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Abstract. Reliable earthquake detection and location algorithms are
necessary to properly catalog and analyze the continuously growing seis-
mic records. This paper reports the results of applying Long Short-Term
Memory (LSTM) networks to single-station three-channel waveforms for
P-wave earthquake detection in western and north central regions of
Venezuela. Precisely, we apply our technique to study the seismicity
along the dextral strike-slip Boconó and La Victoria - San Sebastián
faults, with complex tectonics driven by the interactions between the
South American and Caribbean plates.

Keywords: Earthquake detection· neural networks· deep learning· LSTM

1 Introduction and Related Works

Most earthquake detection methods are designed for moderate and large earth-
quakes, and fail to detect low-magnitude events, buried in seismic noise. How-
ever, correctly detecting these earthquakes through the existing seismic records
is key to understanding their causes and to mitigate the seismic risk. This paper
reports the results of an approach to apply Long Short-Term Memory (LSTM)
networks over seismic data collected by broadband stations at western, central
and northern Venezuela, during the time period of 2015 to 2018. The seismicity
in the region results from the right-lateral strike-slip faulting experienced along
the interface between the Caribbean and South American plates, as the former
moves to the east with respect to the latter. A review of the seismic history and
tectonics of our study area and related regions can be found in [3]. Artificial Neu-
ral Networks have been actively applied to earthquake detection since mid-late
90s. In particular recurrent networks, well suited for recognition and inference of
temporal patterns, have been used for small-event detection in noisy data in [7]
and [6], and for early warning systems and earthquake forecasts in [4]. The net-
work architectures in [6] and [4], present few preprocessing convolutional layers,
preceeding the core LSTM structure, in a similar way to our current approach.
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2 Methodology

2.1 Dataset and Preprocessing

The Venezuelan Foundation of Seismological Research (FUNVISIS) network
counts with 40 broadband stations recording three-channel continuous data at
100 Hz. The input dataset includes waveforms from seismic events with mag-
nitudes in the range [1.7, 5.2] Mw that occurred between 2015 and 2018. Few
of these events took place on the western state of Tachira, while hypocenters of
the remaining bigger set are located across the Northcentral states of Carabobo,
Aragua and Miranda.

Input waveforms are first normalized and divided into single-station streams.
In P signal detection, the Z component is the most relevant and that is why
the rest of the components are deleted [2]. After that, we cut the signals in 50
seconds windows, which gives us windows of 5001 samples. Then, we compare
this windows starting and final times to the times specialized analysts label as
containing an event, to determine if a window contains an event or not. After
that, we put the windows containing events in one folder and the ones not
containing on another one. From this folders we load the same number of events
and noise windows so we have a balanced dataset. Then, the dataset is splitted
into 20% for validation and the rest for training.

2.2 Network

In our first experiment, we tried to use only LSTM layers with some fully con-
nected layers. This first experiments did not give positive results, since the accu-
racies did not exceed 65%. We hypothesized that this could be due to the erratic
nature of seismographic signals. In order to solve this problem, we added some
convolutional layers before the LSTM layers. The reasoning behind these layers
that we added is to first extract the features using these layers and afterwards
to feed this features to the LSTM.

Our final network model (see Figure 1) starts with three convolutional layers,
each one of them followed by a max-pooling layer. Convolutional layers had 128
filters each, and a window size of 3 samples. As said previously, the purpose of
these layers is to extract all the important features from the wave signal. After
these layers, three LSTM layers were added with 128 units each one. Further-
more, we have used the CuDNN implementation [1]. This CUDA library enables
to use GPU acceleration to train our neural network, which makes the training
process remarkably faster. The main goal of this step is to extract time related
features from the input signal and to extract the important data from it. The
last phase consists of two fully connected layers with 128 units and a rectified
linear activation function (ReLU). The purpose of this step is to make the final
classification after having extracted all the features. And after the two dense
layers a final output layer with a single perceptron, that has a sigmoid activa-
tion function which classifies the signal, as containing an event or containing
just noise. The neural network was trained with the ADAM optimizer [5] with
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a learning rate of 0.001. The loss function used is binary cross entropy, which
was chosen because the problem can be summed up to be a binary classification
problem.

Fig. 1. Network architecture with 3 convolutional+max pooling layers, 3 LSTM layers
and 2 fully connected layers.

3 Experiments and Results

The network has been trained using a system with an Intel Core i7-4770 CPU
@ 3.40GHz, 16GB of RAM memory and an NVIDIA GeForce GTX 1060 6GB.
The version of Tensorflow used is 1.12.0 with CUDA 9.0.176. During the training
process a Tensorboard callback was used, which enabled to monitor the accu-
racy and loss over each epoch (see Figure 2). This way the networks could be
compared to each other. After some networks were trained, we determine which
architectures and parameters gave the biggest benefits and those were kept while
the underperforming ones were rejected. Finally, the accuracy has been topped
out at 97.61%, with a difference in loss between the training and validation
datasets smaller than 1%. This indicates that no overfitting takes place.

4 Discussion and Conclusions

In this paper we have reported the results of an approach to apply LSTM net-
works over single-station waveforms for P-wave based earthquake detection in
western and North Central Venezuelan regions. Our data contains waveforms
from diverse magnitude and cause earthquakes recorded by more than 40 het-
erogeneous and distant seismic stations, within a wide geographic area encom-
passing four different geological faults. We obtain a 97.61% accuracy when we
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Fig. 2. Evolution of training (left) and validation (right) accuracy during training.

train the network for 40 epochs. As future work, we will address the problem
of estimating the pick time for the P-wave with an Encoder-Decoder LSTM,
approaching it as a sequence-to-sequence problem. We also plan to apply our
approach to S-wave detection.
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