to [0,0.1] so
the value at 100 can be placed at 1.

Before analyzing the features distribution, it is important to say that for this test only
class 3 data has been used. This means that the GAN system will be trained only with
hypothyroidism patients in order to simulate just one type of diagnostic. It has been
chosen hypothyroidism because it was the condition with a greater number of samples in
the data-set (6666) in contrast with hyperthyroidism (368) and normal condition (166).

That being said, on Figure 6.10 are plotted the histograms of all continuous features
in the Thyroids data-set.

As it can be seen, TSH, T3 and FTI features are the ones with greater long tales.
Taking into account this experiment is being carried out without medical knowledge, and
therefore it is unknown the importance nor reason of these isolated values, the trim of
the outliers has been done visually with the histograms in Figure 6.10. On Table 6.1 are
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Feature normalization limits
Age TSH T3 TT4 T4U FTI
0.01 0 0.002 0.017 0.04 0.002
0.97 0.02 0.05 0.27 0.18 0.26

Table 6.1: Feature range limits taking into account histograms from Figure 6.10.

Age Binary Variables TSH T3 TT4 T4U FTI Class
192 1 ... 1 9 70 104 77 143 3
62 1 ... 1 4 149 127 170 105 3
123 1 ... 1 25 117 86 166 76 3
168 255 ... 1 12 80 61 92 83 3
... ... ... ... ... ... ... ... ... ...
59 1 ... 1 4 128 123 92 150 3
181 255 ... 1 4 75 70 55 120 3
223 255 ... 1 4 112 112 117 118 3
125 255 ... 1 27 96 70 70 107 3

Table 6.2: Data sample from the Thyroid database once min-max normalization have
been applied.

represented the determined limits for each of the features exposed above. After remov-
ing the outliers samples and filtering by hypothyroidism condition, the total remaining
samples are 6330.

Now that ranges have been specified, the feature normalization will begin. For this
project, a min-max normalization will be used. The formula for which is:⌊

x−min(x)
max(x)−min(x) · (255− 1) + 1

⌉
(6.1)

This equation will output every feature between 1 and 255, which is the usual range
for image files. The number 0 is excluded from the range so that can be used exclusively
as a NULL value. This will be useful in the following section. Applying Eq. (6.1) to
Thyroid’s data-set, the first examples shown in Section 4.2.1 look like as in Table 6.2.
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Data arrangement

Now that the data is clean and standardized, we can proceed to the arrangement of
itself in an image format. Taking into account the two types of features –binary and
continuous– and their number –6 and 15 respectively– many arrangements can be done in
a 7×7 grid. In Figure 6.11 are displayed some of them. The reason why the arrangement
of all features should be done in a square area is to avoid complications in the system
configuration if models such as CNN are used, just like it happened in Section 6.1.2 for
the Iris data-set. For this first iteration, the arrangement used will be the first one (left,

Figure 6.11: Possible Thyroid’s features arrangements separating binary and continuous
features.

top scheme). It is important to note that for the NULL area, all values will be set to 0.
As brought in Section 6.2.1, the value 0 will be exclusively used to determine a value as
NULL, this way it will be easier for the neural network to distinguish between feature
areas and NULL areas.

In Figure 6.12, there is an example of real thyroid sample turned into image with the
chosen arrangement.
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Figure 6.12: Original sample from the Thyroid’s data-set converted into an image. This
sample is following the first arrangement scheme from Figure 6.11.

Model, Training and Results

As a first test, the Thyroid images will be feed into a FCN. Just as the other FCN
models in this project, it will be trained for 100 epochs. Batch sizes will be of 20 images.
Regarding FCN layers, as this time images are only 7×7 pixels, their number and size has
been reduced considerably. The structure keeps being the same as Figure 6.2 but with just
one hidden layer of size 64 between the input and the output for both the discriminator
and the generator. The last change that has been done to the original structure is the
size of the noise vector for the generator, which is now of 5 values instead of 100.

After training, losses this time have come the other way around: as seen in Figure 6.13,
the generator overtook the discriminator from the beginning. The discriminator trend is
positive and the generator seems stable between 0.6 and 0.8. Similar to the CNN Iris
model (page 38), there seems to be a diminished gradient [17] on the discriminator side
that is causing it an inability to improve because the generator is too strong.

On the output results side, it can be seen a great improvement between epochs on
Figure 6.14. It is perceived how between epoch 1 and 50, the values on the binary zone
start to get contrasted values –around 1 or around 255– and on the continuous values
there is still a variety of values, which is correct. However, on epoch 50 there are yet
values on the NULL side. Finally, on epoch 100 this problem is solved: all values of the
NaN side are 0. It is important to note that on epoch 100 there are some values on the
binary area that are not exclusively 1 or 255. This problem however, can be solved by
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Figure 6.13: GAN system losses evolution throughout 100 epochs on a FCN model for
the Thyroids data-set.

Figure 6.14: Thyroid’s fake images evolution throughout 100 epochs on a FCN model.

applying a logic statement to round up this values to 1 and 255.

Subsequently, in order to understand if fake generated data is following the same
distributions as the original, 6330 data samples will be generated and compared to the
original ones. After generating these samples and converting the image files into numeric
data, all continuous features data –both original one and generated– have been visualized
through box-plots in Figure 6.15.

In all cases, the generated samples are positioned inside the ranges of the ground
truth values for all continuous features. However, the dispersion of the values is different:
Medians does not match neither Q1 and Q3 percentiles or min and max values. The
feature that could be more in-line with ground truth samples is T3. This difference in
the distribution of the features might be explaining that a simple GAN with FCN models
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Figure 6.15: Thyroid’s continuous data features box-plots: comparison between fake
generated data and original data.
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Figure 6.16: Thyroid’s binary data features count by output value: comparison between
fake generated data and original data. These are 6 of the 15 binary variables, the rest of
the plots can be found at page 67.

is not enough to replicate this kind of data-set. This rises the possibility of future lines
of investigation related with this project around the study of new indicators to be used
as loss values for the discriminator and generator. One example could be comparing
standard deviations between ground truth batch samples and generated samples for each
of the continuous features. This, however, will not be analyzed in this document as it
moves away from the project goals.

On the side of binary variables, it has been analyzed if, for the same amount of samples
of fake and real data, the total amount of positive and negative values in all features is
similar between both groups. In Figure 6.16 is rendered this comparison for some of the
binary variables. The rest of the features binary plots are placed in the Annex at page 67.

Results show that counts between real and fake data are similar for almost all fea-
tures. However, for the feature On_antithyroid_medication a more pronounced difference
between groups exists. This could be related with the round up process to get mid values
in the fake binary data output (e.g. 150) to 1 or 255 depending on which is the nearest
one. In any case, results are satisfactory for this first state of the investigation. Because
of that, the data-set will not be tested on CNN models as it is thought that for the goals
of the project the FCN solution is good enough.
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6.2.2 Dynamic Data

The second data-set that will be imitated is the Cardiogram database from Physionet.
As explained in Section 4.2.2, this database contains records of 15 different signals from
patient’s electrical impulses from the heart for a certain amount of time. The main
objective using a GAN on this repository is to generate new anonymous cardiograms
samples that look similar to the original ones. Specifically, in this case it will be simulated
a single signal from the 15 available, lead “i”. Same as on static data, a method to translate
the data into an image format should be designed. This way it would be possible to pass all
patients information to the GAN system and then receive the generated patient samples
accordingly.

Following the requirements presented in Section 6.2, below are the steps followed before
training the GAN system with the original data:

Data standardization

As explained in Section 6.2 the Cardiogram data-set, as an example of dynamic data, has
a single variable –the “i” lead chosen– but as many features as sequential temporal values
are available for each patient. Similar to the static data section, for this cardiogram signal
it will be necessary to know which are the minimum and maximum values it can get in
order to standardize the features values into the [0,255] range2.

Due to the size of the database, it was not possible to use tools such as excel to analyze
the signal values distribution –saving just all “i” lead values from all users weighted
around 1GB, ∼59.000.000 values–. Hence, the database has been analyzed with Python
and Pandas’ library. An extract from the used code and its output is being displayed in
Figure 6.17. On the description of the data (Out[3] in Figure 6.17) it can already be seen
how 25% and 75% quantiles values are already far away from max and min values. This
leads to think that there are probably outlier samples that should be removed from the
data-set. In order to decide which samples to remove, the limit values that cover between
1% and 99% quantiles has been gathered (Out[4] and Out[5] in Figure 6.17). These are
around -2 and 2.

Now that the range has been specified, the feature normalization will begin. Just as
2For this case, as it will be seen on the data arrangement section, it is not necessary to isolate the 0

value to use it as a NULL element.
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Figure 6.17: Extract from the Cardio data-set analysis with Python and Pandas. The
histogram.csv was the file in which all “i” lead values from all users was saved. Last two
rows show that 1% and 99% quantiles are between -2 and 2 values.

for the static data section, a min-max normalization will be used. Now, however, as the
output range will be from 0 to 255, the formula used is:

⌊
x−min(x)

max(x)−min(x) · 255
⌉

(6.2)

Unlike the static data, however, the Cardiogram data-set has another issue that needs
to be tackled: the number of features is not the same for all samples –as not all patients
recordings have the same length– and the total amount of samples is significantly smaller
that previous data-sets used in this project.

A solution to both problems is trimming each user sample into equal-sized features
pieces. This way the number of samples will be greater and they will all the same amount
of features. The choice of what size –and therefore number of features– should have each
sample needs to be balanced between enough duration length and a good amount of total
samples. In this case it has been decided to trim each patient recording into blocks of
2025 features –removing the tail if needed–: this will multiply the number of samples
from 549 to 28902 while maintaining around 2 seconds of recording in each sample, which
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0001 0002 0003 0004 0005 ... 0041 0042 0043 0044 0045
0046 0047 0048 0049 0050 ... 0086 0087 0088 0089 0090

.

.

.
1936 1937 1938 1939 1940 ... 1976 1977 1978 1979 1980
1981 1982 1983 1984 1985 ... 2021 2022 2023 2024 2025

Table 6.3: Data arrangement for cardiogram sample.

represent between 2 and 3 heart beats most of the times. The reason of choosing 2025
features is related with the next chapter: as it was presented on Thyroids and Iris data-
sets, it is preferred to have squared images when dealing with some models such as CNNs.
Therefore, the total amount of features needs to be a perfect square number, and 2025 it
is one of them.

Finally, to apply this two modifications exposed above on the original data, a Python
script has been coded. This way it is easier to automatize the trim process and avoid the
data size limitations of tools such as Excel. The code from this script it is placed in the
Annex 8.4.

Data arrangement

Taking into account that this time there is not a second type of features such as the binary
group on the static data, all the square area available for the data to image transformation
can be filled up with features. That is why in this case there is no necessity of NULL
values.

That being said, the only factor that needs to be determined is the path that will
follow consecutive features in the image. For this test is has been decided to follow a
“Z” movement from left to right. An example of all 2025 feature disposition can be seen
in Table 6.3. Furthermore, in Figure 6.12 there’s an example of a ground truth cardio
sample turned into image with the chosen arrangement.
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Figure 6.18: Original sample from the Cardio’s data-set processed and converted into
an image.

Model, Training and Results

Same as for the static data, the Cardio data-set will be first feed into a FCN model training
it for 100 epochs. Compared to the 6330 samples available for the Thyroids database,
now for the Cardio database there are available 28902 samples. Because of that, both
the batch size and the hidden layers of the model can be larger compared the previous
configuration: the batch size will be 52 and there will be 3 hidden layers of size 1024, 512
and 256 respectively for both the discriminator and the generator. The structure of the
FCN model remains the same as in Figure 6.2 and the noise vector is again sized 100.

After training, the losses for both the discriminator and the generator seemed to be
more unstable than previous cases (see Figure 6.19): values were similar at some epochs
between models and both had positive trends along the first 100 epochs. Because of that,
it was decided to extend the training up to 165 epochs in order to see if the generator’s
losses trend could change. But it was not the case.

However, the main evidences of the system not being able to reproduce a cardiogram
signal were the fake sample results that were being generated. As seen in Figure 6.20,
around the 50th epoch and beyond, all generated images were very similar and far away
from the original samples. Fake outputs did not have coherent values between contiguous
features and there were not identifiable pulse signals, just very noisy waves.

These results led to think that a pattern based model –such as CNN– could work
better in this kind of situation. At the end, for this experiment there is a need of a very
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Figure 6.19: GAN system losses evolution throughout 165 epochs on a FCN model for
the Cardio data-set.

Figure 6.20: Generated Cardio images samples throughout the 100 epoch training with
FCN models as discriminator and generator.
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Figure 6.21: GAN system losses evolution throughout 200 epochs on a CNN model for
the Cardio data-set.

defined chain of values with different patterns for both the heart beat and the steady
state of the electric signal and not a sequence of diffused mean values throughout the
recording. The differences between styles, especially those that are being searched for
this test, can be observed in the generated outputs of the Iris experiment (see Figure 6.6
and Figure 6.9).

Because of this belief, a CNN model have been configured for the Cardio database:
Similar to the Iris CNN model, the GAN will be trained for 200 epochs with a batch size
of 30. Regarding the CNN configuration, as this time the images have a squared aspect
ratio, the settings are easier than before. Given the structure of a CNN on Figure 6.7, the
only difference is that there are 3 hidden layers of 64, 128 and 256 dimensions respectively.
The configuration of each of this layers can be observed in Annex 8.5. The noise vector
remains of size 100.

On the losses side, as it can be observed in Figure 6.21, there is again a problem of
vanished gradient [17] as the discriminator gets too successful very quickly.

However, this time, to avoid a major saturation of the model –as happened on the
Fingerprint data-set– a threshold value will be set up to avoid training discriminator
more time when its loss is already very low. In order to do this, an IF condition will be
placed before propagating the gradients to the discriminator in order to train the model
only when its loss is above a specific value. Taking into account lines 189 to 192 from
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Figure 6.22: Generated Cardio images samples throughout the 200 epoch training with
CNN models as discriminator and generator.

the original Fingerprints code in Annex 8.1, the modification that have been done is the
following one:

Listing 6.1: Modification of the original GAN system for the Cardiogram data-set
1 if loss_disc.item() >= 0.01:

2 #computes the gradients

3 loss_disc.backward()

4 #update parameters using gradients & optimizer rules

5 d_optimizer.step()

6 else:

7 pass

The threshold value has been set up to 0.01. Right at the beginning of the training
process, it has been seen how the CNN model was having better results: after a few
epochs the output images started to contain some patterns similar to the ones on ground
truth samples. As shown in Figure 6.22, after the 100th epoch, some of the samples were
already resembling to the original ones, however there were still some strange patters
such as indefinite heart beats (mid bottom sample) or very high pitched images (mid and
bottom right samples). On the 200th epoch, however, these problems were gone.

Given that now results are not static data, instead of analyzing the distribution of
the studied variable, the output data will be compared to the original one visually –just
how a doctor would do for this kind of information–. This way, it will be easy to see if
signal samples seem to have the same patters, sizes and frequencies as the original ones. A
random sub-group of real and fake cardiogram data can be observed in Figure 6.23. These
results are very interesting on a first sight as both could seem real from a non-professional
perspective.
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Figure 6.23: Ground truth Cardio signals vs generated samples after 200 epoch training
on a GAN system with CNN models as discriminator and generator.

In a detailed comparison, there are some differences and similarities between both
groups. Before mention them however, it is important to highlight that these evaluations
are purely based on the visual differences between fake and real data. We are not aware
if the fake data patters that seem unreal because they are not presented in the real data
sample, could indeed resemble real conditions on human cardiograms. In order to make
a better study of the results the consultant of a doctor would be required.

That being said, if we compare both groups, we can see that the generated cardio-
grams have quite equidistant heart pulses just as the real data does. Furthermore, overall
patterns are very similar. Another similarity is that on all ground truth signals, the base
slope is constant during all the time range. Same trend is observed on generated images.

Regarding differences, there are mainly two elements. There is a clear difference on
spike lengths: ground truth heart pulses have consistently the same length, however this
consistency is not solid on the generated side. Sometimes spikes are smaller or bigger
than before. On the other side, the spike pattern within the same patient seems to be
always the same but on the generated group patters have slightly variations throughout
the sample. On the whole, the output images are not as defined and consistent as real
samples. However, results seem to be satisfactory taking into account this is a first
approach to the matter.
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Chapter 7

Conclusions and Further Research

To start this chapter, it is fair to say that main objectives of the research have been
accomplished. For each of the analyzed databases a first valid output has been yielded.
On the whole, results show that data anonymization through Generative Adversarial
Networks is feasible. However, further investigations will determine the accuracy levels
that the data output can get and whether it is useful for health issues or not.

On the objectives side, it has been surprising to observe the ease of conversion from
images to data for the GAN system and the results obtained in a small amount of time,
both for linear and convolutional models. Another satisfactory detail was the solid co-
herence of final cardiogram’s results throughout time: especially the smoothness of the
curves and the similarity between spikes from a single fake patient recording.

Regarding the elements from the investigation that can be improved or studied further,
it is important to highlight the following ones:

• An in-depth study of the data outputs from both Thyroids and Cardiogram data-
sets by a specialist to verify the value and quality of the fake data.

• On Thyroids data-set, a more exhaustive comparison between generated an original
data could be done: It could be interesting to check for correlations between variables
on the original samples and check if these correlations are still visible in the fake
data. Furthermore, in order to improve the similarity of the variables distributions
–as explained at page 48–, an indicator of the deviation similarity between fake and
original data could be fed into the objective function in following versions of the
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system. Finally, a convolutional model for this data-set would be also enriching to
train, in order to compare the performance between models.

• On the Cardiogram side, besides a better understanding of the results quality with
the help of a specialist, a more complex system could be implemented to simulate
cardiograms with specific characteristics: a concrete average heart rate, a concrete
disease behavior. All this combined with longer generated recordings, as right now
they are just 2 seconds long.

• On a general level, a recurrent problem that has been encountered is the non-
convergence of results. Although all tests had a first valid output, losses graphs
seemed not to be converging to stable values. This could be caused by a short
number of training epochs or a bad system configuration. In any case, new iterations
of the training process with longer computing periods and more powerful machines
would be necessary.

• Finally, for a second phase of this project, a more mature system version would be
appreciated. This means fine-tuning the configuration and standardizing its code
to yield more solid and reliable results. This also entails further investigation on
the creation of GANs, which could mean the purchase of some papers as has been
noted in the initial cost analysis for the second phase (Section 3.5).
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Chapter 8

Annex

8.1 Fingerprint GAN Code

Listing 8.1: Fingerprints GAN code in Python
1 # −*− coding: utf−8 −*−
2 """GAN with PyTorch − Fingerprints.ipynb

3

4 Automatically generated by Colaboratory.

5

6 Original file is located at

7 https://colab.research.google.com/drive/1QrSDRXtQwyYkJaOX8−
bb2Zo6yRjJYATu

8 """

9

10 from google.colab import drive

11 drive.mount('/gdrive', force_remount=True)

12

13 cd /gdrive/My Drive/Colab Notebooks

14

15 #Dependencies

16 import numpy as np

17 import os

18 from skimage import io, transform

19 import torch

20 import matplotlib.pyplot as plt

21 # %matplotlib inline

22 from torchvision import transforms, datasets, utils

23 from torch.utils.data import Dataset, DataLoader
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24 import torch.nn as nn

25 from random import choice

26

27 from zipfile import ZipFile

28 import io as ios

29

30 #Leer imagenes desde el zip

31

32 #from zipfile import ZipFile

33 #import io as ios

34 #

35 #archive = ZipFile("Fingerprints.zip", 'r')

36 #image_data = ios.BytesIO(archive.read("0.jpg"))

37 #out=io.imread(image_data)

38 #

39 #plt.imshow(out)

40

41 #cd /gdrive/My Drive/Colab Notebooks/Fingerprints

42 #!unzip 'Fingerprints.zip'

43 #rm finger_{1..2}.jpg

44

45 class FingerprintsDataset(Dataset):

46 """Fingerprints dataset."""

47

48 def __init__(self, root_dir, transform=None):

49 """

50 Args:

51 root_dir (string): Directory with all the images.

52 transform (callable, optional): Optional transform to be

applied

53 on a sample.

54 """

55 self.root_dir = root_dir

56 self.transform = transform

57 self.archive = ZipFile(self.root_dir, 'r')

58

59 def __len__(self):

60 return 75600 #Total number of images

61

62 def __getitem__(self, idx):

63 img_data = ios.BytesIO(self.archive.read(str(idx)+'.jpg'))

64 image = io.imread(img_data)

65

66 if self.transform:

67 image = self.transform(image)

68

69 return image
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70

71 #Load

72 out_dir = './Fingerprints_dataset' #saves dataset here

73 transform = transforms.Compose([transforms.ToTensor(),

74 transforms.Normalize((0.5,),(0.5,))])

75 #Instance data, save and apply transform

76 fingerprints_data = FingerprintsDataset(root_dir='Fingerprints.zip',

transform=transform)

77 #Data loader feeds data as inputs and labels, of fixed batch size

78 train_loader = torch.utils.data.DataLoader(fingerprints_data, batch_size

= 52, shuffle = True)

79

80 #Get Device

81 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

82

83 #Define discriminator

84 def disc_model():

85 discriminator_model = nn.Sequential(

86 nn.Linear(275 *400, 2048),

87 nn.LeakyReLU(0.2),

88 nn.Dropout(0.3),

89 nn.Linear(2048, 1024),

90 nn.LeakyReLU(0.2),

91 nn.Dropout(0.3),

92 nn.Linear(1024 , 512),

93 nn.LeakyReLU(0.2),

94 nn.Dropout(0.3),

95 nn.Linear(512 , 256),

96 nn.LeakyReLU(0.2),

97 nn.Dropout(0.3),

98 nn.Linear(256 , 1),

99 nn.Sigmoid()

100 ).to(device)

101 return discriminator_model

102 #create a discriminator network

103 discriminator = disc_model()

104 #if we want to start from a checkpoint model

105 discriminator.load_state_dict(torch.load('f_name_lastV2.pth')['

dis_state_dict'])

106 discriminator.eval()

107

108 #Define generator

109 def gen_model():

110 generator_model = nn.Sequential(

111 nn.Linear(100, 256),

112 nn.LeakyReLU(0.2),

113 nn.Linear(256 , 512),
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114 nn.LeakyReLU(0.2),

115 nn.Linear(512 , 1024),

116 nn.LeakyReLU(0.2),

117 nn.Linear(1024 , 2048),

118 nn.LeakyReLU(0.2),

119 nn.Linear(2048 , 275 *400),

120 nn.Tanh()

121 ).to(device)

122 return generator_model

123 #create a generator network

124 generator = gen_model()

125 #if we want to start from a checkpoint model

126 generator.load_state_dict(torch.load('f_name_lastV2.pth')['gen_state_dict

'])

127 generator.eval()

128

129 #Noise generator

130 from torch.autograd import Variable

131 def rand_vecs(batch_size):

132 return Variable(torch.randn(batch_size, 100)).to(device)

133

134 #Define optimizer and loss criterion

135 import torch.optim as optim

136 #create separate optimizers, use BCELoss for both networks

137 d_optimizer = optim.Adam(discriminator.parameters(), lr = 0.0002)

138 g_optimizer = optim.Adam(generator.parameters(), lr = 0.0002)

139 criterion = nn.BCELoss()

140

141 #Get the labels

142 def ones_or_zeros(batch_size, labels):

143 if labels == 1:

144 return Variable(torch.ones(batch_size, 1)).to(device)

145 elif labels == 0:

146 return Variable(torch.zeros(batch_size, 1)).to(device)

147

148 #TRAIN

149 #Create empty lists to catch losses

150 losses_disc, losses_generator = [], []

151 print_freq = 5 #fix how frequently to print losses

152 for epoch in range(100): #100 by default

153 #Networks are training hence, .train()

154 discriminator.train()

155 generator.train()

156

157 #Train discriminator

158 tot_inputs_passed=0

159 for inputs in train_loader:
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160

161 #.to(device)−−> work in either cpu or gpu

162 inputs = inputs.to(device)

163

164 batch_size = inputs.size(0)

165 #Note: inputs.shape −>([52, 1, 28, 28])

166 #reshape to (batch_size, features) as expected by network

167 real_data = inputs.view(inputs.size(0), −1)
168

169 #Flush the retained gradients

170 d_optimizer.zero_grad()

171 # probabilities given real data

172 pred_real = discriminator(real_data)

173

174 #Computing loss for real data

175 loss_real=criterion(pred_real, ones_or_zeros(batch_size, 1))

176

177 #Note grads for gen are detached

178 fake_data = generator(rand_vecs(batch_size)).detach()

179

180 fake_data = fake_data.to(device)

181 # probabilities given fake data

182 pred_fake = discriminator(fake_data)

183

184 #Computing loss for generated data

185 loss_fake=criterion(pred_fake, ones_or_zeros(batch_size, 0))

186

187 loss_disc = loss_real + loss_fake #combined loss

188 losses_disc.append(loss_disc.item()) # log the losses

189 #computes the gradients

190 loss_disc.backward()

191 #update parameters using gradients & optimizer rules

192 d_optimizer.step()

193

194 #discriminator completes a loop

195 #Train generator

196 #Trains from scratch, newly generated data are used

197 g_optimizer.zero_grad()

198 #generates image/feature vector

199 fake_data_new = generator(rand_vecs(batch_size))

200

201 fake_data_new = fake_data_new.to(device)

202

203 pred_fake_new = discriminator(fake_data_new)

204 #Generator's loss minimized after, labels are set to 1

205 loss_generator = criterion(pred_fake_new, ones_or_zeros(

batch_size, 1))
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206

207 losses_generator.append(loss_generator.item())

208 loss_generator.backward()

209

210 g_optimizer.step() #completes training loop for generator

211

212 #Printing the Evolution:

213 #image=generator(rand_vecs(batch_size))[0]

214 #image_host=image.cpu()

215 #sample=image_host.view(−1, 275).detach().numpy()

216 #plt.axis('off')

217 #plt.grid(b=None)

218 #plt.imshow(sample)

219 #plt.show()

220

221 tot_inputs_passed+=1

222

223 print('\r',str(round(float(tot_inputs_passed)/len(train_loader)

*100,2))+"% Epoch passed",end='')

224

225 #Print and save epoch, generator_state_dict as chk_point

226 if epoch % print_freq ==0:

227 print("loss_disc:{:.6}.., loss_generator: {:.5}".format(loss_disc

, loss_generator))

228 torch.save({

229 'epoch': epoch,

230 'gen_state_dict': generator.state_dict(),

231 'dis_state_dict': discriminator.state_dict(),

232 }, ('f_name_' + 'lastV2' + '.pth'))

233 torch.save({

234 'epoch': epoch,

235 'losses': "loss_disc:{:.6}.., loss_generator: {:.5}".format(

loss_disc, loss_generator),

236 }, ('f_name_' + str(epoch) + '.txt'))

237 fig=plt.figure(figsize=(8, 12))

238 columns = 3

239 rows = 3

240 for i in range(1, columns*rows +1):

241 image=generator(rand_vecs(batch_size))[choice(range(

batch_size))]

242 image_host=image.cpu()

243 sample=image_host.view(−1, 275).detach().numpy()

244 #can't convert CUDA tensor to numpy. Use Tensor.cpu() to copy

the tensor to host memory first.

245 fig.add_subplot(rows, columns, i)

246 plt.axis('off')

247 plt.grid(b=None)
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248 plt.imshow(sample)

249 plt.imsave('Epoch_'+str(epoch)+'_sample_'+str(i)+'.png',

sample)

250 plt.show()

251 else:

252 print("New epoch: "+str(epoch+1))

253

254 #Generating Images

255

256 generator=gen_model()

257 generator.load_state_dict(torch.load('f_name_lastV2.pth')['gen_state_dict

'])

258 generator.eval()

259

260 fig=plt.figure(figsize=(8, 12))

261 columns = 3

262 rows = 3

263 for i in range(1, columns*rows +1):

264 image=generator(rand_vecs(52))[choice(range(52))]

265 image_host=image.cpu()

266 sample=image_host.view(−1, 275).detach().numpy()

267 fig.add_subplot(rows, columns, i)

268 plt.axis('off')

269 plt.grid(b=None)

270 im=plt.imshow(sample)

271 im.set_cmap('Greys')

272 plt.show()

273

274 image=generator(rand_vecs(52))[0]

275 image_host=image.cpu()

276 sample=image_host.view(−1, 275).detach().numpy()

277

278 plt.imsave('Final_Result.png', sample, cmap='Greys')
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8.2 Iris CNN Layer Configuration
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Table 8.1: CNN layers and its configuration for the Iris data-set
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Figure 8.1: Thyroid’s extra binary data features count by output value: comparison
between fake generated data and original data. These are 9 of the 15 binary variables,
the rest of the plots can be found at page 48.

8.3 Thyroid’s Binary Extra Features

8.4 Cardiogram Data-Set Sample Trimming Process

Listing 8.2: Python’s script for processing and trimming the data
1 import wfdb

2 import pandas as pd

3 import numpy as np

4

5 output_db=pd.DataFrame(columns=['signal'])

6

7 cardio_index=pd.read_csv('cardio_index.csv')
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8 row=−1
9 chunk_size=2025

10

11 def remap(x,sample):

12 A=−2
13 B=2

14 C=0

15 D=255

16

17 out=(x−A)/(B−A)*(D−C)+C
18

19 if out>255:

20 out=255

21 if out<0:

22 out=0

23

24 return int(out)

25

26 for i in range(len(cardio_index)):

27 folder=cardio_index.loc[i,'folder']

28 file=cardio_index.loc[i,'file']

29 record=wfdb.rdrecord(file,pb_dir='ptbdb/'+folder)

30 sample_signal=record.p_signal[:,0]

31 nr_chunks=len(sample_signal)/chunk_size

32 if nr_chunks>=1:

33 print(nr_chunks)

34 limit_signal=int(len(sample_signal)−round(nr_chunks%1*chunk_size
,0))

35 print(limit_signal)

36 sample_signal=sample_signal[:limit_signal]

37 n_chuncks=int(len(sample_signal)/chunk_size)

38 splits=np.split(sample_signal,n_chuncks)

39 #add splits as output_db instances

40 for chunk in splits:

41 row+=1

42 row_sample=chunk.tolist()

43 sample=[remap(x,row_sample) for x in row_sample]

44 output_db.at[row,'signal']=sample

45 print('row: '+ str(row))

46 print('len chunck: '+str(len(chunk)))

47 else:

48 pass

49 output_db.to_csv('output_cardio_db_remapped.csv')
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8.5 Cardio CNN Layer Configuration
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Table 8.2: CNN layers and its configuration for the Cardio data-set
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