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Abstract
The main goal of this research is to perform a pick and place task done by several mo-
bile robots equipped with a robotic arm by using a distributed algorithm and a for-
mation control law for keeping the shape. Nowadays, the industry sometimes needs
the cooperation of different robots to achieve what cannot be reached by a single robot.
Sometimes, the fact of using only a single robot can be either really expensive or not
powerful enough and it is worth to implement a system with several agents.

The studied case will be with four agents and it will be tested experimentally with
the mobile nexus robots which are in the DTPA lab. The fact of being a task performed
by several agents means that formation control theory will be taken into account, specif-
ically the formation control Law designed by Garcia de Marina, Jayawardhana, and Cao
[1]. Several studies and tests related to formation control have been performed in the
PhD Nexus Group.

Furthermore, some research about pick and place task has also been studied but
only for a single robot. Because of this reason, the aim of this research is to extrapolate
the results of the pick and place task done for one robot to a formation of several agents
by using the formation control law previously specified. Moreover once the algorithm
is tested in a four agent formation is relatively easy to change the number of agents by
simply modifying some parameters.

Challenges such as recognition of objects (Markers), tracking them (PI control) and
keeping the formation of the agents (formation control theory) will be achieved by using
the suitable sensors. For instance, a camera mounted on the robotic arm will be used
for the recognition of objects, while a RPLidar Laser Scanner will be used for measuring
the distances between robots and ensure that they keep the formation.
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1 Introduction
Over the last few decade, formation control algorithms for the control of multi-agent
systems have received a lot of attention from the control community [2], [3]. The sin-
gle, heavily equipped vehicle may require considerable power to operate. Compared
to a single agent, a group of networked agents has the advantages of being flexible, re-
dundant and fault tolerant [4] and as such can be employed to perform complex tasks
[5] in a centralized or in a distributed manner. For instance, many coordinated robot
tasks, such as enclosing a target [6], area exploration and surveillance [7], and vehicle
platooning for energy efficiency [8], can be achieved by combining two different coop-
erative controls: multi-agent formation control and group motion control.

The main goal of this research is to perform a pick and place task done by sev-
eral mobile robots equipped with a robotic arm by using a distributed algorithm and
a formation control law for keeping the shape. Moreover, the project is based on the
algorithm designed by Garcia de Marina, Jayawardhana, and Cao [1].

1.1 Research Background

In this section, a literature overview and a brief introduction of the main topics used in
this thesis are proposed.

1.1.1 Multi-agent systems (MAS) and formation control

A multi-agent system (MAS) is a system composed of multiple interacting agents. In
most of the cases the agents are considered intelligent and equipped with different sen-
sors that allow them to interact with the environment. Multi-agent systems can be used
to solve problems that are difficult or impossible for an individual agent to solve. The
number of applications is wide, highlighting among others robotics, distributed com-
putation or security.

According to Ferber (1999), "an agent can be a physical or virtual entity that can
act, perceive its environment (in a partial way) and communicate with others, is au-
tonomous and has skills to achieve its goals and tendencies. It is in a MAS that contains
an environment, objects and agents (the agents being the only ones to act), relations
between all the entities and a set of operations that can be performed by the entities"
[9].

Within the topics related to MAS, formation control is one of the most studied. For-
mation control of MAS has obtained intensive focus due to its widely adaptability to
solve different problems, e.g., in robotics, astronautics or aeronautics [10], [11]. A com-
mon objective in formation control is to maintain a desired (rigid) shape while moving
the formation in a given direction. For instance, this objective is at issue when multiple
mobile robots transport (heavy) items or when aircrafts are flying in a V-shape in order
to save fuel [12].
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(a) Formation control of autonomous
drones.

(b) Formation control of aircrafts in or-
der to save fuel.

Figure 1.1: Examples of formation control

1.1.2 Robotic manipulator

The mechanical structure of a robot manipulator consists of a sequence of rigid bodies
(links) interconnected by means of articulations (joints) [13]; a manipulator is character-
ized by an arm that ensures mobility, a wrist that confers dexterity, and an end-effector,
usually composed by a gripper, that performs the task required of the robot.

A manipulator’s mobility is ensured by the presence of joints. The articulation be-
tween two consecutive links can be realized by means of either a prismatic or a revo-
lute joint. In an open kinematic chain 1, each prismatic or revolute joint provides the
structure with a single degree of freedom (DOF). A prismatic joint creates a relative
translational motion between the two links, whereas a revolute joint creates a relative
rotational motion between the two links. Revolute joints are usually preferred to pris-
matic joints in view of their compactness and reliability.

The workspace is the set of points in the space which the manipulator’s end-effector
can access. Its shape and volume depend on the manipulator structure as well as on the
presence of mechanical joint limits.

The degrees of freedom should be properly distributed along the mechanical struc-
ture in order to have a sufficient number to execute a given task. In the most gen-
eral case of a task consisting of arbitrarily positioning and orienting an object in three-
dimensional (3D) space, six DOFs are required, three for positioning a point on the
object and three for orienting the object with respect to a reference coordinate frame. In
the case that the number of actuators is less than the number of DOFs, the arm is under
actuated. Otherwise, the arm is called fully actuated if it can reach all the positions in
the workspace with an arbitrary orientation.

1.1.3 Automated guided vehicles (AGV)

An automated guided vehicle (AGV) is a driverless transport system used for planar
movement of materials. Their use has grown enormously since their introduction, since
the number of areas of application and variation in types has increased significantly.
AGVs can be used in inside and outside environments, such as manufacturing, distri-
bution, transshipment and (external) transportation areas [14]. At manufacturing areas,
AGVs are used to transport all types of materials related to the manufacturing process.

An AGV follows along marked long lines or wires on the floor, or uses radio waves,
vision cameras, magnets, or lasers for navigation. They are most often used in industrial
applications to transport heavy materials around a large industrial building, such as a

1 An open kinetic chain is defined as “a combination of successively arranged joints in which the termi-
nal segments can move freely”.
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Figure 1.2: AX-18 Smart Industrial Robotic Arm used in this project.

factory or warehouse. In the case of this research, the AGV will use a vision camera to
follow a marker.

Figure 1.3: Kiva robots used in amazon’s warehouses [15].

1.2 Research Design

A research design (or research strategy) describes how the investigation will be ap-
proached for the dissertation. Thus, the methodology, main goal and research questions
and stakeholders will be briefly discussed in this section.
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1.2.1 Methodology

The Design Science will be the methodology [16] (Hevner) followed in this research
project. The design science research can be briefly analyzed as an embodiment of three
closely related cycles of activities. The Relevance Cycle inputs requirements from the
contextual environment into the research and introduces the research artifacts into en-
vironmental field testing. The Rigor Cycle provides grounding theories and methods
along with domain experience and expertise from the foundations knowledge base into
the research and adds the new knowledge generated by the research to the growing
knowledge base. The central Design Cycle supports a tighter loop of research activity
for the construction and evaluation of design artifacts and processes. The recognition of
these three cycles in a research project clearly positions and differentiates design science
from other research paradigms. Figure 1.4 borrows the IS research framework found in
Hevner, March, Park, et al. [17] and overlays a focus on the three inherent research cy-
cles.

Figure 1.4: Design Science Research Cycles

1.2.2 Main goal and research questions

The main goal of this research is to achieve that a formation of four mobile agents are
able to detect an object, track it, pick it and leave it in a different place. This main goal
can be achieved by answering the following research questions:

Which is the most suitable formation control law to follow?
This question is basically answered in previous work done in the DTPA lab [18]
concluding that the formation control law [1] desgined by Garcia de Marina, Jayaward-
hana, and Cao was the most suitable one. However, in Section 2.2 these reasons
are briefly discussed.

Which previous research (useful for the project) has been done in the DTPA-lab?
This research is based mainly on two research master thesis done in the DTPA
lab. On the one hand, Siemonsma [18] validated the formation control law [1]
designed by Garcia de Marina, Jayawardhana, and Cao and implemented it in the
Nexus mobile robots. On the other hand, Buursma [19] used one single Nexus
mobile robot to implement a pick and place task.

Which hardware is available to perform the research?
The hardware available for this research is the one from the DTPA lab. The hard-
ware which is used for this project is more specifically explained in the Chapter
5.
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Which is the most suitable ROS configuration?
Since the power of the CPUs mounted in the Nexus mobile robots is limited and
that can be a problem related to the frequency communication, some different con-
figuration have been tried in order to run some ROS nodes in the WORKSTATION
computer. This is explained in more detail in the Section 6.2.

Which are the algorithms and control used for this research?
Due to the wide variety of ways to face up this problem, the decision made is
explained in Chapter 3.

Which is the most suitable sequence of steps that the formation should follow?
The steps which the formation is following in order to perform the task is de-
scribed in Section 3.1 in more detail.

1.2.3 Stakeholders

In a corporation, a stakeholder is a member of "groups without whose support the or-
ganization would cease to exist" [20], as defined in the first usage of the word in a 1963
internal memorandum at the Stanford Research Institute.

Particularly, in this research project, two types of stakeholders can be distinguished.
On the one hand, the RUG and more specifically the DTPA lab which provided me of
all the material, help and knowledge necessary. On the other hand, Garcia de Marina,
Jayawardhana, and Cao who designed the formation control law in which this research
project is based.

1.3 Thesis Outline

The remainder of the thesis is organized as follows:

• Chapter 2 explains the background of this research project. Two main topics are
described in this chapter. First of all, the Smart robotic arm is explained by giving
its DH parameters, forward kinematics and inverse kinematics. Secondly, it is
also given an explanation for the formation control law [1] designed by Garcia
de Marina, Jayawardhana, and Cao. This chapter becomes crucial for the well
understanding of the project.

• Chapter 3 provides a problem formulation and describes the algorithm developed
to tackle the problem.

• Chapter 4 describes the simulation setup and the experimental design and shows
the results obtained from the simulation.

• Chapter 5 describes the experimental setup and shows the experimental results.

• Chapter 6 provides a discussion of the thesis specifying what has been achieved
and the limitations which have arisen.

• Chapter 7 concludes all the previous chapters highlighting the most important
points of the thesis.

• Chapter 8 give some recommendations about the future work to be done.
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2 Literature study

2.1 Robotic Arm Control

2.1.1 Frame Corrections and Denavit-Hartenberg Parameters

In order to describe the motion of the manipulator the DH notation is used. These
calculations have been performed according to [21]. The particular robotic arm adopted
in this project can be seen in Figure 2.1 with its angles, distances and axes. The values of
the DH parameters are also shown in table 2.1 (See Appendix B for further information).

Figure 2.1: Schematic drawing of the CrustCrawler arm. The joint set
depicted is: θ1 = 0, θ2 = π/2, θ3 = −π/2, θ4 = 0, θ5 = 0.

Link αi−1 ai−1 θi di
1 0 0 θ1 L1
2 −π/2 0 −π/2 + θ2 0
3 π L2 π/2 + θ3 0
4 π/2 L4 π/2 + θ4 L3 + L5
5 π/2 0 θ5 0
6 −π/2 0 π/2 L6

Table 2.1: The standardized D-H parameters for the Robotic arm.
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i−1
i T =


cos(θi) − sin(θi) 0 ai−1

cos(αi−1) sin(θi) cos(αi−1) cos(θi) − sin(αi−1) −di sin(αi−1)
sin(αi−1) sin(θi) sin(αi−1) cos(θi) cos(αi−1) di cos(αi−1)

0 0 0 1

 (2.1)

To calculate the transformation matrix from one joint frame to the next one equation
(2.1) is used. Taking into account that i−1

i T is the transformation relation between one
frame (i-1) to another frame (i), is deduced:

0
NT = 0

1T 1
2T 2

3T · · · N−1
N T (2.2)

Thus, from equations (2.1) and (2.2) the following matrix (2.3) can be calculated as:

0
NT =


r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

 (2.3)

where rij determines the rotation matrix 0
N R, while px, py, pz forms the position

vector 0PN .

2.1.2 Forward Kinematics

One of the main problems of this research is to transform what is seen from the cam-
era mounted in the manipulator to the base of the robot in order to be able to control
the position of the formation and move it towards the object. To perform the calcula-
tion shown in section 2.1.1 the different parts of the Robotic Arm have been measured
obtaining the lengths shown in Table 5.1.

Taking into account these values (Table 5.1) and the values of the DH parameters
(Table 2.1) the different transformations matrix can be calculated (see Appendix C to
see these calculations).

Thus, the transformation matrix from frame C (camera) to frame 0 (base) is described
in (2.4)

0
CT = 5

CT 0
5T (2.4)

Taking into account that CP is the vector of the tag respect to the camera and 0P is
the vector of the tag respect to the base frame and that 0P and CP are listed below as

0P =


x0
y0
z0
1

 ; CP =


xC
yC
zC
1

 (2.5)

The position of the tag respect to the base 0P can be easily calculated considering the
equations (2.4) and (2.5)

0P = 0
CT CP (2.6)

2.1.3 Inverse Kinematics

Once the system is in a position in which the robotic arm can reach the tag, means that
the tag is in the reachable workspace [22]. Since the position of the tag respect to the
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base is known (BP), it is time to perform the Inverse Kinematics in order to know the
different joint angle values. For simplicity and in order to have an analytic solution, the
joint angles 4 and 5 have been set to 0 ( θ4 ≡ θ5 ≡ 0). First of all, the transformation
matrix 0

6T has to be taken into account:

0
6T =

[0
6R 0 p6
0 1

]
(2.7)

where 0 p6 is:

0 p6 =

x
y
z

 (2.8)

These calculations are listed in more detail in Appendix D to finally obtain the fol-
lowing joint values: θ1

θ2
θ3

 =

 arctan 2(y, x)
arctan 2(s2, c2)

arccos ( c2−L2
2−b2

2L2b )− β

 (2.9)

2.2 Formation Control

As highlighted in section 1.2, the other key focus of this thesis is formation control in
order to keep a shape and move the formation towards the object. This is achieved via
the algorithm developed by Garcia de Marina, Jayawardhana, and Cao [1] (2016). In
the following, the motivation which drove us to the choice of this particular algorithm
is described.

1. The formation shape and the motion control are achieved simultaneously while
in other algorithms these two problems are usually tackled separately by using
the gradient-based strategies for formation control and leader–follower coordina-
tion for motion control. In this last case, the leader moves according to a desired
trajectory and the followers simply track the leader [23].

2. No extra sensors and estimators are needed which leads to a cheaper system be-
cause the formation shape and the motion control are achieved simultaneously.

3. The simplicity of the algorithm opens possibilities to solve difficult problems such
as collective rotational motion, the enclosing of a moving target, and the formation
coordination task for agents governed by higher order dynamics.

4. The addition of a new agent shouldn’t be a problem since the algorithm is flexible
enough. This is explained in more detail in Section 2.2.5.

5. Only a single sensor in one of the agents is needed to know the position of the
formation in a global coordinate. This is because each agent i can work with only
its own local frame Oi.

2.2.1 Preliminaries

In this section, some notations and basic concepts are introduced. For a given matrix
A ∈ Rn×p, define A , A⊗ Im ∈ Rnm×pm, where the symbol ⊗ denotes the Kronecker
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product1, m = 2 for R2 or otherwise 3 for R3, and Im is the m-dimensional identity
matrix. For a stacked vector x , col(x1, · · · , xk) with xi ∈ Rn, i ∈ {1, · · · , k}, the
diagonal matrix Dx , diag(xi)i∈{1,··· ,k} ∈ Rkn×k is defined. The cardinality of the set χ
is denoted by |χ| and the Euclidean norm of a vector x is denoted by ||x||. 1n×m and
0n×m are used to denote the all-one and all-zero matrix in Rn×m, respectively.

2.2.2 Formations and Graphs

A formation of n ≥ 2 autonomous agents whose positions are denoted by pi ∈ Rm

is considered. The agents are able to sense the relative positions of its neighboring
agents. The neighbor relationships are described by an indirect graph G = (V , E) with
the vertex set V = {1, · · · , n} and the ordered edge set E ⊆ V × V . The set Ni of the
neighbors of agent i is defined by Ni , {j ∈ V : (i, j) ∈ E}. The elements of the
incidence matrix B ∈ R|V|×|E| for G by

bik ,


+1, i f i = E tail

k
−1, i f i = Ehead

k
0, otherwise

(2.10)

where E tail
k and Ehead

k denote the tail and head nodes, respectively, of the edge Ek, i.e.,
Ek = (E tail

k , Ehead
k ). A framework is defined by the pair (G, p) where p = col(p1, · · · , pn).

The stacked vector of the sensed relative distances can then be described by

z = B>p (2.11)

Note that each vector zk = pi − pj in z corresponds to the relative position associated
with the edge E head

k = (i, j).

2.2.3 Infinitesimally and Minimally Rigid Formations and Their Realization

In this section, the concept of rigid formations and how to design them will be briefly
reviewed. Most of the concepts explained here are covered in [1] and in more detail
in [24], [25]. Define the edge function fG(p) = colk(||zk||2) and denote its Jacobian by
R(z) = D>z B>, which is called the rigidity matrix in the literature. A framework (G, p)
is infinitesimally rigid if rank(R(z)) = 2n− 3 when embedded in R2 or if rank(R(z)) =
3n − 6 when embedded in R3. Additionally, if |E | = 2n − 3 in the 2-D case or |E | =
3n− 6 in the 3-D case, then the framework is called minimally rigid. Roughly speaking,
under the distance constraints, the only motions that one can perform over the agents in
an infinitesimally and minimally rigid framework, while they are already in the desired
shape, are the ones defining translations and rotations of the whole shape. In Figure 2.2
some examples in R2 and R3 of rigid and nonrigid frameworks are illustrated.

For a given stacked vector of desired relative positions z∗ = col(z∗1 z∗2 · · · z∗|E |), Z
describes the set of the possible formations, namely

Z , {(I|E | ⊗R)z∗} (2.12)

where R is the set of rotational matrices in R2 or R3. Roughly speaking, Z consists
of all formation positions that are obtained by rotating z∗. If (G, p) is infinitesimally and
minimally rigid, then, similar to the above, the set of the resulting formations D can be
defined by

1 Kronecker product, Wikipedia, https://en.wikipedia.org/wiki/Kronecker_product (accessed 1
April 2019)

https://en.wikipedia.org/wiki/Kronecker_product
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Figure 2.2: (a) Square without an inner diagonal is not rigid, since we
can smoothly move the top two nodes, keeping the other two fixed with-
out breaking the distance constraints. (b) Rigid but not an infinitesimally
rigid framework. If we rotate the left inner triangle, then the right in-
ner triangle can be counterrotated in order to keep the interdistances
constant. (c) Minimally rigid but not an infinitesimally rigid framework
since the nodes’ positions are collinear. (d) Triangle is infinitesimally and
minimally rigid. (e) Cube formed by squares without diagonals is not
rigid. (f) Zero-volume tetrahedron is rigid but not infinitesimally rigid in
R3 , since all the nodes are coplanar. (g) Tetrahedron in R3 is infinitesi-

mally and minimally rigid.

D , {z | ||zk|| = dk, k ∈ {1, · · · , |E |}} (2.13)

where dk = ||z∗k ||, k ∈ {1, · · · , |E |}
Note that, in general, it holds that Z ⊆ D. For a desired shape, one can always

design G to make the formation infinitesimally and minimally rigid. In fact, in R2 , an
infinitesimally and minimally rigid framework with two or more vertices can always
be constructed through the Henneberg construction [26]. In R3 , one can always obtain
an infinitesimally and minimally rigid framework by the Henneberg-like tetrahedron
insertions, as has been done in [23].

2.2.4 Gradient control in interagent distances

As explained in [1], many coordinated tasks can be achieved by combining two dif-
ferent cooperative controls: multiagent formation and group motion control. For for-
mations of complicated shapes, these two problems are usually tackled separately, by
using the gradient-based strategies for formation control and leader-follower coordina-
tion for motion control, in which for the latter, the leader moves according to a desired
trajectory and the followers simply track the leader [27]. However, in this work, only
gradient-based is used for both objectives.

In gradient-based formation control, stabilizable formations are identified by em-
ploying rigidity graph theory, in which the vertices of a graph represent the agents
and the edges stand for the interagent distance constraints to define the shape of the
formation. Rigid formations are associated with a potential function determined by
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the agents’ relative positions. The potential has a minimum at the desired distances
between the agents; thus, its gradient leads naturally to the formation controller that
stabilizes rigid formations locally.

For a formation of n agents associated with the neighbor relationship graph G, con-
sider the following system where we model the agents as kinematical points:

ṗ = u (2.14)

where u is the stacked vector of control inputs ui ∈ Rm for i = {1, · · · , n}.
For each edge Ek, one can construct a potential function Vk with its minimum at

the desired distance ||z∗k || so that the gradient of such functions can be used to control
interagent distances distributively.

A potential function is defined

V(B>p) = V(z) =
|E |
∑
k=1

Vk(zk) (2.15)

and then the gradient descent control can be applied to each agent i in (2.14)

ui = −∇pi

|E |
∑
k=1

Vk(zk) (2.16)

It can than be shown that the multi-agent formation will converge locally to the desired
shape. According to [1], [28] and [29], the agent dynamics (2.14) under (2.16) can be
written in the compact form

ṗ = −B>∇zV(z) (2.17)

where ∇zV(z) is the stacked vector of ∇zk Vk(||zk||)’s. Denoting the distance error
for edge k by

ek = ||zk||l − dl
k (2.18)

where l ∈N. It follows that

∇zk Vk(||zk||) = zk||zk||l−2ek (2.19)

By substituting it into (2.17) and noting that

ėk = l||zk||l−1 d
dt
||zk|| = l||zk||l−2z>k żk (2.20)

the closed-loop dynamics can be written in compact form as

ṗ = −BDzDz̃e = −R(z)>Dz̃e (2.21)

ż = Bṗ = −BR(z)>Dz̃e (2.22)

ė = lDz̃D>z ż = lDz̃R(z)R(z)>Dz̃e (2.23)

where e ∈ R|E | is the stacked vector of ek’s, z̃ ∈ R|E | is the stacked column vec-
tor consisting of all the ||zk||l−2s, and the matrices Dz and Dz̃ are the block diagonal
matrices of z and z̃, respectively, as defined in Section 2.2.1.

If the desired formation D is infinitesimally and minimally rigid, then the error sig-
nal e will locally go to zero.
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2.2.5 Gradient-based formation-motion control

Notation of the frames of coordinates

The global frame of coordinates is denoted by Og. The global frame is fixed at the
origin of Rm with an arbitrary fixed orientation. Similarly, the local frame for agent i is
denoted by Oi with some arbitrary orientation independent of Og. The body frame is
denoted by Ob. The body frame is fixed at the centroid pc of the desired rigid formation.
If we rotate the rigid formation with respect to Og, then Ob is also rotated in the same
manner. Recall that, i pj defines the position of agent j with respect to Oi. In order to
simplify the notation, the superscript is omitted whenever we discus an agents’ variable
with respect to Og, e.g. pj , g pj.

Inducing motion parameters in the gradient descent controller

In [1] a pair of motion control parameters are used in order to achieve a steady state
translational and rotational motion. The motion control parameters are denoted by
µk ∈ R2 and µ̃k ∈ R2. These parameters are scaled by a gain c and added to the term
dl

k for each agent associated with the edge Ek = (i, j). Note that in [1], l = 2 is used
throughout the analysis for the sake of simplicity and clarity of the notation (in the case
of l = 2, Dz̃ becomes the identity matrix). However, from now onwards the case for
l = 1 is considered since this is more convenient during the experiments and since the
stability analysis are omitted in this Thesis. Note that the main results of the analysis
can be easily extended to any l ∈ N. After scaling the motion control parameters and
adding them to the term dk, agent i uses a controlled distance of dk +

µk
c and agent j uses

dk − µ̃k
c . For the corresponding edge Ek = (i, j), these parameters are introduced in the

gradient descent controller with the gain c, namely

uk
i = −c

zk

||zk||
(||zk|| − dk) + µkzk (2.24)

uk
j = c

zk

||zk||
(||zk|| − dk) + µ̃kzk (2.25)

where uk
i and uk

j are the corresponding control inputs for agents i and j with edge
Ek. The equations above can be written in the following compact form

ṗ = −BDzDz̃e + A(µ, µ̃)z (2.26)

The elements aik of A are constructed in a very similar way as in the incidence ma-
trix, namely

aik ,


µk, i f i = E tail

k
µ̃k, i f i = Ehead

k
0, otherwise

(2.27)

Therefore, µ and µ̃ ∈ R|E | are defined as the stacked vectors of µk and µ̃k for all
k ∈ {1, · · · , |E |}. Note that if µ = −µ̃, then dk +

µk
c = dk − µ̃k

c = d̃k. This implies that
when control law (2.26) is applied, while µ = −µ̃, only gradient-based formation shape
control occurs with d̃k being the new stacked vector of prescribed distances. Further-
more, the gain c is a free design parameter for achieving exponential stability of the
formation as shown in the stability analysis in [1].

One important property of (2.26) is that each agent i can work with only its own
local frame Oi. This is shown in more detail in [1, Lemma 4.1 on p. 687]. In order to



14 Chapter 2. Literature study

induce some desired steady-state motion of the formation in the desired shape, µ and
µ̃ can be manipulated at the equilibrium of (2.26). Then, the steady-state motion is a
function of the desired shape z ∈ Z and µ, µ̃ namely

ṗ∗ = A(µ, µ̃)z∗ (2.28)

Rigid body mechanics and decomposition of the motion parameters

Some notions from rigid body mechanics and the decomposition of the motion param-
eters are discussed below.

Some notions from rigid body mechanics in [30] can be used for describing agents’ i
velocity. As in the case of points in a rigid body, the steady-state velocity of every agent
ṗ∗i at the desired rigid formation shape can be decomposed into

ṗ∗i = ṗ∗c +
bw× b p∗i︸ ︷︷ ︸

ṗ∗iw

(2.29)

where bw is the angular velocity of the rigid formation (similar to to that for the rigid
body) and × denotes the cross product. In particular, in view of control law (2.26), and
when the agents are in the desired shape z∗ ∈ Z , agents’ i velocity (2.29) is given by

ṗ∗c + ṗ∗iw
=
|E |
∑
k=1

aikz∗k (2.30)

In order to achieve the translational and rotational movement of the whole forma-
tion, in [1] the motion parameters are descomposed into µ = µv + µw and µ̃ = µ̃v + µ̃w.
Where µv, µ̃v ∈ R|E | are used to assign the desired translational velocity and µw, µ̃w ∈
R|E | are used to assign the desired rotational velocity. Using this decomposition, (2.30)
can be rewritten for all the agents into the following compact form

ṗ∗ = A(µv, µ̃v)z∗︸ ︷︷ ︸
1|V|⊗1 ṗ∗c

+ A(µw, µ̃w)z∗︸ ︷︷ ︸
ṗ∗w

(2.31)

where ṗ∗w ∈ Rm|V| is the stacked vector of all the rotational velocities ṗ∗iw
, i ∈

{1, · · · , |V|}.
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3 Problem formulation and algorithm
development
In this chapter, a problem formulation is provided and the algorithms developed to
tackle the problem will be discussed.

3.1 Problem formulation

The problem can be described as a finite state machine as shown in Figure 3.1. Thus,
the automata can not go to the next state until certain conditions are met. These states
and conditions are described below:

S0start S1 S2 S3

S4S5S6S7

Initialized Detected Approached

Target enclosed

PickedMovedPlaced

Figure 3.1: Finite state machine of the formation. Note that the loops in
the same state are not shown in order to make the automata clearer

• Initializing (S0): The four agents have to be correctly initialized. That consists of
recognizing each other in order to keep the formation and to move the four robotic
arms in order to keep the marker visible.

• Detecting (S1): The four agents are trying to detect the marker. Only some of them
will be able to detect it, then the agent which is closer to the marker becomes the
leader of the formation. In the case the formation does not detect any object, since
the camera mounted on each agent has a limited field of view, the formation will
rotate until an object is detected.

• Approaching (S2): The four agents move towards the object and stop in a desired
distance in front of it.

• Enclosing the target (S3): The four agents move around the object with an orienta-
tion in which the robotic arm is pointing the object.

• Picking (S4): The four robotic arms pick the object in a open loop since no feedback
is possible due to the camera is not pointing the object anymore. The joint values
are known performing the Inverse Kinematics (Section 2.1.3).

• Moving (S5): The formation moves to another place in an open loop because to
receive feedback more sensors will be needed and the CPUs are not that powerful.
Moreover, it is not the aim of this research project.
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• Placing (S6): The formation leaves the object in the place reached in state S5.

• Shutdown (S7): The system is shutdown.

The steps described above are shown in a more illustrative way in the Figure 3.2.

(a) S1: Detecting. (b) S2: Approaching. (c) S3: Enclosing the target.

(d) S4: Picking. (e) S5: Moving. (f) S6: Placing.

Figure 3.2: Steps followed by the formation to perform the task.

3.2 Algorithm development

The block scheme of the closed loop system achieved in this research is shown below in
the Figure 3.3.

Controller System

d(t)

u(t)

Measurements

r(t) e(t) y(t)
−

ŷ(t)

Figure 3.3: Main basic algorithm used in the research project.

Where r(t) is the reference signal, y(t) is the output of the system, ŷ(t) is the mea-
sured output of the system, e(t) is the error and u(t) is the control input. This control
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scheme will be conjugated in different ways to solve different subproblems of the com-
plex system considered. For instance, in Section 3.2.2 the control is a PI controller which
controls the inputs (movement) of the Nexus mobile robot (system). Finally, the Mea-
surements block provides an estimation of the output of the system obtained from some
sensors.

3.2.1 Detection and leader decision

The formation will rotate until the object is detected. The agent whose camera first
detects the object will become the leader. Thus, depending on which agent is the leader
of the formation, Table 3.1 specifies which are the desired distances for the approaching
control. The axis in the x and y directions are defined taking into account the movement
of the agent 1 as described in Figure 3.4.

X

Y
1 2

34

Figure 3.4: Detecting state. The formation starts to rotate. According to
the direction of rotation, the leader would be agent 1 because is the first

agent to see the object.

Agent 1 2 3 4
d∗x d∗ d∗ −d∗ −d∗

d∗y −dk/2 dk/2 dk/2 −dk/2

Table 3.1: Desired distances depending on the leader of the formation.

Where d∗ is the desired distance in which the formation stops before starting to
move around the object and dk is the desired edge distance for any k 6= 3 (see Figure
4.1).

3.2.2 Approach control

Once the object is detected and the leader is defined, the formation is able to start ap-
proaching the object. This approach is done by using a PI controller and the desired
distances shown in Table 3.1. The desired orientation of the formation, in this case, will
be 0.
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The PID controller is by far the most common control algorithm [31]. Most practical
feedback loops are based on PID control or some minor variations of it. If u(t) is defined
as a control input, the algorithm form of a PID controller can be described as

u(t) = kpe(t) + ki

∫ t

0
e(τ)dτ + kd

de
dt

(3.1)

where u is the control signal and e is the error signal. The controller parameters are
the proportional gain kp, integral gain ki and derivative gain kd.

However, many controllers do not even use derivative action. In this particular
case, only a PI controller is used in order to control the position of the formation by
measuring the distances in the x-direction and y-direction and the angle by measuring
the orientation in the z-direction. This results in the equations listed below:

ux = −kpxex − kix

∫ t

0
ex(τ)dτ (3.2)

where ex = dx − d∗x, being dx and d∗x the distance to the tag and the desired distance
in the x-direction respectively.

uy = −kpyey − kiy

∫ t

0
ey(τ)dτ (3.3)

where ey = dy − d∗y, being dy and d∗y the distance to the tag and the desired distance
in the y-direction respectively.

uθ = −kpθeθ − kiθ

∫ t

0
eθ(τ)dτ (3.4)

where eθ = θ− θ∗. The orientation angle θ is defined as the angle between the x-axis
of the formation and perpendicular to the tag. Thus, the desired value of this angle is
θ∗ ≡ 0. In the appendix E is explained how to get the orientation of the apriltag relative
to the base frame. Moreover, the inputs described above are negative due to Nexus
setup and coordination frame.

The block scheme of the closed loop movement of the nexus is shown below in
Figure 3.6

PI Controller Mobile robot
u

Image Processing

φ

p∗ e p
−
p̂

Figure 3.5: Particular algorithm used for the approaching control. The
Image processing block is formed by the detection of the tag and the for-
ward kinematics needed for computing the position of the mobile robot

base frame instead of the camera frame.

where p∗ = [d∗x d∗y θ∗]>, p̂ = [dx dy θ]>, e = [ex ey eθ ]
>, u = [ux uy uθ ]

> and p is the
output position and orientation of the nexus. The vector φ = [φ2 φ3 φ5]> represents the
angle values of joints 2, 3 and 5 of the robotic arm, the ones responsible for centering
the tag (see Section 3.2.3).
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Desired 
position (p*)

ex

ey

eθ

Measured 
position (pm)

Figure 3.6: Formation approaching to the object with the three errors con-
sidered in the PI control.

3.2.3 Centering of the tag

The fact that the camera has a limited field of view means that a control of the robotic
arm should be implemented in order to correct the position of its joints to keep the tag
visible all the time. These errors are computed as

ecx = arctan
αx

αz
(3.5)

ecy = arctan
−αy

αz
(3.6)

where ecx and ecy are the horizontal and vertical error from the center of the camera
frame and the one of the apriltag, respectively, see Figure 3.7. Moreover, αx, αy and αz
are the positions in x, y and z seen from the camera.

Figure 3.7: Errors between the camera and the center of the apriltag. The
orange dot represents the center of the camera while the red cross re-

pressents de center of the apriltag.

The horizontal and vertical compensation are handled by the robotic arm in a de-
coupled way. The block diagram is represented below in Figure 3.8
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PI Controller Robotic Arm
φ∗

Image Processing

p

atan

ec
∗ ec φ

α

−
êc

Figure 3.8: Block diagram used for the centering control.

where ec = êc = [ecx ecy]>, e∗c = [0 0]>, α = [αx αy αz]> and φ∗ = [φ∗2 φ∗3 φ∗5 ]
> is the

vector of the desired angle values of the joints in order to keep the tag centered.

Gravity compensation

During the implementation of centering algorithm, it has been noticed that the real
position of a joint was always different from the desired one and the error was always
in the gravity force direction. This is because the robotic arm needs power for keeping
a certain joint configuration with a specific window error. In Figure 3.9, the behaviour
of the servos is represented.

Figure 3.9: How the servos reach the goal position.

When implementing the system with feedback of the robotic joint values, it has been
noticed that the vertical error (ecy) does not converge to zero but to an specific value (see
Figure 3.12a). Furthermore, the higher is the load supported by the joint, the higher is
the error (e) between the desired (φ∗) and real (φ) angle values of the joints. In Figure
3.10 the relationship between these two variables is shown.

(a) Shoulder Pitch Joint (b) Elbow Flex Joint

Figure 3.10: Lineal regression between the error and load of each joint.
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The implemented solution is to replace the Robotic Arm block of Figure 3.8 by the
block diagram shown in Figure 3.11. The idea is to control the input to the servos via a
proportional controller where φ̃∗ = [φ̃∗2 φ̃∗3 φ̃∗5 ] is the new input vector to the servos. The
improvement of the system is shown in Figure 3.12b.

P Controller Servo
φ̃∗φ∗ e φ

−

Figure 3.11: Robotic Arm block from Figure 3.8

(a) Without gravity compensation. (b) With gravity compensation.

Figure 3.12: ecx and ecy errors.

In Figure 3.13, the complete block diagram with gravity compensation is shown.

PI Controller P Controller Servo
φ∗

Image Processing

p

atan

ec
∗

−
ec e φ̃∗ φ

α

−

êc

Figure 3.13: Complete block diagram used for the centering control.
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4 Simulation setup, experimental design
and simulation results
4.1 Simulation setup

The simulation is used to validate the algorithm developed for the approaching of the
formation to the target. However, some differences can be distinguished between simu-
lation and experimentation because of the ideality of the simulation. Thus, the assump-
tions and constraints listed below will be taken into account during the simulation:

The agents will be represented as points because it is not the aim of this simulation to implement
the current real scenario but to prove that the algorithm works.

The agents will be supposed to be equipped with a camera of a 360◦ field of view. Thus, they
will be able to see the object wherever it is and no rotation of the formation is needed to
detect the object in the initialization. Note that during the real experiments the field of
view of the camera is 70◦. However, it is possible that in the future this algorithm can be
implemented with camera which has a larger field of view.

The time step of the simulation has been chosen taking into account the limitation of the slowest
element of the real scenario. In this case, the update frequency of the real system is limited
by the Laser Scanner. The Laser Scanner has an update frequency of 5, 5Hz, so the time
step of the system will be ∆t = 0, 18s.

The enclosing algorithm in the simulation does not need to rotate the agent on themselves but
it does in the real scenario. That is why during the simulation this algorithm only depends
on the distance from the agents to the object.

The maximum velocity of the agents is limited by the maximum velocity of the Nexus cars
(0, 6 m/s as seen in [32]. This is checked during the simulations as explained in Section
4.3.)

The formation only approaches the object forward or backward.

4.2 Experimental design

4.2.1 Graph topology of the minimally rigid formation during the experi-
ments

As discussed in the preliminaries in Section 2.2, the neighbor relationships between
agents can be described by an undirected graph G = (V , E) and its corresponding
incidence matrix B ∈ R|V|×|E|. Four robots will be used throughout the experiments,
therefore |V| = 4. Recall from Section 2.2 that a formation is defined as minimally rigid
in the 2D case if |E | = 2n− 3. Therefore, five edges are needed to compose a minimally
rigid formation of four robots. This entails that |E | = 5. Furthermore, recall that the
body frame fixed at the centroid b pc of the desired formation is denoted by Ob. The
framework of the formation with corresponding incidence matrix are shown in Figure
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Figure 4.1: Minimally rigid formation of four agents with five edges. The
body frame Ob is fixed at the centroid pc of the desired formation.

4.1 and in (4.1) respectively. Note that in order to form a square, edges 1, 2, 4 and 5
should have a length of a, and edge 3 a length of

√
2a.

B =


1 0 0 1 0
−1 1 1 0 0
0 −1 0 0 1
0 0 −1 −1 −1

 (4.1)

4.2.2 Design of µ and µ̃ for achieving a desired translational and rotational
formation velocity

The motion parameters µ and µ̃ are induced in control law (2.26) in order to achieve
formation motion. Recall from Section 2.2.5 that µ and µ̃ can be decomposed into µ =
µv + µw and µ̃ = µ̃v + µ̃w. Where µv and µ̃v are used to assign the desired translational
velocity and µw and µ̃w are used to assign the desired rotational velocity. In addition to
the decomposition proposed and discussed in [1] and Section 2.2.5, µv and µ̃v is further
decomposed in µvx, µ̃vx, µvy and µ̃vy. Where µvx and µ̃vx are used to assign the desired
translational velocity in the x-direction of the body frame Ob and µvy and µ̃vy are used
to assign the desired translational velocity in the y-direction.

Below, three working examples are used to discuss the design of µvx, µ̃vx, µvy, µ̃vy, µw
and µ̃w respectively. The parameters sx, sy and sw are used to rescale the formation
velocity in the x-, y- and rotational direction respectively.

Translational formation velocity in the x-direction

The aim is to move the formation shown in Figure 4.1 in the x-direction of its own body

frame Ob with a velocity of 1m/s, i.e. b ṗ∗c =

[
1
0

]
. Following the algorithm described in

Section 2.2.5, the motion parameters µvx and µ̃vx needed are respectively

µvx =
[
0 1 0 1 0

]
(4.2)

µ̃vx =
[
0 1 0 1 0

]
(4.3)
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Translational formation velocity in the y-direction

The aim is to move the formation shown in Figure 4.1 in the y-direction of its own body

frame Ob with a velocity of 1m/s, i.e. b ṗ∗c =

[
0
1

]
. Following the algorithm described in

Section 2.2.5, the motion parameters µvy and µ̃vy needed are respectively

µvy =
[
1 0 0 0 −1

]
(4.4)

µ̃vy =
[
1 0 0 0 −1

]
(4.5)

Rotational formation velocity

The aim is to rotate the formation shown in Figure 4.1 with angular velocity bw =
2 rad/s around its centroid b ṗ∗c . Following the algorithm described in Section 2.2.5, the
motion parameters µw and µ̃w needed are respectively

µw =
[
1 1 0 −1 1

]
(4.6)

µ̃w =
[
1 1 0 −1 1

]
(4.7)

4.3 Simulation results

The simulation shows the trajectory of each agent and the lineal and orientation errors
between the leader of the formation and the object. The leader of the formation is the
closest agent to the object and the errors are between the closest face of the object and
the leader of the formation. The center of the closest face is plotted as a red point while
the object is plotted as a square. The different parameters used during this simulation
are specified in Table 4.1. However, the simulations have also been tested with other
different values to the ones specified in Table 4.1.

Parameter Value
l 1
c 0.5

d1245 0.8
d3

√
2 d1245

Simulation Time 60 s
∆t 0.18 s
d∗ 0.3 m

Object orientation 15◦

Object x-position 0 m
Object y-position 1.4 m

kpx 0.2
kix 0.0005
kpy 0.2
kiy 0.0005
kpθ 0.005
kiθ 0.005

Table 4.1: Simulation parameters values used in the simulation.
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4.3.1 Initialization

This simulation focus on the transition to the steady-state motion. Therefore, in this
case, the velocity of each agent and the errors of the edges are shown in order to see
how the steady-state motion is reached. Figure 4.2 also shows the trajectory of the
formation towards the object.

(a) General overview of the formation during its initialization.

(b) Error of the length of each edge. (c) Velocity of each agent.

Figure 4.2: Simulation of 5s of the initialization of the system.

On the one hand, in Figure 4.2b, it can be seen how the error edges converges to
0 in a few seconds. On the other hand, in Figure 4.2c it is shown how the velocity of
each agent converges to the desired velocity according to the inputs provided by the
PI controller. It can also be proved that the velocity of each agent is never higher than
0.5 m/s and, consequently, it is not higher than the maximum velocity of the Nexus cars
(0.6 m/s). Thus, because of the reasons explained above, it is proved that the steady-
state motion is reached.
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4.3.2 Approaching

The system is approaching the object until a desired distance between the leader and the
object is reached. These distances are specified in Table 3.1. Note that d∗ is a parameter
of the simulation and it could be modified.

(a) General overview of the formation during the approaching.

(b) Distance error in the x and y directions. (c) Error of the orientation of the formation.

Figure 4.3: Simulation of 30s of the approaching state.

In Figures 4.3b and 4.3c, it is shown how the lineal and orientation errors converges
to 0. Hence, the approaching state is completed.

4.3.3 Enclosing the target

The system moves around until the object is completely centered. Note that in Figure
4.4b, around 40s, the error in the x-direction suddenly changes. This is because the
approaching state has been completed and there is a new goal for the distance in the
x-direction in the enclosing state.
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(a) General overview of the complete simulation. The formation moves
around the object until this is completely centered.

(b) Distance error in the x and y directions. (c) Error of the orientation of the formation.

Figure 4.4: Simulation of 60s until the formation has enclosed the object.

From all the results shown above it can be concluded that the algorithm works for
the initialization, approaching and enclosing states. Note that, because of the inherent
ideality of the simulation, the results are not affected by any external noise.
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5 Experimental setup and results

5.1 Experimental setup

In order to carry out this project several hardware and software have been used. In this
section, the experimental setup will be shown.

5.1.1 Hardware (Robotic Agents)

The robotic agents used in this project are formed by a base or mobile platform, a laser
scanner, a robotic arm and a camera (mounted in the same robotic arm) as shown in
Figure 5.1.

Figure 5.1: Robotic agent formed by its base (Nexus Robot), robotic arm
(CrustCrawler AX-18), Laser Scanner and Camera.
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Mobile Nexus Robot

The Nexus Robot is an omnidirectional vehicle because it has omnidirectional wheels.
An omnidirectional vehicle is formed by three or more omnidirectional wheels [33]. The
schematic of how the wheel works is shown in Figure 5.2a

A single mecanum wheel does not allow any control in the rolling direction but for
three or more mecanum wheels, suitably arranged, the motion in the rolling direction
of any one wheel will be driven by the other wheels. Its pose is represented by the body
frame B with its x-axis in the vehicle’s forward direction and its origin at the centroid of
the four wheels. A vehicle with four mecanum wheels is shown in Figure 5.2b

(a) The light rollers are on top of the wheel,
the dark roller is in contact with the ground.
The green arrow indicates the rolling direc-

tion. (b) YouBot configuration.

Figure 5.2: Schematic of a mecanum wheel in plan view and schematic of
a vehicle

The four wheel contact points indicated by grey dots have coordinate vectors B pi.
For a desired body velocity BvB and angular rate Bw the velocity at each wheel contact
point is:

Bvi =
BvB + Bw ẑB × B pi (5.1)

The different achievable behaviours of the vehicle [32] are illustrated in figure 5.3.

Figure 5.3: Co-effect of 4 mecanum wheels
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The Robotic Arm (Crustcrawler AX-18A)

The Robotic Arm is a product from CrustCrawler Robotics [34], has 5 DoF and is equipped
with 8 AX-18A servo motors (the Shoulder Pitch Joint and the Elbow Flex Joint are formed
by 2 servo motors). It has an overall length of 56 centimeters and weights 1 kilo-
gram. Every joint has a 300◦ range with 1024 steps (which means that the resolution
is 0.29◦/step = 0.00506 rad/step). The Robotic Arm consists of five joints and a gripper.
In Figure 5.4 the Robotic Arm is depicted and the joints are named. The control of the
arm only requires a serial connection to the computer through an USB cable and the
USB2Dynamixel. All components are described in more detail on the CrustCrawler’s
website1. The different parts of the Robotic Arm have been measured obtaining the
lengths shown in Table 5.1.

Part Length [cm]
L1 17
L2 17
L3 7
L4 4
L5 4
L6 9

Table 5.1: Length of the different links specified in centimeters.

Figure 5.4: CrustCrawler AX-18A Smart Robotic Arm with joint names

In figure 5.5 the multi purpose mounting system above the gripper is shown. This
system can be used, for instance, to place the webcam.

Laser Scanner

Every Nexus robot is provided with a LIDAR laser scanner. The laser produces a 2D
point cloud data. This data is necessary to measure the relative distances from each

1CrustCrawler AX-18A, https://www.iter.org/album/Media/7%20-%20Technical(accessed 31
March 2019)

https://www.iter.org/album/Media/7%20-%20Technical
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Figure 5.5: The multi purpose mounting system above the gripper

agent to their neighbors. Two important properties of the laser scanner are the maxi-
mum update frequency of 5.5Hz and the maximum rate of 360 data points per round
2.

Camera

The camera will be used in order to detect the apriltags and consequently the position
of the object. In this case, the model of the camera is Philips SPC2050NC 3. This camera
has a field of view of 70◦, a sensor of 2.0 MP CMOS and a maximum rate of 90 FPS.
However, the real rate will be much lower due to communication limitations.

5.1.2 Software

Robot Operating System

The Robot Operating System (ROS) [35] is a flexible framework for writing robot soft-
ware. It is a collection of tools, libraries, and conventions that aim to simplify the task of
creating complex and robust robot behavior across a wide variety of robotic platforms.

Among other concepts, it is really important to understand, at least, the following
concepts:

• Node: Nodes are processes that perform computation. For example, one node
controls a laser range-finder, one node controls the wheel motors, one node per-
forms localization, one node performs path planning, one node provides a graph-
ical view of the system, and so on.

• Master: The ROS Master provides name registration and lookup to the rest of the
Computation Graph. Without the Master, nodes would not be able to find each
other, exchange messages, or invoke services.

• Messages: Nodes communicate with each other by passing messages. A message
is simply a data structure, comprising typed fields.

• Topic: Messages are routed via a transport system with publish / subscribe se-
mantics. A node sends out a message by publishing it to a given topic. The topic

2 RPLidar A1 360◦ Laser Range Scanner, http://www.slamtec.com/en/lidar/a1 (accessed 09 April
2019)

3 Philips SPC2050NC, Philips, https://www.philips.co.uk/c-p/SPC2050NC_00/webcam/
specifications (accessed 10 May 2019)

https://www.philips.co.uk/c-p/SPC2050NC_00/webcam/specifications
https://www.philips.co.uk/c-p/SPC2050NC_00/webcam/specifications
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is a name that is used to identify the content of the message. A node that is inter-
ested in a certain kind of data will subscribe to the appropriate topic.

• Services: The publish / subscribe model is a very flexible communication paradigm,
but its many-to-many, one-way transport is not appropriate for request / reply
interactions, which are often required in a distributed system. Request / reply is
done via services, which are defined by a pair of message structures: one for the
request and one for the reply

In figure 5.6a it is shown the general working way of ROS. The Master allows all
other ROS pieces of software (Nodes) to find and talk to each other. That way, it is not
necessary to always specify “Send this sensor data to that computer at 127.0.0.1". It is
possible to simply tell Node 1 to send messages to Node 2.

Figure 5.6b tries to emphasize in how services work, which means that there are
a request and a reply message. A Node can register a specific service with the ROS
Master, just as it registers its messages. In the below example, the Image Processing
Node first requests /image_data, the Camera Node gathers data from the Camera, and
then sends the reply.

(a) Registration and exchange of mes-
sages between nodes.

(b) Exchange of information by a re-
quest/reply service.

Figure 5.6: ROS Overview

System overview: nodes and topics

Different code will be used in this project because of the complexity of the task. Instead
of performing one big algorithm, it will be discomposed in small pieces of code in order
to be more understable and easier to perform. That’s why code written by other people
from the DTPA lab [18] [19] will be included. Figure 5.7 tries to show the different nodes
(scripts) and topics used in the project.
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Nexus 1 Nexus 4

Nexus 1 Nexus 4

Apriltags 1 Joint States 1 · · · Apriltags 4 Joint States 4

Controller variable publisher

Joint Command 1 Controller variable Joint Command 4

Controller 1 Inter-agent distances 1 Controller 4 Inter-agent distances 4

Input Velocity 1 Data Processing 1 · · · Input Velocity 4 Data Processing 4

Nexus 1 Scan 1 Nexus 4 Scan 4

Wheel command 1 RPLiddar 1 Wheel command 4 RPLiddar 4

Figure 5.7: Schematic overview of the nodes (blue rectangle) and topics
(green ellipses) used. For simplicity only agents 1 and 4 are shown

The node Controller variable publisher subscribes the topic /apriltags/detections and
the topic /JointStates of each mobile agent i to obtain the position and orientation of the
apriltag seen from the camera and the angle values of all the joints. This node is also
publishing to the /JointCommand topic of each mobile agent i the desired joint values
in order to keep the tag visible. After performing the necessary calculations, the node
Controller variable publisher publishes the inputs to move the formation to the topic
Controller variable. This topic is subscribed by the controller of each agent.

The RP-lidar publishes 360 range measurements with a frequency of 5.5Hz. The
data processing nodes translate these measurements into the inter-agent distances or z-
values. Based on the inter-agent distances and the controller parameters, the controller
node (employing control law discussed in Section 2.2.5) calculates the desired input
velocities. The input velocities are translated into separate wheel commands which are
communicated to the motors of the wheels. The communication to the wheels is done
by software which is not in the ROS environment.

5.2 Experimental results

Even though, the idea was to implement the system with the formation, due to technical
limitations, the experimental results are shown only for a single robot, being this robot
the supposed leader of the formation. Therefore, it can be tested that the algorithm
works and later apply it with the formation control. Moreover, the results shown below
will be only for the approaching algorithm because to enclose the object four cameras
(one mounted on each robot) are needed.
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In the case that the robot does not detect any tag, it will start rotating until a tag is
detected. Once the tag is detected, the robot will start approaching until it stops in front
of him but displaced dk/2, for any k 6= 3, to the left since the robot would be agent 1
and leader of the formation.

(a) Distance error in the x and y directions. (b) Orientation error.

Figure 5.8: Experimental implementation of the approaching state.

In Figure 5.8a, the lineal errors (ex, ey) are represented. It can be seen that they both
converge to 0 with a specific error margin. Because of this reason, the horizontal error
(ex) does not finally converge to 0 since the horizontal error margin is not really accurate
due to there is no necessity to stop the robot at an accurate distance in the approaching
algorithm. In Figure 5.8b, the orientation error (eθ) is represented and it can also be
checked that it converges to 0. From these results it can also be seen that the system is
affected by some external noise.

Figure 5.9: Camera centering errors during the approaching algorithm.

In Figure 5.9, it is shown the centering errors (ecx, ecy). The errors are conditioned
by the movement of the robot and the robotic arm. Because of this reason, these errors
do not converge clearly to 0 since the system needs more time to stabilize. One solution
could be to move the robot slower in order to give time to the controller of the robotic
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arm to center completely the object and, consequently, have the errors closer to 0. An-
other solution could be to increase the gains of the robotic arm controller in order to
move the robotic arm faster. This option led to a higher shaking of the robotic arm and,
as a consequence, to sometimes lose the tag. Because of these reasons, the decision was
to balance a enough fast system with a low shaking in which the tag was always visible
but sometimes not perfectly centered. Moreover, the noise which appears in the signals
is partially produced by the shaking phenomenon among other factors.
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6 Discussion
The main goal is to perform, with a formation of four agents, a pick and place task. As
explained in more detail in Section 3.1, in order to achieve this goal different states have
to be reached. Unfortunately, due to technical limitations (see Section 6.2), it has not
been possible to reach all these states, being the main goal partially achieved.

6.1 Evaluation of the main goal and research questions

Even though the main goal has not been completely reached due to technical problems
and limitations, an approach to the goal has been done. All the research questions have
been answered and the theory about the next states has been explained during the thesis
giving the opportunity, in the future, to continue with this project when the technical
issues are solved, being the possible implementation less complicated.

Moreover, a simulation has been performed in order to prove that the approaching
and enclosing algorithms work. However, the following states have not been simulated
due to the complexity of these states and the ideality of the simulation.

The real scenario has only been tested, with one robot, for the initialization, detec-
tion and approaching states since it was not possible to implement the system with a
camera mounted on each agent (see Section 6.2), which is needed for the enclosing state
in the real scenario.

6.2 Limitations

During the realization of the project several limitations have appeared preventing the
proper performance of it. These limitations are described below.

Servos

The CrustCrawler AX-18A Smart Robotic Arm has some restrictions in order to avoid
breaking the robotic arm. It basically means that each joint has a maximum torque
or maximum temperature which can be reached for a specific time. Thus, because of
the position of gravity center, the Elbow Flex Joint and, especially, Shoulder Pitch Joint
are making a considerable effort. During the experiments this fact has been noticed
preventing that these experiments last more than 1 or 2 minutes.

CPU Power

For the realization of this project a lot of peripherals, such as the camera or the laser
Scanner, are used which means that a lot of computational power is required. The
Nexus robot are equipped with quadcore Cortex-A9 processor which is not able to com-
pute all calculations at the maximum possible frequency.

WiFi network

Once it was noticed that the CPU of each nexus robot was not enough to process all
the data, it was tried to run the apriltags software in the PC. This led to a higher data
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flowing through the WiFi network. It was not a problem when only a single camera was
running but with more cameras the communication was slow and unstable. The fact of
not being able to have one camera on each robot prevented to implement the enclosing
state and, consequently, the following states.

Camera

The current field of view of the camera limited to 70◦ makes the formation rotate in case
the tag is not visible in the initial position. This could be fixed by buying cameras with
a wider field of view. Nowadays, there are a lot of cameras even with a field of view of
360◦.
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7 Conclusion
This thesis aims that a formation of several agents equipped with a robotic arm per-
forms a pick and place task by using a distributed algorithm and a formation control
law for keeping the shape. This is achieved basing the algorithm on the formation con-
trol law designed by Garcia de Marina, Jayawardhana, and Cao [1]. Because of the va-
riety of topics involved in this thesis, the challenge of merging all together becomes one
of the biggest problems to overcome. Some of the pieces of this thesis have been tested,
in previous work, in an isolated way working satisfactorily. However, several problems
appear when the merge is performed due to the limitations explained in Section 6.2.

From the results presented in Chapters 4 and 5, it can be seen that it is possible
to implement a system to achieve the main goal of this thesis, presented in Section
3.1. However, it is obvious that there is a difference between the ideal and the real
world, being the real implementation harder due to, basically, communication problems
caused by several reasons explained in Section 6.2.

Even though the real implementation has not been completely possible, this thesis
can be useful as an starting point for improving the current system or for future work
related to these topics (see Chapter 8). Theory related to the states which finally have
not been implemented is also explained along the thesis in order to help other work
related to the topics of this thesis.
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8 Future Work
In this chapter two different ways of future work will be explained. First of all, and
related to the improvement of the actual system (See Section 6.2), the system needs more
powerful CPUs in order to perform the communication at the desired frequency. The
solution could be either change the current CPU of each agent for a more powerful one
or to implement a Raspberry Pi dedicated only to the apriltags processing. The second
option leads to an scalable scenario, thus more cameras (and Raspberry Pi) can be added
without affecting the nexus CPU. Moreover, in this second option, two cameras could be
mounted on each agent in order to have feedback while performing the picking, moving
and placing tasks since the camera mounted in the robotic manipulator is useless during
these tasks.

Secondly, and also related to the improvement of the current system, some changes
should be applied to the current manipulator. The thermal limit of its joints should
be higher in order to perform longer experiments. This could be achieved by either
changing the critical articulations for a more powerful ones or by changing the robotic
manipulator. In the case of changing the manipulator some requirements described
below should be taken into account:

• First of all, the thermal limits of the critical joints should be higher.

• Secondly, the fact that the robotic arm had some software prepared to perform the
inverse kinematics would improve the accuracy of the picking task.

• Some force sensors in the gripper would help to balance the effort that each agent
is making.

• 6 DoF would increase the reachable workspace.

The other way of future work is related to change the aspect of the actual system.
One possibility, which probably would decrease the price of the system, could be to
change the omnidirectional vehicle to regular ones. Thus, the agents would not be
treated as simply points and the system should be rethought.

The other possibility, which would increase the flexibility and complexity of the
system, could be to perform the same experiment but in a 3D space. The structure of
the formation control should change and it could be tested, for instance, using drones.
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Appendices

A How to run the code for a single robot

In order to run the code, download the workspace used for this project. After down-
loading the workspace follow the steps described below:

1. Preparation

(a) Go to the home folder of the catkin workspace and run the following com-
mands:
catkin_make
source devel/setup.bash

2. Initialization

(a) Open one terminal and type roscore.

(b) Open another terminal and connect it to the nexus: ssh -l dtpa nexus1. After
that, in this same terminal, launch the Nexus and the arm:
roslaunch nexus named_nexus_arm_laser.launch sim := f alse

(c) In order to run the camera software, open another terminal and connect it to
the ROS account of the nexus car: ssh ros@nexus1 and launch the camera by
running the following command: source sap1.

(d) Open another terminal and launch the apriltags software in the computer:
roslaunch apriltags usb_cam_apriltags.launch

3. Run the code

(a) Run the initialization script: rosrun some_tests init_marc.py

(b) Stop the script when the initialization is completed by typing ctrl + C.

(c) Run the main script: rosrun some_tests f inalcode_marc.py

B DH-Convetion

This section pretends to help to understand how the frame-coordinates are assigned and
how get the DH-parameters. The explanation given here is based on the one explained
in [21].

B.1 Convention for affixing frames to links

In order to describe the location of each link relative to its neighbors, a frame attached
to each link is defined. The link frames are named by number according to the link to
which they are attached. That is, frame {i} is attached rigidly to link i.
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B.2 Intermediate links in the chain

The convention used to locate frames on the links is as follows: The Z-axis of frame {i},
called Zi, is coincident with the joint axis i. The origin of frame {i} is located where the
ai perpendicular intersects the joint i axis. Xi points along ai in the direction from joint
i to joint i + 1.

In the case of ai = 0, X1 is normal to the plane of Zi and Zi+1. αi is defined as being
measured in the right-hand sense about Xi and so we see that the freedom of choosing
the sign of αi in this case corresponds to two choices for the direction of Xi. Yi is formed
by the right-hand rule to complete the ith frame. Figure B.1 represents a Flow-Chart in
order to assign the frames to links.

Frame Assignment Flow Chart:

Draw i-th and

(i + 1)-th axes
{i}

location

Identify the common perpen-

dicular (⊥) between the axes
i ← i + 1

NO ×,

YES × or

coincide?

Place frame {i}
origin in the in-

tersection point

Place frame {i}
origin where ⊥

touches the i-th axis

Place frame {i} origin

freely along the axis

× : short for intersection

Assign Ẑi pointing along i-th axis (consider

the joint variable movement if indicated)

Place X̂i normal to

the plane where i-th

and (i+ 1)-th axis lay

Place X̂i along ⊥ Place X̂i freely

Assign Ŷi s.t. {i} is a right handed frame

Assign {0} to match {1} when the first joint variable is

zero.

For {N}, choose an origin location and X̂N direction

freely, but generally so as to cause as many linkage pa-

rameters as possible to become zero.

if {i} is

0 or N

next joint

NO × YES ×
Coincide

NO × YES × Coincide

Figure B.1: Frame assignment flow chart created by Carlo Cenedese.

B.3 Link parameters in terms of the links frames

If the link frames have been attached to the links according to the DH convention, the
following definitions of the link parameters are valid:
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ai = the distance from Zi to Zi+1 measured along Xi

αi = the angle from Zi to Zi+1 measured about Xi

di = the distance from Xi−1 to Xi measured along Zi

θi = the angle from Xi−1 to Xi measured about Zi

Usually ai is chosen ai > 0, because it corresponds to a distance; however, αi, di and
θi are signed quantities.

C Forward kinematics calculations

The equations listed below are the transformations matrices for all the joints of the
robotic manipulator:

0
1T =


cos(θ1) − sin(θ1) 0 0
sin(θ1) cos(θ1) 0 0

0 0 1 17
0 0 0 1

 (1)

1
2T =


cos(θ2 − π/2) − sin(θ2 − π/2) 0 0

0 0 1 0
− sin(θ2 − π/2) − cos(θ2 − π/2) 0 0

0 0 0 1

 =


sin(θ2) cos(θ2) 0 0

0 0 1 0
cos(θ2) − sin(θ2) 0 0

0 0 0 1

 (2)

2
3T =


cos(θ3 + π/2) − sin(θ3 + π/2) 0 17
− sin(θ3 + π/2) − cos(θ3 + π/2) 0 0

0 0 −1 0
0 0 0 1

 =


− sin(θ3) − cos(θ3) 0 17
− cos(θ3) sin(θ3) 0 0

0 0 −1 0
0 0 0 1


(3)

3
4T =


cos(θ4 + π/2) − sin(θ4 + π/2) 0 4

0 0 −1 −11
sin(θ4 + π/2) cos(θ4 + π/2) 0 0

0 0 0 1

 =


− sin(θ4) − cos(θ4) 0 4

0 0 −1 −11
cos(θ4) − sin(θ4) 0 0

0 0 0 1


(4)

4
5T =


cos(θ5) − sin(θ5) 0 0

0 0 −1 0
sin(θ5) cos(θ5) 0 0

0 0 0 1

 (5)

5
6T =


0 −1 0 0
0 0 1 9
−1 0 0 0
0 0 0 1

 (6)
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However, since the camera is not directly in center with the fifth frame, some other
transformations have to be performed. First a translation over the Z-axis, a rotation over
the X-axis of -90 degrees and another translation in the Z-axis. These transformation are
listed below:

5
CT1 =


1 0 0 0
0 1 0 0
0 0 1 8
0 0 0 1

 (7)

5
CT2 =


1 0 0 0
0 cos(−π/2) sin(−π/2) 0
0 sin(−π/2) cos(−π/2) 0
0 0 0 1

 =


1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 1

 (8)

5
CT3 =


1 0 0 0
0 1 0 0
0 0 1 6
0 0 0 1

 (9)

Now, the total transformation from the camera to the fifth frame can be calculated
as shown below:

5
CT = 5

CT1
5
CT2

5
CT3 =


1 0 0 0
0 0 −1 0
0 −1 0 48
0 0 0 1

 (10)

D Inverse kinematics calculations

First of all, the following relation can be immediately obtained:

tan θ1 =
y
x
⇒ θ1 = arctan 2(y, x) (11)
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θ

θ

θ

γ β

Figure D.2: Simplified version of the robotic arm.

After that, according to he following equations, θ3 can be obtained applying the law
of cosines 1:

θ3 + β + γ = 180 (12)

cos γ =
L2

2 + b2 − c2

2bL2
(13)

where:
b =

√
L4

2 + (L3 + L5 + L6)2 (14)

c =
√

x2 + y2 + (z− L1)2 (15)

The values of b and c are the distances from the gripper to the joints 2 and 3 respec-
tively. Finally, with the two next equations θ3 can be computed:

β = arctan 2(L4, L3 + L5 + L6) (16)

cos (θ3 + β) =
c2 − L2

2 − b2

2L2b
(17)

1Law of cosines, Wikipedia, https://en.wikipedia.org/wiki/Law_of_cosines (accessed 27 March
2019)

https://en.wikipedia.org/wiki/Law_of_cosines
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According to the equation shown in (2.7) and the angle sum and difference identities 2,
assuming θ4 ≡ θ5 ≡ 0 and taking into account following notation:

0 p6 =

 c1((L3 + L5 + L6)s2+3 − L4c2−3 + L2s2)
s1((L3 + L5 + L6)s2+3 − L4c2−3 + L2s2)

L1 + (L3 + L5 + L6)c2−3 + L4s2+3 + L2c2

 (18)

where:
cos(θi) ≡ ci and sin(θi) ≡ si (19)

So, the following relation can performed:

b1 = ±
√

x2 + y2 = s2(L2− L4s3 +(L3 + L5 + L6))c3)− c2(L4c3 +(L3 + L5 + L6)s3) (20)

b2 = z− L1 = c2(L2 − L4s3 + (L3 + L5 + L6))c3) + s2(L4c3 + (L3 + L5 + L6)s3) (21)

Which can be written as:
b1 = k1s2 − k2c2 (22)

b2 = k2s2 + k1c2 (23)

Where k1 = L2 − L4s3 + (L3 + L5 + L6))c3 and k2 = L4c3 + (L3 + L5 + L6)s3
The equations shown before can be represented in its matrix as shown below:[

b1
b2

]
=

[
k1 −k2
k2 k1

] [
s2
c2

]
⇒
[

s2
c2

]
=

[
k1 −k2
k2 k1

]−1 [b1
b2

]
(24)

Finally, we get:
θ2 = arctan 2(s2, c2) (25)

E Orientation of the apriltags seen from the base

During the experiments related with the orientation it was noticed that the apriltags
had a different frame from the one from the sensor of the camera. This is shown in
Figure E.3.

2Angle sum and difference identities, Wikipedia, https://en.wikipedia.org/wiki/List_of_
trigonometric_identities (accessed 27 March 2019)

https://en.wikipedia.org/wiki/List_of_trigonometric_identities
https://en.wikipedia.org/wiki/List_of_trigonometric_identities
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Figure E.3: Camera sensor and apriltags frame.

From Figure E.3, it can also be seen that between the camera (C) and apriltag (A)
frames there is a rotation of 180◦ about the x axis, being the associated rotation matrix

C
AR =

1 0 0
0 cos(π) − sin(π)
0 sin(θ1) cos(π)

 =

1 0 0
0 −1 0
0 0 −1

 (26)

From the apriltags software, the orientation is given as a quartenion in the apriltags
frame (A). A quartenion is defined as Q = {η, ε} where η is called the scalar part of
the quaternion while ε = [εx εy εz]T is called the vector part of the quaternion [36].
The associated rotation matrix to the given quartenion in the apriltags frame (A) that
describes the orientation (O) is calculated as follows:

A
OR = R(η, ε) =

2(η2 + ε2
x)− 1 2(εxεy − ηεz) 2(εxεz + ηεy)

2(εxεy + ηεz) 2(η2 + ε2
y)− 1 2(εyεz − ηεx)

2(εxεz − ηεy) 2(εyεz + ηεx) 2(η2 + ε2
z)− 1

 (27)

Thus, the rotation matrix that describes the orientation of the apriltags relative to
the camera is

C
OR = C

AR A
OR (28)

Then, the rotation matrix which describes the orientation of the apriltags relative to
the base is

0
OR = 0

CR C
OR (29)

After performing the calculation described above, the euler angles are used in order
to get an easier reading of the orientation [37]. Being

A
B RZYX(α, β, γ) = RZ(γ)RY(β)RX(α) =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (30)
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the rotation matrix which gives the orientation of (B) relative to (A). The euler angles
can be calculated as

β = Atan2(−r31,
√

r2
11 + r2

21) (31)

α = Atan2(r21/cβ, r11/cβ) (32)

γ = Atan2(r32/cβ, r33/cβ) (33)
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