
Master’s Degree in
Automation, Control and Robotics

Action Intention Recognition for Proactive
Human Assistance in Domestic Environments

Master’s Thesis

Author: Javier Gallostra Acín
Director: Joan Aranda López
Call: June 2019

Escola Tècnica Superior

d’Enginyeria Industrial de Barcelona

Action Intention Recognition for Proactive Human
Assistance in Domestic Environments

Javier Gallostra Aćın

Master’s Thesis in Automation, Control and Robotics

Universitat Politècnica de Catalunya

Abstract

The current Master’s Thesis in Automatics, Control and Robotics covers the
development and implementation of an Action Intention Recognition algorithm for
proactive human assistance in domestic environments. The proposed solution is
based on the use of data provided by a real time RGBD Object Recognition process
which captures object state changes inside a defined region of interest of the domestic
environment setup.

A background analysis is performed to analyze state of the art approaches to
both real time RGBD object recognition and action intention recognition methods.
The preliminary analysis serves as the base for the proposal of a new volume descrip-
tor for object categorization and an improved formalism for Activation Spreading
Networks in the context of action intention recognition.

Several tests are performed to study the performance of the proposed solution
and its results are analyzed to define the conclusions of the project and propose
future work. Finally, the project budget and environmental impact as well as the
project schedule are presented and briefly discussed.

i

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

ii

Universitat Politècnica de Catalunya

Contents

Abstract i

Acronyms ix

List of Figures xi

List of Tables xv

I Introduction 1

1 Objectives 2

2 Scope 3

II State of the Art Analysis 5

3 RGBD Object Recognition 6

3.1 Category and Instance Object Recognition 6

3.2 Object Descriptors . 7

3.3 Recognition Methods . 7

iii

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

4 Action Intention Recognition 8

4.1 Recognition Approaches . 8

4.2 Project Approach . 9

III System Setup 11

5 Overview 11

6 Robots 13

6.1 Mico . 13

6.2 Baxter . 14

6.3 CAPDI . 14

7 Other Hardware 14

7.1 Kinect One . 15

7.2 Server PC . 15

8 Software 15

8.1 ROS . 16

8.2 RViz . 17

8.3 MoveIt! . 17

8.4 OpenCL & OpenCV . 18

8.5 IAI-Kinect & libfreenect2 . 18

iv

Universitat Politècnica de Catalunya

8.6 Point cloud library . 18

8.7 Docker . 19

IV Object Recognition 21

9 Camera Input 21

9.1 Camera Setup . 22

9.1.1 Placement . 22

9.1.2 Calibration . 23

10 Algorithm Overview 25

10.1 Nodelet Structure . 27

10.2 Calibration nodelet . 30

10.3 Plane Segmentation Nodelet . 32

10.4 Surface Segmentation Nodelet . 37

10.5 Object Segmentation Nodelet . 39

10.6 Object Recognition Nodelet . 40

10.6.1 Recognition methods . 44

10.6.2 SVM Classification . 44

10.6.3 Histogram Comparison Classification 45

10.6.4 Descriptors . 45

10.6.5 Two stage classification . 48

v

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

10.7 Dispatcher Node . 50

10.7.1 Message Synchronization . 51

10.8 ROS Graph . 52

V Action Intention Recognition 55

11 Activation Spreading Networks 56

11.1 Structure . 56

11.2 Activation and recognition procedures . 57

11.3 Performance indicators . 58

11.4 Limitations and improvements . 59

12 Autonomous Activation Spreading State Networks 59

12.1 A2SN structure . 59

12.2 Autonomous creation of A2SN . 60

12.3 A2SN decision function . 61

12.3.1 Node Depth . 61

12.3.2 Relative Value between Graphs . 63

12.3.3 Minimum Value Threshold . 63

12.3.4 Final Decision Function . 63

12.4 Training A2SN networks . 64

12.4.1 Performance Metrics . 65

vi

Universitat Politècnica de Catalunya

13 Algorithm Implementation 66

13.1 Auxiliary classes . 66

13.1.1 State . 66

13.1.2 KitchenObject/s . 67

13.1.3 SequenceGenerator . 69

13.2 A2SN implementation . 71

13.2.1 A2SN BASE . 72

13.2.2 A2SN BUILD . 74

13.2.3 A2SN RUN . 74

Input handling . 75

Activation message flow . 77

Activation values evolution . 77

Consecutive Action Recognition . 78

A2SN RUN Structure . 79

13.2.4 Running the Action Intention Recognition 80

VI Results 83

14 Object Recognition Results 83

14.1 Recognition by Volume and Color . 84

14.2 Algorithm Performance . 87

14.3 Test Parameters . 89

vii

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

15 Action Intention Recognition Results 89

15.1 Testing database . 90

15.2 Test process . 90

15.3 A2SN recognition results . 91

15.4 A2SN performance results . 91

VII Project Schedule and Budget 95

16 Schedule 95

17 Budget 97

VIII Environmental Impact 101

IX Conclusions 103

18 Future Work 104

References 105

viii

Universitat Politècnica de Catalunya

Acronyms

• 2D - Two Dimensional

• 3D - Three Dimensional

• A2SN - Autonomous Activation Spreading State Network

• AASSN - Autonomous Activation Spreading State Network

• ACOD - Average Confidence of Detection

• ASN - Activation Spreading Network

• BOE - Bolet́ın Oficial del Estado

• COD - Confidence Of Detection

• CPU - Central Processing Unit

• CV - Computer Vision

• DOF - Degree(s) Of Freedom

• ECTS - European Credit Transfer and Accumulation System

• EDR - Early Detection Rate

• ETSEIB - Escola Tècnica Superior d’Enginyeria Industrial de Barcelona

• FOV - Field Of View

• FSM - Finite State Machine

• GPU - Graphics Processing Unit

• GRINS - Grup de Robòtica Intel·ligent i Sistemes

• HMM - Hidden Markov Model

• HSV - Hue, Saturation, Value

• HTN - Hierarchical Task Network

• ICP - Iterative Closest Point

ix

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

• IoT - Internet of Things

• IR - Infrared

• ISS3D - Three Dimensional Intrinsic Shape Signatures

• LCD - Liquid Crystal Display

• ML - Machine Learning

• NN - Neural Network

• OS - Operating System

• PC - Personal Computer

• PCL - Point Cloud Library

• RANSAC - Random Sample Consensus

• RBF - Radial Basis Function

• RGB - Red, Green, Blue

• RGBD - Red, Green, Blue, Depth

• ROI - Region Of Interest

• ROS - Robot Operating System

• SAC - Sample Consensus

• SIFT3D - Three Dimensional Scale Invariant Feature Transform

• SVGA - Super Video Graphics Array

• SVM - Support Vector Machine

• ToF - Time of Flight

• UPC - Universitat Politècnica de Catalunya

• USB - Universal Serial Bus

• VFH - Viewpoint Feature Histogram

x

Universitat Politècnica de Catalunya

List of Figures

5.1 General laboratory view . 12

6.1 Commercial robots . 13

8.1 ROS related software . 16

8.2 CV & ML software . 17

8.3 Point cloud processing software . 18

8.4 Operating system virtualization software 19

9.1 Kinect One cameras’ FOV . 22

9.2 Raw Kinect One point cloud . 23

9.3 Raw Kinect One point cloud (viewpoint 2) 24

9.4 Raw Kinect One point cloud (viewpoint 3) 24

9.5 Ideal Pinhole Camera model . 25

10.1 Scheme of the object recognition pipeline 28

10.2 Workflow of the node implementation as a nodelet 29

10.3 Registrator and Preprocessor class structures 31

10.4 Calibration node sample output . 33

10.5 Volume of interest . 33

10.6 PlaneSemgentation and Plane class structures 35

10.7 Plane Segmentation node sample output 36

10.8 SurfaceSegmentation and Surface class structures 38

xi

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

10.9 Surface Segmentation bounding boxes sample output 39

10.10ObjectSegmentation and Object class structures 41

10.11Object Segmentation bounding boxes sample output 42

10.12Recogniser class structure . 45

10.13SVM and Histogram comparison class structures 46

10.14FeatureExtraction class structures . 47

10.15Object Recognition sample output . 50

10.16Dispatcher Node sample occupancy grid output 52

10.17Object Recognition pipeline node graph . 54

12.1 Sample A2SN graph building sequence . 62

12.2 A2SN Maximum Node Value evolution with different parameters 64

13.1 State class structure . 68

13.2 KitchenObject class structure . 68

13.3 SequenceGenerator class structure . 71

13.4 Sample A2SN values evolution over time 76

13.5 Action Intention Recognition process structure 81

14.1 Normalized Confusion Matrix of the Object Recognition results 85

14.2 HSV color space cone . 86

14.3 Recognition of objects in a cluttered scene 87

14.4 Object Recognition processing time . 88

14.5 Sample object images . 89

xii

Universitat Politècnica de Catalunya

15.1 A2SN Maximum Node Value evolution during an Action Recognition Pro-
cess - cereals . 92

15.2 A2SN Maximum Node Value evolution during an Action Recognition Pro-
cess - coffee . 92

15.3 A2SN execution time versus total number of nodes 93

16.1 Project Gantt chart . 96

16.2 Difference between programmed and real hours for project tasks 96

16.3 Difference between programmed and real hours for each month 97

xiii

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

xiv

Universitat Politècnica de Catalunya

List of Tables

5.1 Laboratory elements description . 11

10.1 Calibration node characteristics . 30

10.2 Calibration node paramenters . 32

10.3 Plane Segmentation node characteristics 34

10.4 Plane Segmentation node parameters . 35

10.5 Surface Segmentation node characteristics 37

10.6 Surface Segmentation node parameters . 39

10.7 Object Segmentation node characteristics 40

10.8 Object Segmentation node parameters . 42

10.9 Object Recognition node characteristics . 43

10.10Dispatcher node characteristics . 50

14.1 Object list categorized by volume . 84

14.2 Object Recognition average processing time and rate 88

14.3 Object Recognition test parameters . 89

15.1 Statistical Action Recognition Results . 91

17.1 Amortization cost of project hardware . 98

17.2 Energy cost of the project . 99

17.3 Project Budget . 99

xv

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

xvi

Universitat Politècnica de Catalunya

Part I

Introduction

Robotics is one of the scientific fields which has grown faster [19] and raised a huge
public interest in the past few years. Together with the IoT, it is envisioned as the
next industrial revolution step and investors around the world are supporting all kinds
of robotic companies which are expected to increase productivity and efficiency in every
company. As close as we are to building completely robotized factories with an impressive
production capacity, there is another side to the robotics story which is still in its earliest
stages.

This second field of robotic applications is considerably more ambitious and has far more
life-changing potential than the industrial robot systems. Known by the name of Service
Robotics or Assistive Robotics, it matches the lifelong science fiction concept of robots:
complex humanoid machines whose purpose is to assist humans in their daily tasks for
the progress of society and the pursuit of a better world. Reality is however far from these
great expectations.

The AURORA Project is part of the scientific effort to bring robots closer to people.
Its goal is to explore the capabilities of state of the art technologies and apply them in
robotized environments to create assistive solutions in order solve daily problems for the
people in need of them. It began at the UPC Control Department in the GRINS research
group and has offered a research environment for students, teachers and doctors who have
contributed with their work and effort to the robotics community. This Master’s Thesis
has been developed as one more step of the ambitious AURORA project.

The vision that drives AURORA is to explore and implement robotic solutions in a
real world scenario to assist disabled people in their daily kitchen tasks. It has several
research lines such as human-machine interaction, robotic task planning or responsive
robot movement. This Thesis is focused on human-machine interaction and it aims at
developing and testing an action recognition algorithm that can provide knowledge about
the user’s intentions without active user input.

The report is organized as follows. In the first chapter, an introduction to the project
as well as its objectives and scope are explained. Secondly, two chapters are devoted to
the state of the art analysis and to describe the system setup as well as each of its indi-
vidual components. The fourth chapter deals with the computer vision object detection
algorithm. Then the action recognition algorithm is explained in the fifth chapter. The

1

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

sixth chapter describes the tests performed and analyzes the results. Finally, the last
three chapters are devoted to the economic and environmental impact of the project and
to draw conclusions and propose future work for the project.

1. Objectives

The main objective of the project is to develop and test a vision based action recognition
algorithm to detect human intentions in real time under specific conditions in a kitchen
environment. This general objective can be subdivided into:

• Carry out a state of the art analysis in order to choose the most suitable approach
to solving the computer vision and action recognition tasks

• Develop a computer vision object recognition algorithm under the ROS framework
that

– robustly detects a defined set of kitchen objects

– precisely positions the detected objects in a given world reference frame

– works in real-time

• Develop an action recognition algorithm based on the computer vision object de-
tection that

– differentiates a set of human kitchen tasks

– detects the correct task while it is being performed (i.e. detects the human
intention: which task the user is performing)

– provides information about the current task to the robotic system in order to
suggest assistive actions

• Document the developed material to enable its use in future applications

• Perform real world tests to analyze the results and propose future work and im-
provements

2

Universitat Politècnica de Catalunya

2. Scope

The project is considered successful if the final system is able to recognize from a defined
set the task that is being performed using only the computer vision information in real
time. The success rate of the system does not need to achieve a perfect recognition score
for the project to be satisfactory.

3

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

4

Universitat Politècnica de Catalunya

Part II

State of the Art Analysis

The analysis of the state of the art is divided in two parts, following the project de-
velopment structure: object recognition and action intention recognition. Of these two
topics, object recognition (sometimes referred as identification) has been widely studied
and considerable progress has been made by the scientific community since the first time
the problem was faced, although there does not exist a lightweight, flexible and accurate
enough solution. On the other hand, action intention recognition is a relatively new topic
which still needs years of research in order to provide robust results.

Among the many challenges posed by these two recognition objectives, the main one
is that the number of classes to recognize greatly increases when trying to escalate a
particular solution. This makes the development of a universal recognition algorithm an
almost utopian task, leading many researchers to limit the scope of their studies.

Both problems have similar characteristics: their object of study tries to classify an endless
amount of individual entities which often have a high degree of inter class and even intra
class variability. Moreover, the most common approaches to find a reliable recognition
algorithm for these problems are based on the same type of data: RGB images, 3D data
or a combination of both. Although the processing of 2D and 3D image data is a compu-
tationally heavy task, the processing power of computers has increased exponentially over
the years enabling the use of larger databases for recognition purposes. Taigman et al.
[30], for example, used a database of four million faces belonging to roughly 4000 classes
in order to train a neural network with more than 120 million parameters; and achieved
a recognition success rate higher than 97,3%.

As promising as these results may be, they prove that nowadays the amount of data, the
hours of work and the computer power needed to achieve such success rates is only within
the reach of very few research centers in the world. Regarding the scope of this project,
several assumptions and restrictions have been made in order to provide the minimum
setup required to validate the theoretical proof of concept of the project. Despite the
scope and field of application restrictions imposed by these assumptions, if the solution
proves to be scalable it could be enhanced for its use in fields other than the one of the
project.

5

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

3. RGBD Object Recognition

The launch of low cost RGBD cameras for commercial purposes in the recent years has also
opened many possibilities for researchers to develop, implement and test computer vision
algorithms using RGBD data. In the field of object recognition, where the recognition
task was traditionally performed using RGB images, the addition of a 3D component to
the input data has also enabled a new wave of algorithms. Using a combination of depth
and color information the recognition success rates have improved over time.

Lai et al. [21], for example, showed that the addition of depth data to traditional color
based object recognition improved the recognition results by 10 to 15%. When recog-
nizing object categories they reached a peak of 84% recognition accuracy, whereas when
recognizing objects individually the accuracy obtained was around 74%. Additional works
such as those by Bo et al. [4] and Blum et al. [3] also present results that range from
70 to 90% accuracy. In the current project, the approach taken also combines color and
depth for recognition.

3.1 Category and Instance Object Recognition

On the aforementioned works the same results are presented twice: once for category and
then for instance recognition. The distinction between category and instance (individual)
recognition is relevant as it affects the results on objects from the same database and
influences the recognition algorithm approach.

From a recognition point of view, it is neither better nor worse to pursue one goal or the
other. For example, an instance object recognition of a database where objects have large
intra category variability, like chairs, will perform better than recognizing categories on
the same data. On the other hand, a database with low intra category variability like soda
cans will provide better results when recognizing categories than when trying to recognize
instances. The purpose of the recognition outcome is what decides whether instance or
category recognition should be pursued.

In this project the object recognition focuses on instance recognition, due to the fact
that objects with similar characteristics have a completely different meaning for action
recognition. This is the case, for example, of a milk and a juice brick. Therefore the object

6

Universitat Politècnica de Catalunya

database has been built creating a single class for each distinct object in the considered
set.

3.2 Object Descriptors

In any recognition procedure the classification algorithm used is as crucial as the choice
of adequate feature descriptors. A suitable classification function with non discriminant
features does not have any chance of properly classifying the input data. This has led
to a continuous research to find descriptors which are as small as possible while still
maintaining the highest discriminant capabilities (see the aforementioned Bo et al. [4]
and Blum et al. [3]).

With RGBD data the most common approach for classification is to separately compute
a color and a depth descriptor and merge them afterwards, as in the work of Gupta et
al. [7], or to just consider the information from color images (Saffar et al. [26]). One
common feature of almost all the color based object recognition algorithms is the usage
of the HSV color space for feature descriptor extraction, as mentioned by Soleimanizadeh
et al. [29], Chapelle et al. [6] and Mazzeo et al. [22]. The color space used in this project
for object recognition is also HSV.

As for volume object descriptors, the work by Alexandre [1] in 2014 presents relevant
results based on an in depth review of 3D object descriptors for a real RGBD object
dataset. The results show that ISS3D and SIFT3D outperform the rest of descriptors when
used for object recognition. However, the computation time required to compute them
makes them unusable for a real time application. As an alternative Rusu [25] proposed
the VFH descriptor, a local geometry based descriptor which gathers information about
the relative normal directions of the points in the cloud. VFH is proposed as a valid
object recognition descriptor capable of running in real time applications. This volume
descriptor was tested for the project and based on it a new descriptor was created.

3.3 Recognition Methods

When limiting the scope of recognition methods to the ones suitable for real time appli-
cations, two of them stand out from the others. These are the use of previously trained
SVMs or classification using Histogram distance comparison (refer to the work by Saffar
et al. [26]). In the current project, both methods have been tested in order the choose

7

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

the one most suitable to the gathered training data. The SVM used has a RBF kernel
and the Histogram distance metrics tested are: Correlation, Chi-Square, Intersection and
Bhattacharyya distances.

4. Action Intention Recognition

The field of Action and Intention Recognition is younger than Object Recognition but
also has encouraged the proposal of a wide variety of algorithms and methods to detect
and recognize human actions. The efforts of these works have a common goal: to provide
an intelligent system with knowledge about human actions and intentions in order to
provide a tailored assistance to users. The fields of application of this techniques ranges
from daily household tasks to robbery detection, which gives an idea of the relevance of
this research topic for the future of robotics and intelligent systems.

4.1 Recognition Approaches

When analyzing the state of the art for action recognition the proposed methods can be
categorized using three different characteristics:

1. Action/Intention Recognition: this difference might seem trivial but it affects
the core objective and development of the recognition algorithm. As mentioned
in the article by Kelley et al. [20], the main difference between both objectives
is the temporal factor introduced in Intention Recognition. Unlike normal Action
Recognition algorithms, its goal is not quite to classify observed sequences into
actions but rather to identify the intentions of a human while performing an action.
This implies an online real time processing pipeline which tries to detect intentions
in order to predict future actions and eventually offer assistance.

2. Statistic/Heuristic approach: many action recognition algorithms are based on
hierarchical statistic processes such as Bayesian Networks or HMMs (see Saponaro
et al. [27] and Kelley et al. [20]), but the adaptation of these approaches to online
recognition is still an unsolved problem. Moreover, they are mainly focused on
gesture recognition which is not the case of the project. Heuristic approaches,

8

Universitat Politècnica de Catalunya

however, are simpler and mostly based on learning sequences, but perform well
for concealed applications and most importantly can be easily adapted to work for
online recognition. Some example works are those by Aranda and Vinagre [2] or
Saffar et al. [26].

3. Movement/Interaction based actions: as mentioned before, most of the revised
works focus on human movement and gesture recognition. The field of human
actions which involve very small movements with a high object interaction has been
scarcely explored by the research community. In the case of the project, the fact
that the system is built around the goal of helping disabled people and that the
volume of interest for actions is a static kitchen, the way to classify and recognize
human action necessarily involves analyzing the human object interactions.

4.2 Project Approach

This project focuses on developing a new approach to an Action Intention Recognition
algorithm, working on a heuristic sequential approach based on human object interaction
by object recognition. Among the works reviewed, two of them proposed suitable ideas
and apporaches that could help achieve the project goals. The first one is the one by
Aranda and Vinagre [2], where they used object queues in different object states as the
base for intention recognition. The second article is written by Saffar et al. [26], where
they start from an HTN interpretation of actions and propose their translation into ASNs
for action intention recognition.

Both of these articles present characteristics that suit the objectives and scope of the
project: the learning database is relatively small, the actions are represented as human
object interactions and the approach taken is sequential and heuristic.

The present project presents a modified version of ASN for action recognition which
includes some concepts proposed by Aranda and Vinagre such as object state sequences.
The main objectives behind proposal of the new approach are

1. Build an autonomous system that can learn new action sequences by a supervised
learning method. This improves current ASNs as there is no need for a manual
generation of the graphs in order to run the recognition process.

2. Remove the task hierarchy present in previous recognition methods, as it introduces
a higher degree of abstraction which is not easily learned by self taught recognition
algorithms.

9

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

3. Simplify the action intention recognition process to enable the use of machine learn-
ing methods for training the recognition algorithm parameters and discard the use
of hard coded or experimental ones.

10

Universitat Politècnica de Catalunya

Part III

System Setup

5. Overview

The robotic system used in this project has a certain setup which must be taken into
account as it conditions the development of solutions and algorithms. It is located in Lab
204 of the K2M building. The system is built around a kitchen table that has a ceramic
hob and a sink, placed by a large piece of furniture with drawers and shelves. The area
of interest for the project is the table surface and the shelves located both left and right
to the user, located in front of the table. This space is where the user will perform the
tasks and where the robotic assistive actions will take place.

An overview of the whole system can be seen in Figure 5.1. In the picture there are some
highlighted elements, described in Table 5.1.

Color Description
Red CAPDI robot

Yellow Kinova Mico robot
Blue Baxter robot

Green Kinect One camera
Orange Projector
Purple TV server monitor

Table 5.1: Description of the highlighted elements in Figure 5.1

11

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

Figure 5.1: General view of the laboratory with the kitchen furniture and the robotic
system.

12

Universitat Politècnica de Catalunya

6. Robots

Three robots are used to interact with the user: Mico (Kinova Robotics), Baxter (Rethink
Robotics) and CAPDI. Both Mico and Baxter are collaborative robots and all three can
be controlled using ROS commands and programs. The next subsections provide a more
in depth description of each robot.

(a) Picture of a Mico Robot. (b) Picture of a Baxter robot.

Figure 6.1: Commercial robots used in the project.

6.1 Mico

Mico is a 6/4 DOF robotic arm produced by the Canadian company Kinova. It comes
with a default gripper which can have two or three fingers. There are several available
versions with minor differences between them, and in this project the robot used is the
m1n6s200 : 6 DOF and two fingers that can be controlled individually (see Figure 6.1).
The Mico robot is lightweight (4.6 kg) and has a reduced working area of 700 mm reach
with a maximum payload of 2.1 kg. It is covered by a reinforced plastic frame and its
average power consumption is of 25W. Software packages for operating it using ROS are
available online.

13

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

6.2 Baxter

Baxter is a collaborative robot with 14 DOF (7 per arm), wheels and a 1024 x 600 SVGA
LCD screen. It is considerably heavier than the Mico (almost 140 kg) and has a larger
working area with a reach of 1210 mm per arm, without taking into account that the
robot can be manually moved around thanks to its pedestal with wheels. Its maximum
payload per arm including the end effector is 2.2 kg. The end effector that comes by
default with the Baxter is a hand with two parallel fingers, but unlike Mico both fingers
are dependent on one another as the controlled variable is the distance between them.
Baxter is designed to work under the ROS framework so it has been easily integrated in
the system. See Figure 6.1 for a complete view of the robot.

6.3 CAPDI

CAPDI has been designed and built entirely in the UPC as part of the Inhands project
and is suited to work in this specific environment. It is a 3 DOF cartesian robot mounted
on the ceiling, with a 3 finger adaptive Robotiq gripper as its end effector. The gripper
has two possible movements: open/close the fingers to grip, and widen/narrow the gap
between the two fingers located at the same side of the hand. The main advantage of
CAPDI is its working area, as it can reach the whole table surface at different height
levels. However, it only has 3 DOF so it is not able to rotate its gripper in any direction.
CAPDI has also been designed to work with ROS, and due to the fact that Robotiq is
integrated in the ROS Industrial project, it can also be controlled using ROS.

7. Other Hardware

Apart from the robots the system has three RGBD Kinect One cameras for computer
vision and one PC Server connected to a plasma TV. All the robots are connected to the
server: Mico via USB, Baxter via Ethernet and CAPDI via a specific control unit. The
cameras are also connected to the server with 3 USB cables.

14

Universitat Politècnica de Catalunya

7.1 Kinect One

Three Kinect One cameras are attached to the CAPDI frame, looking downwards. As
one of the restrictions for the computer vision subsystem is to cover the whole area of
interest, they are placed in a zenithal position from where they can see the whole table
and shelves. These cameras have three main elements: a IR projector, a RGB camera
and an IR camera. The projector emits a matrix of IR rays that are captured by the
IR camera, which computes the depth of each pixel using the Time of Flight principle.
Then, an algorithm registers the depth image and the RGB image to obtain an RGBD
image (2.5 D). Finally, in order to obtain the real world X,Y,Z coordinates of each pixel,
the camera pinhole model is applied.

7.2 Server PC

The core of the whole robotic system is the Server PC, located behind the kitchen shelves.
It receives information from the cameras and the robots, performs all the computations
and algorithms required to process the information and then sends instructions to each
robot in order to perform the desired tasks. This server runs under Ubuntu 16.04.

8. Software

In order to connect all the hardware elements together and share and process their in-
formation, a strong and robust software basis is needed. As it has been pointed out in
the previous points, the main software working framework of the project is ROS, given
its modularity and distributed capabilities. RViz is used for simulation and visualization,
and to control the robots, a robot planning package designed for ROS is used: MoveIt!.
As for the computer vision, libfreenect2 and IAI-Kinect are used for communicating with
the cameras and for preprocessing the images. These preprocessing algorithms make use
of the OpenCL and OpenCV libraries, and OpenCV is also used for machine learning as it
has powerful and varied standard algorithms. PCL is used to process the point cloud data
obtained from the Kinect One cameras. Finally, as there are many independent hardware
systems that require different software and operating system configurations, this project
uses Docker containers to provide the needed packages for each part of the system.

15

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

The Object Recognition algorithm is written in C++ and compiled using Catkin, whereas
the Action Recognition is developed in Python 3.7, using NetworkX as a graph library.
The packages are documented using Doxygen.

(a) Programming framework. [17]

(b) Motion Planning. [11]

(c) Visualization. [18]

Figure 8.1: ROS related software used in the project.

8.1 ROS

As stated in its website:

ROS is a flexible framework for writing robot software [...] a collection of
tools, libraries, and conventions that aim to simplify the task of creating com-
plex and robust robot behavior across a wide variety of robotic platforms [..]
ROS was built from the ground up to encourage collaborative robotics software
development.

These three highlighted design specifications make ROS the perfect choice for developing
software for this system setup. The variety of robots and hardware requires a framework
that supports all of them, while being flexible enough to enable parallel development for
each module. Moreover, as there is more than one subject working on the project, there
is also a need for collaborative and flexible development, which is also one core feature of
ROS.

ROS is based on a simple structure made of nodes that communicate with each other
through a master node. Each one of these nodes is run in parallel on its own process,
enabling concurrent programming with a minimal implementation cost. Nodes can com-
municate with themselves through topics, services or actions, passing data as messages.
One drawback of this architecture is that the data of each message is deep-copied before
being passed as a message, which can result in slow communication rates if the data to
send is large. However, ROS provides a workaround for this issue: nodelets, node-like
modules which run under the same process and have a different callback structure than
normal nodes. Nodelets are loaded to a nodelet manager in a widget-fashion way.

16

Universitat Politècnica de Catalunya

In the current project, the whole computer vision pipeline is implemented in nodelets, as
the RGBD data is too heavy to meet the real-time specification if working with nodes.
This enables the aforementioned intraprocess communication, thus exchanging the deep-
copied messages for pointer messages. The server runs ROS kinetic, which controls the
cameras and the CAPDI and Mico robots. Baxter, however, runs its own ROS master
server using the ROS indigo version.

8.2 RViz

RViz is a lightweight but powerful visualization software package for ROS. It is the stan-
dard package the comes with the ROS software, and has a wide range of functionalities: 3D
real-time simulation and visualization, logging, handling parameter servers, visualization
of node structures and connections, supervision of message rates, etc.

RViz is useful in this project as it enables a visual representation of the RGBD data as
well as the object detection algorithm results through all its steps.

8.3 MoveIt!

MoveIt! provides a range of software solutions for robot planning, collision detection and
multi-robot systems for almost any robot that can be controlled using ROS. It is used to
plan robot movements and simulate them before the actions are performed, to check their
viability and avoid collisions between robots or with the environment.

After simulating the movements, it also handles the dispatching of planned movements
as instructions for each robot.

(a) GPU programming. [12] (b) CV & ML. [13] (c) Kinect ROS wrappers. [10] (d) Kinect listeners. [14]

Figure 8.2: Computer Vision & Machine Learning related software used in the project.

17

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

8.4 OpenCL & OpenCV

The current project relies heavily on complex vision algorithms and machine learning
procedures. Coding each single software piece from zero would be a task out of the scope
of the project, so the open source libraries OpenCL and OpenCV are used as they provide
a trusted and efficient basis for developing new algorithms.

OpenCL is used by IAI-Kinect to compute the registration of RGB to Depth images given
a set of precomputed camera parameters, while OpenCV is used for computing 3D and
2D image descriptors for training and then recognising objects using machine learning.

8.5 IAI-Kinect & libfreenect2

Connecting and getting data from the Kinect One cameras is not a trivial task. IAI-Kinect
provides a ROS frame to launching the cameras, take pictures, preprocess the data and
finally retrieve the result as a ROS message. The low-level camera communication is
handled using another open source library: libfreenect2.

IAI-Kinect2 also has the option to work as ROS nodelets, lowering the message load in the
ROS network. The calibration parameters for each camera are obtained by a calibration
procedure also handled by the IAI-Kinect package.

Figure 8.3: Point cloud data processing software used in the project. [16]

8.6 Point cloud library

The data obtained from the Kinect One cameras is often noisy and covers unnecessary
areas. Moreover, in order to extract defined regions of the point clouds to detect objects, a
pipeline of data processing is needed. PCL is an open source point cloud processing library

18

Universitat Politècnica de Catalunya

that can be easily integrated in ROS, and which also provides many useful processing
algorithms such as ICP, RANSAC, filtering methods, segmentation methods and much
more.

In the current project, it is one of the core components of the object recognition pipeline
because it takes care of receiving the raw point cloud Kinect data and extracting the point
clusters that are then passed to the recognition step. It is designed to be used in C++
code, which suits the development frame of this project.

Figure 8.4: Operating system virtualization software used in the project. [8]

8.7 Docker

As flexible and modular as ROS is, it cannot cope with situations where some hardware
elements require different library versions for the same software packages. It may be the
case that one robot can only work with ROS Kinetic whereas a newer model is designed
to work with Melodic. As this is the case of the current project, another layer of flexibility
is needed to connect al the system elements together.

Docker provides the solution to this problem: it encapsulates all the software requirements
of a particular system into a Docker image, including the OS specifications. This image
can be then used to create a container which runs as a separate operating system with
the encapsulated packages. In programming terms, an image can be regarded as a class
and a container as an instance of the class.

This architecture enables the launching of different systems with varied package versions
(or even different OS versions) in the same machine, while retaining the communication
capabilities between them . This is the reason behind the use of Docker in this project.

19

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

20

Universitat Politècnica de Catalunya

Part IV

Object Recognition

In order to perform a successful action recognition algorithm, the system requires input
from the real world about how the agent is interacting with its environment. In the case
of the current work, this interaction involves using and moving daily kitchen objects and
food such as cups or a milk brick. Therefore the system must be able to recognize and
identify this agent-object interaction in order to deduce the intention of the actions, which
is done using computer vision.

The process begins by getting the input data from the RGBD cameras. This point cloud
data is then passed onto the segmentation processing block: the data is subsampled and
cut, then the planes and surfaces are extracted and finally the object clusters are extracted
for recognition. The object recognition process ends with a descriptor computation and
its posterior classification using a trained SVM model. This whole algorithm is coded in
C++ and each single step works as a ROS nodelet. All the nodelets run under the same
manager and so the processing and data transfer between steps is faster.

The libraries and packages used in the object recognition algorithm are libfreenect2, IAI-
Kinect, PCL, OpenCV and OpenCL.

9. Camera Input

In the current project our vision system consists of three Kinect One RGBD cameras that
provide 512x424 RGBD images at a top frame rate of 15 Hz. Due to the fact that our
goal is to cover the whole kitchen table to get vision input, the cameras are placed in a
zenithal position so as to see the table from above but still manage to capture the objects
present in the shelves.

21

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

9.1 Camera Setup

The placement of the cameras relative to the world scene has a great influence on the
performance of the recognition algorithms, as it determines the point cloud density of the
volume of interest and the visual angle of the scene, which can result in better or worse
scanning of planar surfaces. The following descriptions explain the placement used in
the project and the calibration procedure used to tune the intrinsic and extrinsic camera
parameters.

9.1.1 Placement

The FOV of the Kinect cameras is 71 degrees wide and 60 degrees high for the Depth
camera and 84 degrees wide and 54 degrees high for the RGBD camera (see Figure 9.1,
with a depth reach between 0.5 and 4.5 meters. Despite having a long reach, it is advised
to place the objects of interest at approximately 1 meter from the camera to obtain the
highest quality data (a resolution between 1.5-2 mm per pixel). In this project, however,
this is not possible.

(a) Depth camera FOV. (b) RGB camera FOV.

Figure 9.1: Kinect One cameras’ FOV. [24]

The cameras are attached to the CAPDI frame hanging from the ceiling, looking upside
down. To achieve the minimum invasive impact of the robotic hardware in the subject
space, the camera placement was fixed at this position. One drawback of the camera
placement is the fact that neither the table nor the shelves surface are perpendicular to
the camera’s focal axis, resulting in worse quality point clouds. Moreover, the average
distance between the camera lenses and the objects of interest is about 2 meters.

Figures 9.2 shows the average point cloud provided by the cameras from its position. It
can be seen in Figures 9.3 and 9.4 how the image borders are heavily distorted, and the

22

Universitat Politècnica de Catalunya

Figure 9.2: Raw point cloud received from one camera after correcting the distortion.

high levels of noise throughout the whole image can also be seen. The algorithm developed
must be able to overcome this imprecision to provide a robust object segmentation and
recognition.

9.1.2 Calibration

Before capturing any data, the cameras must be calibrated to obtain their extrinsic and
intrinsic parameters. The extrinsic parameters provide the geometrical relationship be-
tween the projector, the IR camera and the RGB camera in order to enable the registration
of both RGB and Depth images into a single RGBD image. The more precise these pa-
rameters are, the better the correspondence between Depth and RGB pixels of the two
images.

On the other hand, intrinsic parameters are those that define the physical characteriza-
tion of the camera lenses. They allow to counteract and correct some of the negative
effects introduced to the depth measurements by the distortion of the lenses. First the
depth measurement is corrected with the intrinsic distortion parameters k1, k2, k3 (Taylor
coefficients of the distortion factor) and p1, p2 (distortion centre). Then a back projection
to the 3D space is performed using the the camera focal parameters fx, fy (focal lengths -
ideally equal, they represent the ”pixel distance” to the camera plane) and cx, cy (camera

23

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

Figure 9.3: The same point cloud from Figure 9.2 from another viewpoint.

Figure 9.4: The same point cloud from Figure 9.2 from yet another viewpoint.

24

Universitat Politècnica de Catalunya

Figure 9.5: Ideal Pinhole Camera model. [15]

principal point - ideally the center pixel of the image) by applying the pinhole camera
model [23] [5] (see Figure 9.5).

Given a pixel in image coordinates p = (x, y), a depth measurement Z and the intrinsic
parameters fx, fy, cx, cy, the back projection to the 3D space (X, Y, Z) of the corresponding
pixel is computed with the equation

Z ·

xy
1

 =

fx 0 cx
0 fy cy
0 0 1

 ·
XY
Z

↓

X =
Z

fx
· (x− cx)

Y =
Z

fy
· (y − cy)

Z = Z

(1)

10. Algorithm Overview

The main requirements for the object recognition algorithm is that it has to perform
robustly and in real time. Given the characteristics of the input point clouds the developed

25

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

processing should be able to overcome any significant noise and geometrical incorrectness
of the measurements. Furthermore, as it will be explained in the Action Recognition
Chapter, our project considers tasks whose duration ranges from 30 to 180 seconds. The
real time requirement has been thus set to a maximum of 1 second per input image.

Having stated the requirements of the algorithm, in the next sections all of its steps will
be explained. It has five steps:

1. Obtain camera input - performed by the kinect bridge nodelet, which communicates
with its assigned Kinect camera. It retrieves the raw data, applies the correction
parameters, computes the RGBD image and the 3D point cloud and passes them
onto the next step.

2. Cloud Preprocessing and Registration - In order to speed up the camera to camera
cloud registration and the cloud segmentation steps, it has been decided to compute
a subsampled cloud version to use in the aforementioned steps. This task is car-
ried out by the calibration nodelet, which subsamples the cloud, cuts out the non
relevant points to keep only the areas of interest, and then applies the necessary
transformations to register the point cloud to the ones of the other two cameras.

3. Plane Segmentation - As the final goal of the object recognition algorithm is to
classify single objects, a segmentation has to be performed to isolate the object
point clusters from the rest of the cloud. The first step of this isolation is the
detection of large planes in the images. These mathematical planes will serve as
the basis for segmenting and deleting large surfaces and finally obtaining a point
cloud made only of object points. This task is performed by the plane segmentation
nodelet.

4. Surface Segmentation - From the detected planes (mathematical) the next step is
to segment the point cloud surfaces that correspond to given planes (actual points).
One plane can have several surfaces in the cloud (i.e. several tables of the same
height close to each other) and the task of the surface segmentation nodelet is to
cluster and segment them and remove the corresponding surface points.

5. Object Segmentation - After removing the unnecessary surface points, the points
left in the cloud belong to objects. The last step before the recognition is to group
these points in clusters that represent objects. The object segmentation nodelet
carries out this task and passes to the final step an array of point clusters.

6. Object Recognition - The object recognition nodelet performs one of the most critical
tasks of the algorithm, as it is responsible of computing the descriptors of each object
and using a trained model to recognize them. In this project the recognition is a
two step process, the first one using volume descriptors and the second one using
colour descriptors.

26

Universitat Politècnica de Catalunya

7. Dispatcher - The one and only task of the final node, the dispatcher, is to translate
the information from the object recognition phase into a coded language that can be
understood by all the other elements in the system, primarily the action recognition
algorithm. This node gathers the information from the three pipelines (one for each
camera), and as the information at this stage is no longer a points cloud but a list of
recognized objects (name, dimensions and position), this step can be implemented
as a node instead of as a nodelet. This approach is also useful, as the three pipelines
are implemented in independent nodelet managers, and it is convenient to have an
outsider node to gather the output from these managers.

A graphical representation of the pipeline is shown in Figure 10.1.

10.1 Nodelet Structure

One of the goals of the project is to document the algorithms developed to ease their use
in further work. This effort relies not only on writing adequate comments and guides but
also on writing well structured code. Thus all the nodelets have been written using the
same code structure, with minor differences between them. In this way, by understanding
the common workflow one can easily read through the process of each individual nodelet.

There are several ways to implement nodelets in ROS. One of them, which has been used
in this project, is to code the nodelets as if they were nodes and then wrap them using a
nodelet class so that they can be loaded into a nodelet manager. This manager handles
the message queue for all its child nodelets in the following way: at each program tick
(called a ROS spin), it gathers the messages received for all nodelets and then processes
each one of them single-handed or using a multithread structure. This has one drawback:
if a nodelet requires two or more messages to be synchronized in order to process them,
they might arrive at different times and be processed at different times. One way to solve
this issue is to use message filters so that no message is processed until all input topics
have received messages with similar timestamps.

However, the implementation used in this project has been somewhat different. Instead of
using message filters, which was tried but delivered poorly results, a flag system has been
created. Whenever a message arrives, it raises a flag to indicate that it has been received.
Then, each nodelet launches a separate thread which checks at each spin if all the flags
have been raised. If so, it calls the nodelet processing method and resets the flags. Hence
the nodes written for nodelet implementation have the workflow seen in Figure 10.2.

In this way, the structure and code of all nodes and their nodelets implementation is the

27

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

Figure 10.1: Scheme of the object recognition pipeline.

28

Universitat Politècnica de Catalunya

Figure 10.2: Workflow of the node implementation as a nodelet.

29

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

same. The only difference between the nodes are the number of publishers/subscribers
they have, the message types, and most importantly the objects they use to process the
data. Each node represents a step in the object recognition process and thus uses a unique
object to process the data. A more in depth description of all the nodes follows.

10.2 Calibration nodelet

The calibration nodelet has the characteristics (the topics are represented as topic name[message
type]) shown in Table 10.1.

Input topics (Subs) cam subscriber [point cloud]

Output topics (Pubs)
cut cloud publisher[point cloud],

cut subsampled cloud publisher[point cloud]
Processing objects Registrator, Preprocessor

Table 10.1: Calibration node characteristics.

The node subscribes to the output point cloud from the IAI-Kinect node (the one that
fetches data from the camera and performs the RGBD registration, 3D computation and
distortion corrections). After its own processing, it publishes two point clouds: a cut
version of the one received, and a subsampled version of the cut cloud. Moreover, at
startup the node loads the ground truth cloud from a predefined path to the Registrator
object so that all the input clouds can be registered to the ground truth during the
program execution. When a new camera point cloud is received, the processing method
takes the following actions:

1. Register the input cloud to the ground truth cloud. This step uses ICP for registra-
tion for the first three clouds of each session, and then stores the final transformation
for the following inputs. This is done to avoid unnecessary time spent on ICP com-
putations as the camera is still, and the object that the node uses for this purpose
is the Registrator.

2. Cut the cloud using X-Y-Z limits to retain only the points that are inside a prede-
fined box that represents the volume of interest. Uses the Preprocessor object.

3. Subsample the cut cloud in order to use the subsampled version in some of the
algorithms to speed up the computations, using also the Preprocessor object.

As it has been said, the node then sends out both the cut and the cut&subsampled cloud
to the next node. The objects used by this node have the structure shown in Figure 10.3

30

Universitat Politècnica de Catalunya

Figure 10.3: Registrator and Preprocessor class structures.

31

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

The ICP used is a standard point-to-point registration with two thresholds as ending
criteria: a transformation and a fitness epsilon. For cutting the cloud, a CropBox filter is
used, and the subsampling is performed using a VoxelGrid filter with voxels of a size that
can be set by the user. The parameters that can be changed using the reconfigure server
of this node are the following:

ICP

reciprocal corr use reciprocal correspondences
max iterations maximum allowed ICP iterations

max corr distance maximum distance for finding point pairs
tf epsilon transformation epsilon stopping criterion

fitness epsilon fitness epsilon ending criterion

Cutting

min x minimum x coordinate
min y minimum y coordinate
min z minimum z coordinate
max x maximum x coordinate
max y maximum y coordinate
max z maximum z coordinate

Subsampling
voxel dimx voxel size in x axis
voxel dimy voxel size in y axis
voxel dimz voxel size in z axis

Table 10.2: Calibration node paramenters.

This parameter structure allows to tune the parameters while the algorithm is running,
and is used in all the nodes of the algorithm. In this way the algorithm is both flexible
and adaptable to different scenarios and can be easily reused. An example result of the
calibration output is seen in Figure 10.4.

10.3 Plane Segmentation Nodelet

The second step of the Object Recognition algorithm is the Plane Segmentation. The
reasoning behind performing a plane segmentation is that by analyzing the kitchen setup,
an early conclusion was drawn: all the objects inside the area of interest lie on a surface.
This surface could be either the table or one of the drawers. Furthermore, as far as the
scope of the action recognition is concerned, the actions will only occur on top of the
table. The user sitting in the wheelchair cannot reach the shelves, so picking and placing
objects in them is a task corresponding to the robots.

32

Universitat Politècnica de Catalunya

(a) Cut point cloud showing the ROI points. (b) Subsampled version of the cut cloud.

Figure 10.4: Sample output of the Calibration node for camera 1.

This leads to the conclusion that the final area of interest, where the user will perform
the task, is the rectangular volume defined by the surface of the table spanning half a
meter up. This is where the non-system controlled actions will occur, which are the
ones analyzed by the object recognition and action recognition algorithms. The rest of
the movements will be performed by the robotic system, and thus will be known to the
algorithms. This interest volume is roughly sketched in Figure 10.5.

Figure 10.5: Sketch of the volume of interest for the algorithms.

As for the node inputs and outputs, they can be seen in Table 10.3. It subscribes to
the output topics of the Calibration Node (cut and subsampled cloud), and outputs four
different topics: the cut and subsampled cloud are passed onto the next node, a point

33

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

cloud containing the plane points is outputted for visualization, and an array of Plane
objects containing the segmented planes’ data is outputted too.

Input topics (Subs)
full cloud subscriber[point cloud],

subsampled cloud subscriber[point cloud]

Output topics (Pubs)

planes data publisher[plane array],
planes pc publisher[point cloud],
full cloud publisher[point cloud],

subsampled cloud publisher[point cloud]
Processing object PlaneSegmentation

Table 10.3: Plane Segmentation node characteristics.

The object used by the node for segmenting the planes is the PlaneSegmentation object.
This uses in turn a further Plane class to gather the required information and functionality
for a plane. The structure of both objects is presented in Figure 10.6. It can be seen how
the method used for segmentation is the Sample Consensus, using a Plane model. There
are also two remarks to be made about this step: the maximum number of planes can be
fixed, as well as the minimum number of points that a segmented plane must have to be
accepted.

Following the reasons explained above, in the current implementation of the algorithm
only one plane is detected: the table. In spite of this specific adjustment for the current
setup, the algorithm has been designed and tested for working with multiple planes. The
workflow of the Plane Segmentation node is quite simple

1. Get the input clouds from the previous node.

2. Segment the desired planes using the PlaneSegmentation object.

3. Send out the segmented planes’ info and pass on the received input clouds.

Finally, the parameters that can be changed of this node are detailed in Table 10.4. Also
an example of the output from a Plane Segmentation node can be seen in Figure 10.7.

34

Universitat Politècnica de Catalunya

Figure 10.6: PlaneSegmentation and Plane class structures.

General
max planes maximum planes to detect

min plane points minimum points a plane must have

SAC Segmentation
distance tolerance distance threshold for SAC

orientation tolerance orientation threshold for SAC
max iterations maximum number of iterations

Table 10.4: Plane Segmentation node parameters.

35

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

(a) Point cloud of the points which belong to the detected plane.

(b) Frontal view of the plane points.

Figure 10.7: Sample output of the Plane Segmentation node for all cameras.

36

Universitat Politècnica de Catalunya

10.4 Surface Segmentation Nodelet

Next in the processing pipeline comes the Surface Segmentation. This node has the task
of extracting bounding boxes of all the surfaces which correspond to the planes detected
in the previous step. The bounding boxes should contain only plane points and leave
aside the rest which are supposed to belong to objects. The input and output topics of
this node are the following, shown in Table 10.5. It receives the full cut cloud and its
subsampled version from the Plane Segmentation node, as well as the segmented planes’
data, and outputs three topics: the surfaces’ data, a marker array to visualize the surfaces’
bounding boxes, and the full cut cloud is passed on. As the following steps will be the
Object Segmentation and Recognition, only the full cut cloud is passed on. The idea
is to use as many points as possible for the object recognition, but in the Plane and
Surface segmentation only the subsampled cloud is used, as there is a lower point density
requirement for this steps to be successful.

Input topics (Subs)
full cloud subscriber[point cloud],

subsampled cloud subscriber[point cloud],
planes subscriber[plane array]

Output topics (Pubs)
surface publisher[surface array],

marker publisher[markers],
full cloud publisher[point cloud]

Processing object SurfaceSegmentation

Table 10.5: Surface Segmentation node characteristics.

In order to segment the surfaces, the node uses the SurfaceSegmentation object and the
surface data and functionality is encapsulated in the Surface Object. The structure of
this two objects can be seen in Figure 10.8. As for the processing workflow of this node,
it is the following

1. Get the input cloud and the plane array from the previous node.

2. For each plane in the plane array:

(a) Get the indices of the plane points

(b) Get the coefficients of the plane

(c) Extract the surfaces using the plane points and coefficients and an Euclidean
Cluster Extraction with Kd-Tree search.

The resulting surfaces are stored in an array as Surface objects. The Surfaces store
information about their bounding box as well as functionality to generate markers and

37

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

messages for the topics. Both the structure of the SurfaceSegmentation and Surface
objects can be seen in Figure 10.8.

Figure 10.8: SurfaceSegmentation and Surface class structures.

Finally, the parameters of the segmentation can also be tuned using the reconfigure server.
Only three parameters can be changed for this node: the minimum and maximum number
of points a surface cluster must and can have, and the distance tolerance used by the
Euclidean Clustering algorithm to group points together. The name of the parameters
alongside their explanation is found at Table 10.6, and an example of the bounding boxes
detected by the node for all three cameras is shown in Figure 10.9.

38

Universitat Politècnica de Catalunya

General
max surf points maximum points a surface can have
min surf points minimum points a surface must have

SAC Segmentation distance tol distance tolerance for clustering

Table 10.6: Surface Segmentation node parameters.

Figure 10.9: Bounding boxes of the surfaces detected by the Surface Segmentation node
of the three cameras.

10.5 Object Segmentation Nodelet

After segmenting surfaces, the last step before object recognition is clustering the remain-
ing points into object clusters, which is done by the Object Segmentation Nodelet. The
node has two input topics: one to get the surfaces’ data, and another to get the full cut
cloud (without subsampling) from the previous node. At this step the algorithm must
compute object clusters that contain a high density of points to increase the recognition
rate. The less density of points a cluster has, the less specific its descriptors will be;
making classification considerably harder1. That is the reason behind using the full cloud
at this point of the algorithm.

The steps taken by the Object Segmentation node are

1. Get the full cloud and array of surfaces from the previous node and pass them to
the ObjectSegmentation object.

1 This is not true for all recognition algorithms. Sometimes it is advisable to reduce the input data in
order to obtain recognisable descriptors. In this project, however, the point density of the subsampled
cloud is too low so the use of the full cloud is recommended.

39

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

2. Call the segmentObjects method from the ObjectSegmentation object, which does
the following

(a) Remove the points from the cloud that are inside all the Surface bounding
boxes using a CropBox filter

(b) From the remaining points, remove outliers using a Radius Outlier Removal
filter

(c) Cluster the final set of points into single object point clouds.

(d) Generate an array of objects for recognition and a point cloud of all the object
points for visualization

The array of objects contains a list of object data. For each object, the data stored is
again its bounding box: the centroid, its dimensions and the orientation. Moreover, the
Object class also offers utility methods for generating markers and ROS messages. The
main output topics of the node are the object data array and the full cut cloud, with the
possibility to output also the cloud of all the object points for visualization. The main
characteristics of the node are shown in Table 10.7.

Input topics (Subs)
full cloud subscriber[point cloud],
surfaces subscriber[surface array]

Output topics (Pubs)
object publisher[object array],

full cloud publisher[point cloud]
Processing object ObjectSegmentation

Table 10.7: Object Segmentation node characteristics.

For a better insight on the Object Segmentation methods and the Object class for holding
the data, their structure is shown in Figure 10.10. Moreover, additional parameters can
be tuned to adjust the segmentation. These parameters are detailed in Table 10.8. Figure
10.11 shows also the output of the Object Segmentation node, with the bounding boxes
of the segmented objects (the bounding boxes have been shaped and coloured according
to the recognized object).

10.6 Object Recognition Nodelet

Probably the most crucial node in this algorithm, the Object Recognition node takes care
of processing the object point clouds and perform their classification. Needless to say,

40

Universitat Politècnica de Catalunya

Figure 10.10: ObjectSegmentation and Object class structures.

41

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

Outl. Removal
radius search radius used for searching neighbours

min neighbors minimum neighbors needed to be an inlier

CropBox
surface border border added to the BB for removing surfaces

max obj height max height considered for objects

Clustering
distance tol distance tolerance for clustering
min points minimum points an object cluster must have
max points maximum points an object cluster can have

Table 10.8: Object Segmentation node parameters.

Figure 10.11: Bounding boxes of the detected by the Object Segmentation node of the
three cameras.

42

Universitat Politècnica de Catalunya

the performance of this step has a great impact on the overall performance of the whole
project. First let us go through the inputs and outputs of the node.

It receives two inputs from the Object Segmentation node: the full cut cloud that has been
passed through all the steps, and the object data array containing the position, dimensions
and orientation of each object cluster. The node processes the data and outputs also an
object array, but this time the objects have an additional information field: the name
of the object, identified by the recognition algorithm. to perform the recognition, an
auxiliary object called Recogniser is used, as it is pointed out in Table 10.9.

Input topics (Subs)
full cloud subscriber[point cloud],
objects subscriber[object array]

Output topics (Pubs) objects publisher[object array]
Processing object Recogniser

Table 10.9: Object Recognition node characteristics.

The workflow of the node is the following

1. Get the full cut point cloud and the object array from the Object Segmentation
node.

2. For each object in the array

(a) Extract a rectangular point cloud containing the object points. The relevance
of a rectangular cloud (i.e. an ordered point cloud) is that it can be converted
back to a 2D RGB image which can be used for color feature extraction.

(b) Recognize the object using the defined recognition method.

3. Publish the resulting object data array with the recognized object labels.

The recognition is carried out by an object called Recogniser. This object has two different
recognition methods: SVM and Histogram Comparison, both coded in their own classes.
During the development of the project, several methods have been tested to obtain a
better recognition rate and performance. Here follows an explanation of the methods
used and the reasons behind using them2.

2 Note that this node does not have reconfigurable parameters. As the recognition must be performed
using the same parameters of the training stage, it was decided that the recognition parameters
should always be changed in code and not while the program is running.

43

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

10.6.1 Recognition methods

One of the most widely used methods for recognition using images is the Neural Network
scheme. This method has however some requirements that are not achievable in this
project. The first one is the amount of training data needed for a good recognition rate.
Having a database of 50 images per class, the expected results even after fine tuning a
Neural Network are not successful enough for the desired recognition rate.

The second drawback of using a Neural Network has to do with implementation issues.
Even tough there are pre-trained Newtorks on the Internet for 2D object recognition,
these are only able to distinguish general object categories, i.e. they can classify ’boxes’,
’cylinders’, ’cars’, ’people’, ’animals’, but in this project the desired classification result
has to be more specific. The algorithm must know whether a box is a box of cereals or a
milk brick, and needs to distinguish between a Colacao and a Coffe can, which are both
cylinders. Adapting a pre-trained Neural Network to achieve such degree of specification
is not a trivial task.

Finally, the timing of the project requires that the recognition training should be fast
enough that it can be corrected or even changed if the results are not satisfactory. This
flexibility in the recognition method used is remarkably difficult to achieve in a short
amount of time when using Neural Networks. That is why this option has been discarded
in favour of other two commonly used methods: SVM classification and Histogram Com-
parison methods.

The Recognizer Class structure detailed in Figure 10.12 shows that its implementation
is very lightweight and relies mostly on the code of the actual classes that perform the
classification: the SVM and the HComp classes.

10.6.2 SVM Classification

Support Vector Machines offer the capabilities needed by the project. They can be trained
with smaller databases, they can be easily adjusted to work with completely different
descriptors, and they are fast to program and test. In this project, the OpenCV Machine
Learning package has been used to implement the SVM, using the trainAuto function to
automatically train the SVM parameters to achieve the best training recognition score.

44

Universitat Politècnica de Catalunya

Figure 10.12: Recogniser class structure.

10.6.3 Histogram Comparison Classification

Another classification method tested in the project is to use Histogram Comparison func-
tions. Due to the fact that the descriptors used are Histograms (even when using the
SVM classification), using histogram distance functions for specific classification is also
an adequate choice for the project. The HComp class is very similar to the SVM class,
but its classification methods differ.

For example, the SVM needs a training phase before it can be used for recognition;
whereas HComp uses directly the descriptors of the training data (or the mean of each
class descriptors) without a training phase. Therefore, whereas the SVM has options to
load, train and save an SVM model, the HComp class directly loads the object data set
and can begin the classification right after that.

After trying different distance measures for Histogram Comparison, the correlation dis-
tance has been chosen as it provides the best classification results.

10.6.4 Descriptors

Before testing the classification methods, a decision on which descriptors to use has to
be made. In this project, two different kind of descriptors have been used: a 2D HSV
color histogram descriptor and a 3D local shape descriptor. A specific classification using
only color descriptors is difficult to achieve, and therefore the use of 3D volume shape

45

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

Figure 10.13: SVM and Histogram comparison class structures.

46

Universitat Politècnica de Catalunya

descriptors has also been tested in the project.

The implementation of the descriptor extractors is very similar. In fact, both 2D and
3D extraction methods inherit from a base class called FeatureExtraction. This simplifies
the code and also enables to rapidly switch between one method or another with minimal
code intervention. The class structures can be seen in Figure 10.14.

Figure 10.14: FeatureExtraction class structures.

It can be seen how the features are stored as cv::Mat elements with two channels or
dimensions. In the case of the 2D color descriptor, these two channels correspond to Hue
and Saturation channels, as the Value channel is not used for computing the descriptor.

47

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

The image is first switched from RGB to the HSV space and then a two dimensional
histogram is computed using the number of bins per channel defined earlier in the class.
These 2D histogram is then concatenated into a single channel histogram.

As for the 3D descriptor, a variant of the VFH descriptor has been used. First, the normals
of each of the points of a cluster are estimated using a default PCL method. Then the
normals are transformed to spherical coordinates and grouped into a 2D histogram whose
channels correspond to ranges in the inclination and azimuth spaces. Due to the fact that
only one side of the object is viewed by the cameras, the range considered for both angles
is from 0 to 180 degrees. Finally, the histograms are shifted by the following rule:

1. Get the bin with highest value - this will be set as the local (0,0) value for both
inclination and azimuth ranges

2. Shift the other bins - shift the bins in the 2D space by moving them relative to
their original distance to the bin with highest value.

In this way, the bin with highest value will always be the first bin of the histogram. This
is done to make the descriptor orientation invariant, so that the same object in different
poses has always a similar histogram shape due to the shifting. In this way, for example, a
box should have high values in the bins of 90 degrees azimuth and 90 degrees inclination
relative to the highest bin; and a cylinder should have a row/column of very similar
values at 90 degrees azimuth/inclination. The histogram is also concatenated into a one
dimensional histogram before being passed to the classification method.

Finally, both descriptors have the option to be normalized (all the bin values divided by
the sum of all the bins, and then multiplied by a factor if desired) or equalized (all the bin
values divided by the highest bin value, and the multiplied by a factor if desired) before
the classification. There is also a function available for visualizing the histograms as 2D
grayscale images.

10.6.5 Two stage classification

While trying different classification methods to achieve the best results, two problems
have arisen. The first one is that due to the low point cloud density given by the Kinect
One cameras and the plane distortion of small objects such as the ones analyzed, using
only 3D descriptors for classification proved to be unsuccessful. The second one is that
the similarity of colours between objects made the use of only 2D colour descriptors not

48

Universitat Politècnica de Catalunya

specific enough to classify all the objects. Two approaches were tested in search of a
solution to these problems.

1. Combine 2D and 3D descriptors into a unique one - the first and most
obvious approach is to combine both 2D/3D descriptors into a single one. This,
however, after being tested proved to be even less discriminant than using 2D or 3D
descriptors alone. Mixing descriptors cannot be done just by concatenating them
but they have to be scaled appropriately in order to adjust the relevance of each bin
in the classification stage.

2. Divide the classification in two stages - this approach suggests that one of the
descriptors might be able to correctly differentiate between to subgroups of objects,
and that the second descriptor might be able to correctly discriminate all the objects
inside these two subgroups.

After testing both approaches, the two stage classification process proved to be the most
reliable method. By observing the objects in the database, the conclusion is drawn that
almost all of them fall under the category of ”box” or ”cylinder”. Thus it seems logical to
have a first stage of classification that separates boxes and cylinders using 3D descriptors.
Then the 2D color descriptor can more easily discriminate the objects by only looking
at the ones of the volume subgroup. It has been considered that our database does
not contain two objects with the same shape and colour, so the implementation of this
approach has shown good results in the long run. This two stage classification is the final
one used in the project, which explains why the Recogniser class has three models: a
volume model, a color cube model and a color cylinder model.

An example of the output of the recognition node for all three camera inputs can be seen
in Figure 10.15.

The descriptor used for volume classification is derived from the aforementioned VFH
descriptor. Its implementation is simpler and only uses the histogram of the angles be-
tween the upwards vertical vector in world reference frame and the normals of the object
point cloud. The angles are expressed in spherical coordinates and thus the histogram
obtained is two-dimensional. Finally, to achieve pose invariance, the origin of the spheri-
cal coordinates is placed at the bin with the highest value, being the rest of bins relative
to this one. This descriptor has proven its usefulness for discriminating between simple
geometric shapes such as cubes, spheres and cylinders.

49

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

Figure 10.15: Bounding boxes with recognition names of objects in Figure 10.11.

10.7 Dispatcher Node

Up to this point, all the previous steps are implemented as nodelets that load into a nodelet
manager. There is one nodelet manager per camera, so as shown in Figure 10.1, there
are three Object Recognition pipelines running in parallel. The Dispatcher Node, which
is not implemented as a nodelet, has the task of gathering the recognition information
outputted by the three pipelines in order to dispatch the information as a single message
to the rest of the system elements. Therefore, this node has three inputs: the recognized
object arrays of each of the three cameras. It outputs the gathered information into a
data topic (objects data publisher) as well as to three other topics for visualization. The
characteristics of this node are shown in Table

Input topics (Subs)
cam1 objects subscriber[object array],
cam2 objects subscriber[object array],
cam3 objects subscriber[object array]

Output topics (Pubs)

objects data publisher[Markers],
objects cloud publisher[point cloud],
objects names publisher[Markers],

occupancy marker publisher[Marker]

Table 10.10: Dispatcher node characteristics.

The Object data contained in each object array is passed to a MarkerArray object where
each Marker contains the name of the object, its location and its size. The topics ob-

50

Universitat Politècnica de Catalunya

ject cloud publisher and object names publisher are just for visualizing the results of the
recognition with RViz, and the topic occupancy marker publisher publishes a Marker of
type CUBE LIST which represents a discretization of the table surface showing which
cells are occupied by objects and/or robots and which cells are free. This grid is needed
by the robot planner in order to avoid collisions during the robot movements.

The workflow of the node is the following

1. Receive the input object arrays of each camera processing pipeline

2. For each object in the compound object array

(a) Update the occupancy grid with the cells occupied by the object

3. Add to the occupancy grid other predefined spaces (e.g. the Mico robot is always
at the same location, and the table has a sink which is considered as non available
space)

4. For each object in the compound object array

(a) Generate the object data marker and the object name marker

5. Publish the generated messages and the occupancy grid to the ROS master

The duplication of the loop through all objects is coded in this way in order to maintain the
same node processing structure throughout the whole developed package. The processing
steps of each node have already been explained, showing that the data processing and the
message generation are two different methods. This will to follow the structure might seem
inefficient in this case as the Node has to loop through the object array twice. However,
the maximum number of objects in the worst case scenario is less than a hundred as more
would not fit on the table, so the processing time penalty of using this node structure
with a duplicated loop has no effect in the algorithm processing time.

An example of the occupancy grid output of the dispatcher node is shown in Figure 10.16.

10.7.1 Message Synchronization

As the three recognition pipelines run in parallel, it may occur that the output of each
of them arrives at a slightly different time to the Dispatcher node. Therefore a message
synchronization procedure is require to avoid merging messages that correspond to images

51

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

Figure 10.16: Occupancy Grid outputted by the Dispatcher node.

taken at different times. This procedure is implemented using a ROS package called
message filters.

The message filters package provides a Synchronizer object that links several subscribers
together and makes sure that the message processing is performed using input messages
which have the same time stamp. There are several policies to define what is considered
as the same time stamp, and in this project the Approximate Time Policy is used. This
policy uses a parameter free algorithm to find the best match for each of the input topics
to create a set of messages which have been received at an approximately equal time.

By using this message synchronization method with the selected policy we minimize the
risk of merging together object data from different cameras that belong to different times,
which may result (if the output rate is low enough) in bad robot planning and action
recognition results.

10.8 ROS Graph

In the end, all the nodes and their connections can be visualized using a tool provided
by ROS under the rqt package, called rqt graph. Figure 10.17 shows the ROS graph of
the full Object Recognition pipeline, with added colors to indicate groups of nodes. The
colors correspond to

52

Universitat Politècnica de Catalunya

• Green - nodelet manager and child nodelets for each of the three cameras’ process-
ing pipelines.

• Blue - input/output topics of each nodelet manager.

• Yellow - Dispatcher node and its active topics.

• Magenta - nodes and topics related to publishing and/or receiving relative trans-
formations from world to camera.

In the graph it can be seen how each of the above described nodes that are implemented
as nodelets do not connect directly to their listeners, but instead are connected through
their manager. This responds to the explained structure of nodelets and their managers:
it is the manager the one who takes care of receiving messages from its child nodelets and
forwarding them to the corresponding listeners that are waiting for them.

The graph also presents two nodelets which have not been described in this chapter: the
camX bridge and the camX points xyzrgb qhd of each camera. These nodelets are spawned
by the IAI-Kinect package in order to establish a communication bridge between ROS
and the Kinect, and to deliver the XYZ-RGB point cloud resulting from retrieveing the
Kinect images and applying the preprocessing computations on them. More information
about how these nodelets work can be found in the official repository of the package.

53

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

Figure 10.17: ROS graph of all the Object Recognition nodes and their connections
(colored by hand).

54

Universitat Politècnica de Catalunya

Part V

Action Intention Recognition

Historically, efforts on recognizing human actions using computer vision data have focused
either on skeletal analysis or on full body movements. Among the many conclusions drawn
by the authors of papers on the subject, one underlying conclusion can be found common
to them all: detecting and recognizing human actions is not an easy task.

The complexity of such a task relies on the high degree of similarity between different
actions, on the intra-action and inter-subject variability, and on the difficulty of defining a
feature or descriptor to precisely identify and discriminate actions. Be it either 2D image
or 3D skeleton analysis, all of the reviewed papers provide unsatisfactory results or highly
refined ad-hoc solutions with very low scalability properties.

Moreover, nearly all of the studies on the subject are carried out by analyzing the whole
action after it is performed (i.e. analyzing a video sequence which is known to represent a
whole action) and not by analyzing it in real-time while it occurs. This presents another
challenge to our goal, as the references on real-time online action recognition algorithms
are scarce.

The review on the state of the art of this subject has led to a slight change of perspective on
how to focus the action intention recognition algorithm of this project. Unlike many of the
previous studies, it has been decided that this algorithm will almost completely disregard
human movements and only focus on object states and movements for recognizing actions.
This is suitable to the project due to the fact that the actions to analyze always involve
the interaction of the user with kitchen objects. In fact, human body movements without
any kind of object interaction do not define kitchen tasks. This approach might seem
restrictive, but it can also be applied to many daily situations such as manual activities.

Furthermore, as the goal of the project is to recognize action intentions, one requisite of
the algorithm is that it must work online in real time. As it has already been discussed,
this imposes many computation restrictions to the object recognition algorithm, but also
to the action recognition part. This recognition must be able to perform without the use
of computationally heavy processing or classification methods.

A more detailed analysis on the algorithm requirements leads to the following objectives,
stating that the action intention recognition algorithm should

55

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

• run online in real time (at a rate equal or faster than the one required for the object
recognition algorithm)

• detect intentions before the action is finished

• perform robustly using only object data from the object recognition

• be able to discriminate between a number of different tasks

• be able to correctly identify the action intention even if the user changes actions
during the running time of the algorithm

After searching for previous work on approaches which fulfill all or some of the previous
objectives, two publications were found relevant for the project development.

11. Activation Spreading Networks

ASNs in the context of action recognition were introduced by Saffar et al. [26] as a step
towards online intent understanding, approaching the problem by dissecting high level
tasks into lower level actions. ASNs are based on Hierarchical Task Networks as coded
networks which represent tasks in a hierarchical structure. A summarized description of
ASN architecture follows in the next subsection.

11.1 Structure

Using the hierarchical approach of HTNs, ASNs transform them into tree-like acyclic
graphs where the leaves of the tree are the lowest level actions (operators), and the top of
the tree is the main high-level task (compound tasks). Intermediate level nodes represent
mid-level tasks (methods) which are needed for the high-level task. Each one of these
methods is connected to a handful of leaves, indicating that there are several operators
involved in carrying out a methods. In the same way, compound tasks are connected to
several methods indicating the decomposition of the task. There are thus three task levels
in an ASN network:

56

Universitat Politècnica de Catalunya

1. Operators: operators are the lowest-level actions, such as grab object X, move
object Y. They make up the mid-level tasks, called methods.

2. Methods: methods are made up of operators, and they are connected to compound
tasks. They represent mid-level actions.

3. Compound tasks: compound tasks are the highest level nodes of the graph. They
are decomposed into methods and can be in turn treated as methods if they are
children of another compound task. Compound tasks represent the highest level
actions performed by the user, and they are the object of intention recognition.

11.2 Activation and recognition procedures

Once the ASN is built, it is used to the detect actions in the following way:

• When a graph is built, all nodes start with an activation value of zero.

• As the user starts executing a task, the object recognition algorithm uses user-
defined functions to update the values of the operator nodes which are active.

• At each clock tick, all graph nodes update their activation values by adding the
activation values of their child nodes multiplied by the edge weights.

• To take into account time flow, the nodes also multiply their activation value by a
decay factor df ∈ (0, 1).

Moreover, the authors define two types of edge connections; sum edges and max edges.
Their definition is simple: a node with several child nodes connected via sum edges updates
its activation value by adding the values of the child nodes multiplied by the edge weights.
A node with several child nodes connected via max edges updates its activation value by
replacing it with the maximum value of its child nodes which are connected via sum edges.
This reasoning leads to the following conclusion: operators and methods are connected
with sum edges, as the probability of a method occurring should increase when a larger
number of its operators are active; whereas methods and compound tasks are connected
via max edges, indicating that the probability of compound task occurring is equal to the
highest probability of its child methods.

Last but not least, during the runtime of the program there must be a decision function
constantly comparing the values of all nodes in order to decide whether the program

57

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

can conclude that the user has a specific intention with a large enough confidence value.
This decision function must be defined with caution, as several factors can influence the
outcome of the decision:

• Node Depth - When comparing activation values of nodes, their depth in the graph
has to be taken into account, as comparing a node in the first level with another of
the last level would always yield a higher result for the lower level node.

• Relative Value - Apart from searching for the highest node value of all graphs, it
must be compared relative to the value of the best node of other graphs. This
means that the decision function cannot be based exclusively on the absolute value
of nodes, but also on the relative value of the best node with all the rest; as the
goal of the function is to provide an intention with a certain degree of confidence.
This avoids the situation of making a decision when several nodes have very similar
values; thus providing a ”confidence” decision threshold.

• Minimum Threshold - Finally, in order to avoid naive detections, the node values
are not considered if they lie under a certain threshold. This additional confidence
measure ensures that the detected actions have a minimum node value in order to
be considered as good candidates.

11.3 Performance indicators

In order to compare and evaluate the performance of ASNs, three indicators are proposed:
early detection rate (EDR), confidence of detection (COD) and average COD (ACOD).

1. EDR: is computed as
t∗i
Ti

, where Ti is the total action runtime for intention i and t∗i
is the earliest time at which the correct intention is consistently detected.

2. COD: is computed as av(i)
max[av(j)]

∀j 6= i, where av(i) is the activation value of the

correct action and max[av(j)] is the maximum activation value between the rest of
actions.

3. ACOD: the average COD for the correct action during the whole action runtime.

A good algorithm performance should yield EDR values as close to zero as possible while
providing COD values higher than one, as well as providing and ACOD value higher than
one for the whole segment runtime. The authors of ASN present results of EDR between
20 and 60 percent, and ACOD values between 1.15 and 1.30.

58

Universitat Politècnica de Catalunya

11.4 Limitations and improvements

There are, however, two main shortcomings to this ASN implementation. The first one
is that the graphs used are built beforehand based on human knowledge, as stated by
themselves “[...] we assume that information about how particular activities can be per-
formed is given in the form of HTNs [...]” This means that for each action that we want
to detect, we have to manually create a new graph to represent that specific action. The
second drawback is that the activation values, weights and thresholds used in the ASN
are hard-coded and determined by trial and error. For a system to be autonomous, these
characteristics greatly reduce the adaptability of the ASN structure to new situations and
the system autonomy from human supervision.

As an effort to solve the aforementioned ASN flaws, this project presents an improved
version of them: the Autonomous Activation Spreading State Network (AASSN or A2SN).
The improvements proposed to the previously described ASN are described the next
section.

12. Autonomous Activation Spreading
State Networks

12.1 A2SN structure

The most relevant difference between ASN and the proposed A2SN structure is the codifi-
cation and representation of the action graph trees. Whereas in ASN the nodes represent
either operators, methods or compound tasks, in A2SN the nodes represent system states.
A system state is defined as ”the list of events occurred” up to that system state. More-
over, in ASN the graph edges represent merely connections between nodes, while in A2SN
edges have much more relevance in the graph. Each A2SN edge has an associated trigger,
being the trigger the event that transitions from a state to another. In this way, the A2SN
edges can be seen as the ASN operators, which are no longer nodes but edge triggers.
One must note that, unlike ASNs, in the A2SN formalism max edges do not exist and all
edges are treated as sum edges.

In fact, A2SN can be seen as a Finite State Machine (FSM), with the particularity that

59

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

it has one-directional weighted transitions and that it is acyclic. That is why it is called
”Autonomous Activation Spreading State Network”.

This reconfiguration of the A2SN simplifies the structure of ASNs, by reducing the cat-
egories of nodes from 3 to 1. The hierarchy of the network is then not translated to
node categories but to state transitions, and the various ways of performing an action
are no longer represented as multiple children nodes but rather as different graph paths
(different state sequences) which lead to the same node. The main reason behind this
new structure is to allow the autonomous creation of graphs by just recording sequences
of state transitions and carefully merging sequences which lead to the same state.

Another benefit of simplifying the graph structure to only one type of node and one
type of edges is that it has a closer resemblance to Neural Networks. The similarity
between suggests that NN learning methods might be applicable to A2SN in order to
train the weights and decision thresholds of this new graph structure. Thus this decision
of proposing A2SN aims to solve the two ASN limitations described before.

12.2 Autonomous creation of A2SN

In order to overcome the restriction of previous knowledge of action development in order
to create an ASN, we propose a supervised learning procedure for autonomously creating
ASNs. The procedure is the following:

1. Generate a small database of labeled state sequences, repeating each action a small
number of times (i.e. from 2 to 10 times)

2. For each action

(a) Generate a state transition graph for each action sequence

(b) Merge the generated state sequences, detecting corresponding states, and merg-
ing the beginning and final state of each sequence

The result of this procedure is a A2SN state graph with one single initial ”zero state”,
one single final state and several state paths which connect the initial and the final state.
One could argue that this approach does not completely remove the previous knowledge
requirement, as it requires the user to label the performed action. While true, it is certain
that the proposed structure greatly reduces the time and effort required to create an ASN
as it can be done by just by recording and labeling action sequences. It also allows an

60

Universitat Politècnica de Catalunya

unexperienced user to train the system to recognize new actions by applying the same
procedure.

Figure 12.1 shows a sample sequence of the building process of an A2SN graph. The
sequence used is coffee, which has two steps (in each steps all events can occur in a
random order):

1. Mug present (91) — Coffee present (41) — Milk present (61) — Sugar present (31)

2. Coffee moving (42) — Milk moving (62) — Sugar moving (32)

As the steps have respectively 4 and 3 events that can occur in any order, the number of
possible variations for action coffee is 4! · 3! = 24 · 6 = 144.

12.3 A2SN decision function

In an Action Intention Recognition run, there are several A2SN graphs which compete in
parallel to be recognized as the action being performed. Each A2SN represents an action,
and all of them receive the same events at the same time from the Object Recognition
algorithm. In order to decide which graph is the most likely to represent the ongoing
action, a decision function for recognition must be defined. This function is also critical for
training the graphs, as it will provide an error metric for updating the learning parameters.

It has been mentioned before that this function must meet several requirements: take into
account the Node Depth, consider the relative value between best nodes of all graphs, and
have a minimum value threshold.

12.3.1 Node Depth

The depth of the nodes is taken into account in the following way: each node value is
divided by its node depth. This criterion is fixed and cannot be changed by training, and
this correction reduces the impact of deeper graph nodes on the recognition decision.

61

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

(a) 1 action repetition. (b) 2 action repetitions.

(c) 3 action repetitions. (d) 100 action repetitions.

Figure 12.1: Sample A2SN graph building sequence with increasing number of action
repetitions.

62

Universitat Politècnica de Catalunya

12.3.2 Relative Value between Graphs

The relative value between graphs is used to ensure that the action detected is over a
minimum confidence of detection relative to the other graphs. This metric is computed
as a percentage in the following way (where maxNodeV ali refers to the maximum depth
corrected node value of graph i)

RVA,B =
maxNodeV alA −maxNodeV alB

maxNodeV alB
(2)

A positive value means that graph A has a higher node value than graph B, and a value
of 1 means that the maximum node value of graph A is twice the maximum node value
of graph B. The Relative Value of each graph is compared to all the others and in order
for a graph to be detected as the ongoing action, the following condition must be fulfilled

RVi,j ≥ α ∀j 6= i (3)

where 1 ≥ α ≥ 0 is a learning parameter. This is a necessary but not sufficient condition
for recognition, as it will be explained in the next section.

12.3.3 Minimum Value Threshold

The second and final condition for a graph to be a recognition candidate is that its max-
imum node value must be greater than a minimum threshold. This minimum threshold
β > 0 is introduced to avoid early naive recognitions, and is also learned during training.

12.3.4 Final Decision Function

Taking into account these conditions, the final decision function for A2SN action inten-
tion recognition is defined as follows (where maxNodeV ali refers to the maximum depth
corrected node value of graph i)

63

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

Action i is recognized subject to:

RVi,j ≥ α ∀j 6= i

maxNodeV ali ≥ β

(4)

The effect of the parameters α and β can be seen in Figure 12.2. A cereals action sequence
is tested with a fixed value of β = 10, whereas by changing the value of α from 1 to 2
completely changes the recognition outcome.

Figure 12.2: Evolution of the maximum node values for three A2SN graphs during the
recognition of a cereals action. The red star marks the recognition outcome with α = 1
and the blue star the recognition outcome with α = 2.

12.4 Training A2SN networks

After having defined the decision function, one last objective of A2SN Intention Recogni-
tion must be pursued. One of the reasons behind the modifications proposed is that the
algorithm parameters should be able to be trained in a Neural Network fashion. There
are three parameters that can be trained, one internal and two externals to A2SN graphs:

64

Universitat Politècnica de Catalunya

1. Edge weight - weight of each edge event on each A2SN graph [internal]

2. Relative Value threshold α - decision function value which ensures a dominant
action over the others [external]

3. Minimum Value threshold β - decision function value which avoids early naive
detection [external]

In the current project we have focused on the possibility of external parameter learning.
The reasons for focusing on training external parameters are that they have a greater
influence on the detection outcome than internal parameters as it has been proved in the
tests performed.

12.4.1 Performance Metrics

In order to build any training process, several metrics need to be used to asses it. The
first metric is computed over the whole training set whereas the two latter are computed
using data only from the correct detections.

• Percentage of correct detection (True/False Positives)

• Average EDT

• Average COD

These metrics correspond to the action intention recognition goals: an action should
be recognised between other actions (percentage of correct detection) while it is being
performed (average EDT). The average COD value gives a valuable insight on the quality
of the detection, as it represents the confidence of the correct detections. A high detection
percentage with a very low COD value would indicate that the algorithm was able to
recognise the database actions but with little to none robustness.

These metrics must be included in any training process. As the proposed action recogni-
tion algorithm is a three objective optimization problem (maximise COD and percentage
of correct detection while minimizing EDT), both three have to been taken into account in
any training procedure applied, and they will have an influence on the trained parameters
α and β. If a training method is chosen for optimizing the recognition performance, its
goal would be to find the most suitable decision function for the particular set of A2SN
graphs that are used in the recognition process.

65

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

13. Algorithm Implementation

In the current project, the A2SN formalism is implemented in python using the NetowkX
library for graph management. Unlike the Object Recognition algorithm, the A2SN im-
plementation for Action Intention Recognition does not have an expensive computation
demand and can be implemented and run using an interpreted language. Moreover,
the development of graph structures in python is considerably easier and faster than in
C++. Finally, due to the fact that ROS provides python wrappers for writing nodes,
both algorithms can be connected even though they are written in different programming
languages.

13.1 Auxiliary classes

In order to implement A2SNs in a flexible, robust and structured way, some auxiliary
classes have been defined: a State class, a KitchenObject class and a SequenceGenerator
class. They provide functionalities for creating and comparing states, for creating and
using representations of kitchen objects and finally for generating action sequences for
creating and training A2SNs without the need of real world data, in order to speed up
the implementation and tuning the A2SN creation and training procedures.

13.1.1 State

As stated before, a A2SN State is defined as ”the list of events occurred” up to that
system state. The first approach to implement this state description is to keep track of
all the events in order. There is however a theoretical conflict with this approach when it
comes to comparing states: if two states have the same events but in different order, they
will not be detected as coincident states. As A2SN should cover the possibility of reaching
the same state from different sequences, specially in the case where the sequences are just
the same events but in different order, the approach to represent states must be slightly
changed.

The representation of a state is then defined as follows: a state is the list of previous events,
duplicated the number of times they have occurred. This representation overcomes the

66

Universitat Politècnica de Catalunya

ordering problem of the previous approach. Then in order to compare states, the program
needs to check if two states have the same events with equal number of occurrences.

Besides the functionality to check for equal states, there are several extra methods that
provide additional functionality tot the State class:

• State. init (int list = []): instantiate the state object with the events in the
list

• State.copy(): returns a deep copy of the state

• State.hash(): returns a hash string that identifies the state3

• State. add (State): adds one state to another

• State. sub (State): used to obtain a single event that differentiates two states,
this function considers the following cases

– State 1 has more than one difference with State 2: return -1

– State 1 is exactly equal to State 2: return null

– State 1 has exactly one difference with State 2: return the id of the different
event

• State. contains (int): used to check if an event is present in a State, returns
true or false

• State. eq (State): used to check if two states are equal, returns true or false

The structure of the State class is shown in Figure 13.1.

13.1.2 KitchenObject/s

The objects considered for Action Recognition are represented in code using the KitchenOb-
ject class. This class provides an id to each new object type, as well as unique identifiers
for the two object events considered in the project: object is present and object is mov-
ing. This unique object event ids are then used in the representation of States and for
labeling graph triggers. The class KitchenObjects is a placeholder list which holds all the

67

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

Figure 13.1: State class structure.

Figure 13.2: KitchenObject/s class structure.

68

Universitat Politècnica de Catalunya

KitchenObject instances used in the project. A representation of the KitchenObject and
KitchenObjects class structure can be seen in Figure 13.2.

The KitchenObject class has just one method (its constructor) and four attributes, as
well as a class attribute. They are briefly explained below

• KitchenObject. init (string): first of all check if an object with the desired
name already exists; if not assign a unique ID to the newly created object with the
desired name

• KitchenObject.id dict: class variable which contains ”id”:”name” pairs of the
previously created objects

• name: the object name

• id: unique ID of the object

• PRESENT: unique ID representing the event object is present

• MOVING: unique ID representing the vent object is moving

The KitchenObjects class has two methods and one attribute, which are explained below

• KitchenObjects. init (string list = []): create all the objects with the given
or default names and add them to the objects dictionary

• KitchenObjects. getitem (string): get the KitchenObject instance correspond-
ing to the given object name

• objects: a dictionary with ”object name”:KitchenObject pairs

13.1.3 SequenceGenerator

In order to speed up the development of the project, a SequenceGenerator object has
been implemented. This object makes use of the KitchenObject instances and additional
information about time and event relationships to generate plausible action sequences

3 Due to the way that python has for comparing lists, two lists with the same elements can be
considered as not equal when compared to each other. Thus providing a hash method is useful for
comparing and identifying states.

69

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

which can be used to create and train A2SNs without the need of real world action
sequence data. Obtaining real world data is a time consuming task, but the main reason
to implement a sequence generator is not the time needed to record action sequences.

The objective behind this approach is that in order to record real world action sequences,
the Object Recognition algorithm must be finished, and if that is the case then it is
impossible to develop the Action Recognition algorithm in parallel. Therefore we decided
to work with artificially generated action sequences in order to develop both algorithms
in parallel and speed up the development process.

The Sequence Generator object first builds up a ”master sequence”. This master sequence
is made up of steps, where each step is a list of events that may occur in any order. For
example, for making a coffee we would define two steps: first bringing in a mug, a milk
brick and some coffee; and then pouring the milk into the mug, adding the coffee and
mixing. These two steps must be executed in order (one cannot mix, pour milk in a mug
or add coffee if none of the objects is present in the scene), but the events inside the steps
can appear in any order. In order to add more flexibility and realism to the Sequence
Generator, each event has a minimum and maximum execution time. This time limits are
used to randomly generate the timestamps and duration of each event in the sequence.

Therefore a master sequence is made up of ordered steps, and each step is made up of
unordered events; where each event has a minimum and maximum execution time. A
sample master sequence can be represented in the following way

• MasterSequence ”Make coffee”

– Step 1

∗ Event ”Mug is present”, mintime = 5s, maxtime = 20s

∗ Event ”Milk is present”, mintime = 10s, maxtime = 25s

∗ Event ”Coffee is present”, mintime = 5s, maxtime = 15s

– Step 2

∗ Event ”Milk is moving”, mintime = 10s, maxtime = 40s

∗ Event ”Coffee is moving”, mintime = 15s, maxtime = 20s

Once the ”master sequence” has been defined, the user can call the generate method
of the SequenceGenerator object. This method uses the mater sequence to generate an
instance of the action sequence, selecting randomly the event order of each step and also
determining the duration of each event randomly inside the specified time limits.

70

Universitat Politècnica de Catalunya

Figure 13.3: SequenceGenerator class structure.

In this way, a single SequenceGenerator object can be used to generate different sequences
of the same action in order to create and train A2SNs. Figure 13.3 shows the structure
of the SequenceGenerator class. Its methods and attributes are explained below

• SequenceGenerator. init (nested list = []): initialize the step list of the
master sequence with the given steps

• SequenceGenerator.add step(list = []): add a step to the master sequence

• SequenceGenerator.variations(): compute the number of possible variations of
the master sequence

• SequenceGenerator.generate(): generate a sample sequence based on the master
sequence

• SequenceGenerator.empty(): remove all the steps from the master sequence

• SequenceGenerator.copy(): return a deep copy of the object

• step list: nested list of steps of the master sequence

13.2 A2SN implementation

The development of these auxiliary classes is oriented to implementing the A2SN formal-
ism in a simple yet flexible way. It has been decided to divide this implementation into

71

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

two different classes: A2SN BUILD and A2SN RUN. The first one is used for building
A2SNs from a database of action sequences and saving the generated graphs, whereas the
second one is used to load the saved graphs and run the Action Recognition in real time.

Due to the fact that these classes share many functionalities, a base class has been created
from where they both inherit the common features: A2SN BASE. The three classes are
explained below.

13.2.1 A2SN BASE

This class holds methods and attributes that are common to all A2SNs, whether they
are used for building or running graphs. Its most important attribute is the NetworkX
Graph, which stores all the information about states (graph nodes) and transitions (graph
edges). Both the graph nodes and edges store all the information needed to run the Action
Recognition, information that is generated during the building and training phases. The
graph information is stored in the following way

• A2SN BASE.graph: NetworkX Directed Graph

– graph.nodes: they represent the known states that make up the action se-
quence, and are added to the graph in the building phase

∗ state: State object that identifies the node

∗ value: float that stores the activation value of the node

∗ depth: integer that stores the distance from the node to the start node

∗ color : float tuple that stores a unique color for plotting

∗ end : boolean which indicates if the node is the last of the graph

– graph.edges: directed edges that represent the transitions between states

∗ weight : float value used to multiply the activation value of the sender node

∗ factor : float normalization factor applied to the edge weight

∗ trigger : integer corresponding to the event that triggers the ’state transi-
tion’ and passing the activation message

Many of the methods of the base class are oriented to generate a visually appealing
plot of the graph. The class also provides methods for saving the graph to a YAML
file and loading a previously saved one, as well as utility methods for reordering the
graph structure, setting the edge weight factors and generating a node depth map. The
attributes needed to provide all these functionalities and the methods themselves are
detailed below

72

Universitat Politècnica de Catalunya

• A2SN BASE. init (): initialize the graph and add the starting node with an
empty State

• A2SN BASE.plot(int, string): plot the graph to the given matplotlib figure
with the desired title

• A2SN BASE.relabel nodes(): restructure the nodes based on their depth and
relabel them so that all the other algorithms work correctly

• A2SN BASE.export(string): save the graph structure and values to the given
YAML file

• A2SN BASE.load(string): load the graph structure and values from a given
YAML file

• A2SN BASE.inherit(A2SN BASE): inherit the graph structure and values from
an existing A2SN BASE instance

• A2SN BASE. node depth map(): compute a map from each node to its depth
value

• A2SN BASE. set edge factors(): set the factor of each edge based on the num-
ber of edges that have the same destination node

• A2SN BASE. node color map(): compute a color map of the nodes based on
their depth in the graph

• A2SN BASE. edge color map(): compute a color map of the edges based on
their weight

• A2SN BASE. node label map(): compute the a node label map with their
activation values as labels

• A2SN BASE. edge labels(): return a list of edge labels with the edge trigger
events as labels

• A2SN BASE. node size map(): compute a node size map proportional to the
node activation values

• A2SN BASE. node position(): compute the position of each node to untangle
the graph for plotting

• graph: NetworkX DiGraph with all the graph information

• node count: integer that keeps track of the number of nodes present in the graph

• end node: integer that keeps track of the end node ID

73

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

• latest state: State used to hold a copy of the latest State of the graph

• figure: integer that points to the matplotlib figure used to plot the graph

• fig title: string that stores the title used when plotting the graph

13.2.2 A2SN BUILD

On top of this base class, the A2SN versions for building and running graphs provide
specific attributes and functions in order to perform their respective tasks. The graph
building class offers two methods for adding nodes to the graph, one method for merging
two graphs together, and a final method to end the graph building process. This subclass
does not add any additional attributes to the base class. The functional aspects of the
subclass methods are briefly explained below

• A2SN BUILD.add node by state(Sate, State, int): add a new node to the
graph using the provided new state input. Two additional parameters can be given if
known: the parent state and the transition event. If these parameters are unknown,
the latest state of the graph is used as the parent and the difference between states
is computed to get the transition event. If the parent and the new state are the
same, if they differ by more than one event or if the new state lacks an event present
in the parent state, the function returns an error. Furthermore, if an existing graph
node already has the new given state, the nodes are merged.

• A2SN BUILD.add node by event(int, State): add a new node to the graph
using the provided transition event. This function uses the latest state of the graph
to build a new state and pass this information to the add node by state function.

• A2SN BUILD. iadd (A2SN BASE): merges an existing graph to the A2SN
own graph. This method is used to incrementally build an A2SN graph from multiple
’simple’ graphs generated from only one sequence.

• A2SN BUILD.end(): end the graph building process by relabeling the nodes,
setting the end node and computing the edge factors.

13.2.3 A2SN RUN

Even though it is theoretically simple to run a pre-built graph and update its values with
real time data, the implementation of the A2SN class for running the Action Recognition

74

Universitat Politècnica de Catalunya

algorithm is critical to ensure a correct outcome of the whole process. Some crucial
decisions must be made before writing the code of this class as they will have a great
impact on the action recognition procedure. The structural and conceptual differences
between ASNs and A2SNs have an effect on the behaviour of the graph when exposed
to inputs, and these differences must be taken into account in order to preserve the
theoretical background for ASN action recognition when shifting to a A2SN structure.

Input handling

The first difference comes from the fact that with an ASN structure, the inputs to the
system are translated into activation values of its operator nodes. This means that if
an input occurs constantly over time, the activation value of its correspondent operator
nodes will also be constant over time. In the A2SN formalism, however, inputs are related
to edge triggers and have no relation to the fluctuation of node activation values. This
means that if an input occurs constantly over time, the activation values of nodes will not
be affected by it; as they are only affected by the decay factor and the input messages they
receive. However, the fact that the node activation values do not change with relation to
the input events means that if all nodes start with a value of zero, they will never increase
their value throughout the whole run.

In order to solve this issue, a slightly different approach has been taken. In an A2SN
graph, the starting node begins with an activation value of 1. This value is only affected
by the decay factor, as the starting node does not receive messages and only serves as a
sender, so it will decrease at each clock tick. This characteristic adds another time-related
behaviour to the A2SN: as time goes by, the nodes closer to the starting point will have
less impact on the activation value flow of the graph, eventually passing on their potential
to the deeper nodes. This produces a characteristic wave-like spreading pattern of the
activation values throughout the graph, which responds to a logical deduction: as time
goes by, the nodes deeper in the graph should have higher activation values than the ones
at the beginning because it is expected that the user progresses through the different
stages of the action.

An example of the evolution of graph values over a 60 seconds action sequence can be
seen in Figure 13.4, in increments of 8 seconds. The sequence played is made up by the
following events: 31-41-91-61-32-62-42. It is worth noticing that this particular coffee
sequence is not present in the A2SN graph used, which has been trained with only 5
action sequence samples. Despite not having seen this particular sequence before, the
graph was able to recognize the action.

75

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

(a) t = 0s (b) t = 8s

(c) t = 16s (d) t = 24s

(e) t = 32s (f) 1t = 40 s

(g) t = 48s (h) t = 52s

Figure 13.4: Evolution of a coffee A2SN graph over the execution of the 60 second coffee
sequence: 31-41-91-61-32-62-42.

76

Universitat Politècnica de Catalunya

Activation message flow

The second noticeable difference between both approaches is that an ASN sends mes-
sages through all its edges at each clock tick. An A2SN, however, only sends messages
through the edges whose trigger event is active at the given clock tick. This provides
a behaviour similar to the operator nodes in ASNs: the ASN operator nodes have an
activation value of zero when there is not any input related to them (effectively sending a
message of value zero to its child nodes); and the A2SN edges are deactivated when their
trigger event is not active (thus also stopping the value propagation). A2SN graphs thus
give more importance to the order of actions than ASNs, so at first sight it might seem
that they are more restrictive when it comes to recognizing actions performed in a way
not previously seen by the network. However, this apparent restriction is bypassed by the
fact that A2SN graphs can be built incrementally from different sequences of the same
action, whereas ASN structures are hard coded by a programmer which results in a more
strict and error prone approach for unknown sequence recognition.

Activation values evolution

The third and perhaps most decisive difference between ASN and A2SN comes from
the aforementioned max edges. In ASN, a max edge represents not only a quantitative
but also a qualitative relationship between nodes. As it has been previously explained,
these edges connect several method nodes with a single compound task node, in such a way
that the activation value of the compound task is the highest of its child nodes connected
via max edges. There are two relevant implications to this characteristic of ASN graphs:

1. The quantitative implication is that max edges work as an slowing factor for activa-
tion value propagation, as the receiving node does not increment its value with the
incoming message but instead replaces its value with the highest incoming message,
thus serving as a sort of saturation gate for all the nodes below.

2. The qualitative implication is that max edges establish a hierarchy between nodes,
making a difference between low level greedy nodes which are updated via sum edges
and high level discriminant nodes that only accept one of their incoming messages.

The suppression of max edges is one of the characteristics of A2SN graphs, and has two
effects that develop from these two implications. Due to the fact that all A2SN nodes
are connected with sum edges, there is no saturation in the activation value propagation,
meaning that the criteria for comparing activation values in order to decide the action
with the highest probability cannot be the same than the ASN rules. Nonetheless, with
a proper study of A2SN behaviour suitable criteria can be found.

77

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

The main reason for suppressing max edges has to do with the qualitative implication
of max edges. The fact that max edges establish a distinction between methods and
compound tasks increases the need of a programmer to generate action graphs. This
qualitative difference, required for the correct performance of the ASN, cannot be easily
detected by an autonomous algorithm; as there are methods that in some actions behave
as compound tasks and vice-versa. In some cases, even in the same ASN the same method
appears as a compound task deeper in the graph. That is why a graph structure with
only sum edges and that reduces the meaning of nodes to system states is much more
suitable for autonomous graph building, one of the objectives of this project.

Finally, this simplified node representation structure has a close resemblance to classic
Neural Networks, opening the action recognition algorithm to the wide variety of NN
training methods to use for learning. In the end, these learning methods used to train
the weights of the edges could also end up creating connections similar to max edges; for
example if after the learning phase one node has three children connected with very edge
weights close to zero and one child with an edge weight close to one.

Consecutive Action Recognition

The last difference between both approaches is how do they perform against two spe-
cific situations: the case where a user stops the action being performed to start a new
one, and the case where the user ends an action and starts a new one immediately after.

In long term program executions where one action follows another, A2SN has a core
problem: as the initial node value always decreases, at some point no event is able to
propagate a message strong enough to activate the recognition and the graph then has a
limited life cycle. ASN graphs, however, present high activation values for the operator
nodes each time their respective event is active, so their life cycle is infinite.

However, in the case of a spontaneous action change, ASN have a slow response time
because the graph keeps propagating activation values until their value is so low that the
information from the previous action has no effect on the new coming information. A2SN,
however, due to their wave-like behaviour, have the potential of a much faster response
time than ASN. The problem is that in order to generate a new activation value wave, the
initial node value would have to be reset, and the algorithm does not have the necessary
knowledge to determine when to reset it.

The solution proposed to add this feature to A2SN graphs is to fix a life cycle for A2SN
based on a comparison between the highest activation value of each graph nodes and the
time elapsed since the graph batch started receiving input (called graph utility). In fact,
the current project proposes to go a step further: initialise a new batch of A2SN graphs

78

Universitat Politècnica de Catalunya

at a constant rate, and monitorize the running graphs to remove those who have finished
their life cycles.

In this way, the both cases presented above are solved, as there are new graphs being
constantly created which can capture spontaneous action changes or the beginning of
new actions. This approach also adds another flexibility factor to the action recognition
algorithm: for the case of recognizing actions which have very different runtimes, having
graphs starting at different times can capture actions that take a wide range of different
times to complete.

A2SN RUN Structure

Taking into consideration these A2SN properties, the class that implements the graph for
running the recognition algorithm is detailed below.

• A2SN RUN.update events(list) - thread safe function to update the active
events used when updating the graph node values

• A2SN RUN.reset() - set the node values to zero and reset the rest of graph
variables for a new recognition run

• A2SN RUN.plot() - this method overrides the plot method of the base class
A2SN BASE in order to make it thread safe

• A2SN RUN.update() - safe thread function to update the activation value of the
graph nodes. It updates the values in the following way: first, the list of active
events is retrieved, and for each active event the matching trigger edges are marked
as triggered and the activation messages are generated. Then, the function loops
through all nodes. If a node has one or more input activation messages in queue,
it performs the value update by adding the input messages. Even if a node does
not have any input message, all nodes end the update function by multiplying their
value by the decay factor.

• A2SN RUN.decay factor - class attribute which stores the decay factor (common
to all graphs) as a float, between zero and one.

79

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

13.2.4 Running the Action Intention Recognition

In order to run the Action Recognition, the tasks are divided into three threads, hence
the need to make the A2SN RUN methods thread safe. As the input to the algorithm
comes from a ROS topic, the main thread is the one that handles the ROS node which
subscribes to the Dispatcher information.

This node has two attributes that are a pool of A2SN RUN objects to update their
node values and an object in charge of plotting the graphs if desired. These two objects
span their own running threads, so in the end the Action Intention Algorithm has three
processes running in parallel

1. A ROS node process which listens to input messages from the Object Recognition
and updates the active event list of the graphs when a new message is received

2. A A2SN pool process which updates the node values of the graphs at a given rate
(equal or higher to the real time specification)

3. A plotter object that references the aforementioned A2SN pool in order to plot the
graphs at a desired rate (preferably slower than the update rate)

These task distribution makes it possible to have the A2SN update loop running at any
desired fixed rate, and also reducing the impact of displaying figures on the node value
update process time. As it has been explained before, the graphs update their node
values at each clock tick, which is a constant rate. If they updated their values with each
incoming message, this rate would be variable (as the object recognition publishing rate
is variable) and the use of the decay factor would introduce unwanted behaviour in the
system.

Two more execution modes are added for simulation purposes: a mode to simulate an
event sequence in real time (which replaces the ROS inputs for simulated events), and a
mode to simulate a large number of virtual sequences using Discrete Event Simulation.
This last execution mode enables testing A2SN Action Recognition with a large number
of virtual sequences in a short amount of time. Figure 13.5 shows a representation of the
processes that run in parallel in each of the three execution modes.

80

Universitat Politècnica de Catalunya

Figure 13.5: Structure of each execution mode for Action Intention Recognition.

81

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

82

Universitat Politècnica de Catalunya

Part VI

Results

After developing both the object recognition and the action intention recognition algo-
rithms, several tests have been performed to study their performance according to the
project objectives. Three tests have been performed: one to assess the robustness and
performance of the object recognition, one to test the feasibility of the proposed approach
to achieve action intention recognition, and a final one to check the overall performance
of the coupled systems.

14. Object Recognition Results

As stated in the Introduction chapter, three goals were set when regarding the performance
of object recognition:

• robustly detect a defined set of kitchen objects

• precisely position the detected objects in a given world reference frame

• work in real-time

The set of kitchen objects considered is made up of 10 different objects, categorized by vol-
ume as either cube or cylinder shaped objects. The list of objects and their categorization
is shown in Table 14.1.

The classification works in two steps, a first step to categorize by volume and then a
second step to categorize by colour only taking into account objects of the same volume
category. This decreases the difficulties posed by a colour only classification by reducing
the number of objects to classify.

In order to perform the classification, two different methods have been tested: a multi
class SVM classification and a Histogram Distance comparison using different metrics (In-
tersection, Cross Correlation, Chi Square and Battacharyya). Both SVM and Histogram

83

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

Object name Volume category
acorsugar cube
pascual cube

marcillacafe cube
lletnostra cube
nesquik cylinder
colacao cylinder
nescafe cylinder
yogurt cylinder
sugar cylinder
mug cylinder

Table 14.1: Object list categorized by volume.

Comparison have been tested for volume, cube colour and cylinder colour classification.
After performing tests over a video stream of over 1000 frames (10 minutes of video at a
frame rate of 1.8 Hz), the conclusions are that SVM outperforms Histogram Classification
for categorizing objects by volume, whereas for color classification both methods present
similar results.

In the end, it has been decided to use SVM for volume classification and Histogram Com-
parison with Intersection distance for color classification. The reason to use Histograms
instead of SVM for color is that unlike SVM it does not require training, and it is also sug-
gested as the appropriate method for color classification by many of the authors cited in
the State of the Art review of this project. The SVM parameters have been defined using
an auto-train function provided by the OpenCV codebase that finds optimal parameters
for the data provided.

14.1 Recognition by Volume and Color

The final confusion matrix for the 10 objects presented above can be seen in Figure 14.1.
Several conclusions can be drawn from an analysis of the matrix.

1. Three items are not recognized a single time: colacao, sugar and yogurt. Colacao
and yogurt are confused with nescafe, whereas sugar is confused with mug.

2. One item is only recognized well 33% of times: pascual. It is confused mainly with
nescafe, a 66% of times.

84

Universitat Politècnica de Catalunya

Figure 14.1: Normalized Confusion Matrix of the Object Recognition results. Rows rep-
resent true labels and columns predicted labels.

85

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

3. The two items mug and nescafe are the ones that almost all of the bad recognitions
point to.

After analyzing the results, there is one source of error that is proposed as the cause of
two of these problems, and it is the following: both mug and nescafe have black and
brown tonalities. If seen in the HSV color space, these tonalities have very low Value and
the same Hue and Saturation that red and orange tonalities (see Figure 14.2). The yogurt
object is white, so its HSV values can also be confused with any bright color of the whole
spectrum. This is the reason why those objects are confused with the black and brown
tonality objects.

Figure 14.2: HSV color space cone. [9]

In the case of the pascual object, the error source is different. Here the problem lies in
the fact that the object is recognised as a cylinder instead of as a cube, and therefore the
color classification cannot retrieve the correct class as it uses the cylinder database for
finding a match. The reason for this confusion comes from the fact that the pascual has
a hexagonal base. This shape has been categorized as cube for training but it is also close
to a cylindrical shape, thus leading to the confusion in volume recognition.

As for the objects position, it has been manually measured and for all tests the aver-
age position deviation is around 1 centimeter, even when working with cluttered scenes
(see Figure 14.3). Given the placement of the Kinect cameras, the algorithm is able to
recognize and position objects in a scene with a high density of instances close to each
other.

86

Universitat Politècnica de Catalunya

Figure 14.3: Recognition of objects in a cluttered scene.

14.2 Algorithm Performance

Another goal for the Object Recognition Algorithm is that it must perform in real time,
as it has to provide information to the Action Intention Recognition which works in real
time. This has resulted in many code optimizations throughout the project development,
and in the end each step of the object recognition process has been timed to test if the
final algorithm can perform in real time or not.

The real time requirement for the project is that the algorithms must provide results at
a minimum rate of 1 Hz. A graph showing the processing times of the whole Object
Recognition pipeline and each of its steps is shown in Figure 14.4.

It can be seen how the steps which use the subsampled version of the point cloud (Plane
and Surface Segmentation) are faster than the ones that use the full cloud data (Object
Segmentation and Recognition). In fact, on average the Plane and Surface Segmentation
steps are a 25-30% faster.

Moreover, it can be seen how the maximum processing time of the whole process (corre-
sponding to the rate at which the Dispatcher node publishes messages) lasts a maximum

87

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

Figure 14.4: Object Recognition processing time.

of 1000 ms, which corresponds to the limit established by the project goals4.

Finally, an analysis of the average processing time of the object recognition steps gives us
the results shown in Table 14.2. The table shows how the average rate for the recognition
process is 1,41 Hz, which corresponds to a time of 710 ms.

Step Avg. time [ms] Avg. rate [Hz]
CALIB 253 3,96
P-SEG 256 3,91
S-SEG 264 3,79
O-SEG 368 2,71
O-REC 368 2,72
DISP 710 1,41

Table 14.2: Object Recognition average processing time and rate.

4 Note that the addition of all the step times is more than 1 second. However, due to the separation
of the steps in nodes, they work as different processes and thus they do not run in sequence but in
parallel.

88

Universitat Politècnica de Catalunya

14.3 Test Parameters

The test results shown above have been obtained by running the object recognition
pipeline with the following parameters, seen in Table 14.3.

Parameter Value
HSV Hist. - Hue bins 18

HSV Hist. - Saturation bins 3
HSV Hist. - Value bins 0

Normal Hist. - inclination bins 10
Normal Hist. - azimuth bins 10
Training Images per object 30

Table 14.3: Object Recognition test parameters.

Finally, a sample image of each object is shown in Figure 14.5. The image sizes range
from 25 to 60 pixels both in width and height.

Figure 14.5: Sample object images.

15. Action Intention Recognition Results

As the capture of real action sequences is a time consuming task and the number of
sequences needed to evaluate an algorithm has to be large, a mixed real/virtual approach

89

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

has been taken to test the proposed A2SN Action Intention Recognition Algorithm.

15.1 Testing database

From the performance of a small set of actions, a general rule has been extracted that
represents an action sequence class. This general rule, named the master sequence, is
a list of action steps. Each step contains information about the events that happen
during the step, which can occur in any order; as well as information about a minimum
and a maximum duration for each event. From these master sequence deduced from real
action sequences, an infinite number of individual virtual sequences can be obtained which
present a strong resemblance to real actions.

To test the A2SN algorithm, three actions have been taken into account, making sure
that they contain similar events: coffee, cereals and cacao. All three actions involve the
objects mug, and milk, and while the coffee action also involves the use of coffee and
sugar, the cereals and cacao actions involve the use of cereals and cacao respectively.

The master sequences of each considered action have the following characteristics:

• Coffee - 4 items, 2 steps: the first step has 4 events and the second step has 3
events. 144 unique action sequences can be generated from this master sequence.

• Cereals - 3 items, 2 steps: the first step has 3 events and the second step has 4
events. 144 unique action sequences can be generated from this master sequence.

• Cacao - 3 items, 2 steps: the first step has 3 events and the second step has 4
events. 144 unique action sequences can be generated from this master sequence.

15.2 Test process

The process for testing the algorithm involves two phases:

1. Graph Building [Learning Phase] - for each action, a small number of individual
sequences is generated and merged into a unique A2SN graph which represents the
action

90

Universitat Politècnica de Catalunya

2. Action Intention Recognition [Testin Phase] - a random action is selected
and an individual sequence of that action is generated. The generated sequence is
passed to the action recognition, which uses the A2SN graphs from the Learning
Phase for recognition. This is repeated 1000 times.

These tests have been performed by building the A2SN graphs with 5 sequence instances
per action: only 3.5 % of the number of variations of each master sequence is used
for training. Then these graphs have been used for recognizing 1000 different action
sequences, and statistical metrics have been computed.

15.3 A2SN recognition results

Under the conditions presented above, the test results have given the statistical data seen
in Table 15.1. It can be seen how the algorithm performs as expected with an 83.6% of
correctly recognised actions in an average Early Detection Time of 18.8%.

Undetected Action Sequences 0.2 %
True Positives 83.6 %
False Positives 16.2 %
Average EDT 18.8 %
Average COD 6.85

Table 15.1: Statistical Action Recognition Results.

A sample of the Maximum Node Value evolution for the three considered A2SN graphs
during the recognition of a cereals action sequence is shown in Figure 15.1, as well as a
coffee action sequence in Figure 15.2. The EDT of this recognitions are between 20-30 %
and the recognition outcome is correct. All the tests used the parameters α = 5, β = 10.

15.4 A2SN performance results

Finally, the average computation time of the update function for all A2SN graphs has been
tested by gradually increasing the number of A2SN graphs that are used for recognition.
The number of graphs tested ranges from 3 to over 300, with a total number of nodes
ranging from 30 nodes to over 3500 nodes. The results are shown as the average time

91

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

Figure 15.1: Evolution of the maximum node values for three A2SN graphs during the
recognition of a cereals action.

Figure 15.2: Evolution of the maximum node values for three A2SN graphs during the
recognition of a coffee action.

92

Universitat Politècnica de Catalunya

Figure 15.3: Execution time of the update function for all graphs relative to the total
number of nodes in the program.

taken to update the graph values for all graphs as a function of the total number of nodes
in the program, shown in Figure 15.3.

Given that the real time requirement for the program is to run at least at a frequency of 1
Hz, the developed A2SN implementation achieves this objective with a wide margin. This
result also strengthens the scalability properties of A2SN action recognition algorithms.

93

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

94

Universitat Politècnica de Catalunya

Part VII

Project Schedule and Budget

After finishing the project, revising the initial schedule and computing an estimate of
the project budget is a task that provides relevant feedback on the project outcome. It
gives an insight on the overall performance during the project’s life and on the economic
implications of the work done.

This chapter analyzes the schedule that was programmed at the beginning of the project
in order to compare it with the real project development flow and also estimates all the
project costs (personnel, hardware amortization and energy consumption) in order to
present a final project budget.

16. Schedule

An extended Master’s Thesis at the UPC ETSEIB engineering school is comprised of 30
ECTS credits which translates to 750 hours of work. The schedule of this thesis covers
eight months from November 2018 to June 2019: by considering 4 weeks per month
and 5 working days per week, the work load is divided into 23,5 hours/week which is
equivalent to 4 hours and 40 minutes/day. This was defined as the original work plan,
and a distribution of time between project tasks was programmed as a Gantt chart seen
in Figure 16.1.

After completing the project, a backwards analysis has been performed in order to confront
the ideal work plan (750 total hours, 23,5 hours per week) with the real hours worked. In
the end, a total of 828 hours have been devoted to the project, 85% of which are spent on
researching, developing and testing the solution and the rest 15% are hours spent writing,
revising and correcting the project’s thesis. All tasks were programmed at the beginning
of the project in blocks of 6 hours with each block representing a working day. Then
the amount of real hours dedicated to each task has been used to compare the initial
plan with the real project development. The differences between both plans are shown in
Figure 16.2.

95

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

Figure 16.1: Initial project Gantt chart.

Figure 16.2: Difference between programmed and real hours for each task.

96

Universitat Politècnica de Catalunya

Finally, a comparison between the theoretical work hours per month (750/8) and the real
dedicated hours can serve as an insight to learn from mistakes in order to perform better
on the next project. Figure 16.3 shows the ideal work hours as well as the real hours per
month.

Figure 16.3: Difference between programmed and real hours for each month.

17. Budget

Taking into account the work hours and the material used for the project, a budget esti-
mation can be performed in order to evaluate the costs related with it. The project budget
is divided into personnel costs, amortization and energy consumption. As a reference for
personnel costs, the salary of a Technician Engineer with a Master’s Degree university
level has been looked up in the latest approved Spanish BOE5. It consists in 23600 annual
gross euros for a maximum of 1800 yearly work hours. This leads to an average wage of
13.1 AC /h.

In order to add the personnel costs for the project director, the double of a technician
wage has been considered: 26.2 AC /h, assuming that the amount of hours the director

5 Resolución de 30 de diciembre de 2016, de la Dirección General de Empleo, por la que se registra
y publica el Convenio colectivo del sector de empresas de ingenieŕıa y oficinas de estudios técnicos.
Bolet́ın Oficial del Estado, 542, de 18 de enero de 2017, 4356 a 4382.

97

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

devotes to the project is 10% of the hours dedicated by the technician. Thus in this
project the personnel costs are computed as follows, where PC refers to Personnel Cost:

PC = 828h · 13.1AC/h + 82.8h · 26.2AC/h = 13016AC (5)

As for the amortization costs, several hardware components have to be taken into account.
No software amortization is considered in this project as all the software used is either
free or open source. The hardware used in the project consists of:

• A personal computer with two screens, keyboard and mouse

• Three Kinect One cameras

• A server computer with an NVIDIA Titan X graphics card

• A Plasma television screen connected to the server

None of the robots is considered because even though they are part of the AURORA
system they have no been used for any task related with the development of this project.
After estimating the value of each hardware component and its useful life, the amortization
can be computed as the time fraction of that life used for the project (8 months, 240 days).
The final cost is then the total purchase cost multiplied by the amortization of each item,
, showing the results in Table 17.1. The total amortization cost is 290.6 AC .

Item Cost Useful Life Amort. Final cost
Personal Computer 400 AC 1825 days 13.15% 52.6 AC

Kinect One (x3) 420 AC 3650 days 6.57% 27.6 AC
Server 800 AC 1825 days 13.15% 105.2 AC

NVIDIA Titan X 1000 AC 3650 days 6.57% 65.7 AC
Plasma TV 600 AC 3650 days 6.57% 39.5 AC

Table 17.1: Amortization cost of project hardware.

Finally, the energy consumption of the project covers two main energy groups. The first
one is the electric power consumed by the hardware equipment, and the second one is the
cost of light and heating/cooling the laboratory. These costs have been estimated using
average values multiplied by the work hours of the project. The computation of energy
costs is shown in Table 17.2, adding up to 549.7 AC .

The final project budget is obtained by adding all the previously considered costs. The
result is shown in Table 17.3, with a total budget of 13856.3 AC .

98

Universitat Politècnica de Catalunya

Concept AC / kWh Project kWh Final cost
Light 0,1127930 270 30.4 AC

Heat & A/C 0,1127930 3354 378.4 AC
Hardware power 0,1127930 1249 140.9 AC

Table 17.2: Energy cost of the project.

Concept Cost
Personnel 13016.0 AC

Hardware amortization 290.6AC
Energy consumption 549.7 AC

TOTAL 13856.3 AC

Table 17.3: Project Budget.

99

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

100

Universitat Politècnica de Catalunya

Part VIII

Environmental Impact

A two part environmental analysis has been performed for the current project. On one
hand, the direct impact that the hardware has on the environment has been studied from
the point of view of potential hazards and CO2 emmision. On the other hand, the future
impact that applications based on this project can have on the environment has also been
taken into account.

The main hardware used during the project development has been three Kinect One
cameras, two computers and a Plasma television. The Kinect cameras are designed for
human use, and although they work with IR emitters, the harm they can cause is identical
to the one of a traditional IR LED; and this light emission does not harm the environment.
The Plasma television has been proved to be less harmful than the nowadays mostly used
LCD displays, and if state of the art recycling techniques are used most of its materials
can be used for further manufacture processes. As for the personal computers, during
their usage life they only emit heat but they must be also recycled properly to avoid the
waste of materials.

The second environmental aspect of this project is how it can affect future applications
based on it. Regarding the kitchen environment, an intelligent assistive system can per-
form recycling tasks which are sometimes not done by people. For example, a robotic
system can take care of trash handling and thus ensure that all the kitchenware and food
is recycled in a proper way. this example shows that the project can also have beneficial
effects for the environment if applied properly in future applications.

101

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

102

Universitat Politècnica de Catalunya

Part IX

Conclusions

The field of Assistive Robotics has an enormous growth potential as it tackles a wide
amount of daily problems which affect at least ten percent of the world population [28].
The broadness of its object of study is also the cause of the challenges for finding robust,
scalable and viable solutions to these problems. Despite this obstacle among many others
the research community has held a steady pace of improvement in this area over the last
20 years. One of the specific issues studied in the context of Assistive Robotics is Action
Intention Recognition.

Action Intention Recognition has several particularities which make it a challenging prob-
lem to solve. Action Classification approaches need to deal with high inter and intra class
variability as well as with spatio-temporal differences between similar actions. Moreover,
the objective to detect human intentions adds a real time requirement and a predictive
aspect to the problem to solve. This project proposes a novel Action Intention Recogni-
tion based on RGBD Object Recognition, parting from state of the art approaches and
making slight modifications to improve such methods.

The object recognition algorithm has proven its capabilities to run in real time with the
input from three cameras while recognizing and positioning the objects present in the
region if interest. In spite of the proposed volume descriptor providing desirable results
on the object dataset, the performance of color classification with HSV histograms has
not achieved enough robustness. The low image resolution and the real time requirement
make the task of finding an adequate classification method a difficult and time consuming
task.

When it comes to action recognition, the proposed improvements over the ASN formal-
ism have proven to be effective for autonomous addition of new action sequences to the
database. Moreover, the applied changes provide a suitable structure that can be subject
of traditional Neural Network training methods, although this is a field that has been
left for future studies. Finally, the tests preformed under similar conditions to the ones
carried out by the ASN authors and with a higher degree of similarity between actions
show that the performance cost of introducing the proposed changes is minimal.

After analyzing the development of the project and the results of the tests performed,
it can be concluded that all of the project have been fulfilled: an object recognition
algorithm that recognises and positions objects from a kitchen set in real time and an

103

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

action intention recognition algorithm that differentiates between a set of kitchen tasks
and recognizes them while they are being performed have been developed, implemented
and tested. However, there is still room for improvement which has been gathered as
future work proposals.

18. Future Work

Several aspects of the project development and implementation have opened new ways
of improving the proposed solution. The most relevant ones have been gathered in the
following proposals for future work on the subject:

• Improve the detection of object movement by adding a lightweight object tracking
algorithm to the object recognition process. In order to avoid confusions by volume
when objects are overlapped, a color based tracking should be used.

• Explore and test the capabilities of A2SN action intention recognition in the case of
consecutive actions and changes mid-action. The proposed method of using A2SN
batches and monitorizing their utility can be a starting point for this analysis.

• Build a large enough real action sequences database to validate the experimental
results of this project without the use of virtual data.

• Improve the color object recognition by refining the descriptors used. Adding texture
information and segmenting the object images in color clusters before computing
the histograms are two widespread approaches to improve the classification results.

104

Universitat Politècnica de Catalunya

References

[1] A Alexandre. A Comparative Evaluation of 3D Keypoint Detectors in a RGB-D
Object Dataset. 2014 International Conference on Computer Vision Theory and
Applications (VISAPP), pages 476–483, 2014.

[2] Joan Aranda and Manuel Vinagre. Anticipating human activities from object in-
teraction cues. In 2016 25th IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN), pages 58–63. IEEE, aug 2016.

[3] Manuel Blum, Jost Tobias Springenberg, Jan Wülfing, and Martin Riedmiller. A
learned feature descriptor for object recognition in rgb-d data. In 2012 IEEE Inter-
national Conference on Robotics and Automation, pages 1298–1303. IEEE, 2012.

[4] Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Unsupervised feature learning for rgb-d
based object recognition. In Experimental Robotics, pages 387–402. Springer, 2013.

[5] Dr. Willie Brink. Computer Vision Course Notes, chapter 5. Stellenbosch University,
Western Cape, South Africa, 2017.

[6] Olivier Chapelle, Patrick Haffner, and Vladimir N. Vapnik. Support vector machines
for histogram-based image classification. IEEE Transactions on Neural Networks,
1999.

[7] Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jitendra Malik. Learning rich
features from RGB-D images for object detection and segmentation. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 8695 LNCS(PART 7):345–360, 2014.

[8] [Image]. Docker logo - Docker official website. https://www.docker.com/sites/

default/files/social/docker_facebook_share.png. Accessed: 2019-05-30.

[9] Image. HSV color space cone. https://i.stack.imgur.com/uSbIT.png. Accessed:
2019-06-16.

[10] [Image]. IAI-Kinect logo - IAI Github repository. https://avatars1.

githubusercontent.com/u/4136974?s=400&v=4. Accessed: 2019-05-30.

[11] [Image]. MoveIt! logo - MoveIt Github repository. https://github.com/ros-

planning/moveit. Accessed: 2019-05-30.

105

https://www.docker.com/sites/default/files/social/docker_facebook_share.png
https://www.docker.com/sites/default/files/social/docker_facebook_share.png
https://i.stack.imgur.com/uSbIT.png
https://avatars1.githubusercontent.com/u/4136974?s=400&v=4
https://avatars1.githubusercontent.com/u/4136974?s=400&v=4
https://github.com/ros-planning/moveit
https://github.com/ros-planning/moveit

Action Intention Recognition for Proactive Human Assistance in Domestic Environments

[12] [Image]. OpenCL logo - AnandTech. https://images.anandtech.com/doci/9039/
OpenCLLogo_678x452.png. Accessed: 2019-05-30.

[13] [Image]. OpenCV logo - Wikimedia. https://upload.wikimedia.org/wikipedia/
commons/thumb/3/32/OpenCV_Logo_with_text_svg_version.svg/1200px-

OpenCV_Logo_with_text_svg_version.svg.png. Accessed: 2019-05-30.

[14] [Image]. OpenKinect logo - OpenKinect Github repository. https://avatars0.

githubusercontent.com/u/478332?s=400&v=4. Accessed: 2019-05-30.

[15] [Image]. Pinhole camera model - OpenMVG official documentation. https:

//openmvg.readthedocs.io/en/latest/openMVG/cameras/cameras/. Accessed:
2019-04-17.

[16] [Image]. Pointcloudlibrary logo - PCL official website. http://www.pointclouds.

org/assets/images/contents/logos/pcl/pointcloudlibrary_vert_large_

pos.png. Accessed: 2019-05-30.

[17] [Image]. ROS logo - Generation Robots. https://www.generationrobots.

com/blog/wp-content/uploads/2016/03/Logo-ROS-Robot-Operating-System1-

687x241.jpg. Accessed: 2019-05-30.

[18] [Image]. RViz logo - RViz Github repository. https://raw.githubusercontent.

com/ros-visualization/rviz/melodic-devel/images/splash.png. Accessed:
2019-05-30.

[19] International Federation of Robotics. Global industrial robot sales doubled over the
past five years. World Robotics - Industrial Robot Report 2018, October 2018.

[20] Richard Kelley, Alireza Tavakkoli, Christopher King, Amol Ambardekar, Monica
Nicolescu, and Mircea Nicolescu. Context-based Bayesian intent recognition. IEEE
Transactions on Autonomous Mental Development, 4(3):215–225, 2012.

[21] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hierarchical
multi-view rgb-d object dataset. In 2011 IEEE international conference on robotics
and automation, pages 1817–1824. IEEE, 2011.

[22] Pier Luigi Mazzeo, Luciano Giove, Giuseppe M. Moramarco, Paolo Spagnolo, and
Marco Leo. HSV and RGB color histograms comparing for objects tracking among
non overlapping FOVs, using CBTF. In 2011 8th IEEE International Conference on
Advanced Video and Signal Based Surveillance, AVSS 2011, 2011.

[23] Yannick Morvan. Acquisition, Compression and Rendering of Depth and Texture for
Multi-View Video. PhD thesis, Eindhoven University of Technology, January 2008.

106

https://images.anandtech.com/doci/9039/OpenCLLogo_678x452.png
https://images.anandtech.com/doci/9039/OpenCLLogo_678x452.png
https://upload.wikimedia.org/wikipedia/commons/thumb/3/32/OpenCV_Logo_with_text_svg_version.svg/1200px-OpenCV_Logo_with_text_svg_version.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/3/32/OpenCV_Logo_with_text_svg_version.svg/1200px-OpenCV_Logo_with_text_svg_version.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/3/32/OpenCV_Logo_with_text_svg_version.svg/1200px-OpenCV_Logo_with_text_svg_version.svg.png
https://avatars0.githubusercontent.com/u/478332?s=400&v=4
https://avatars0.githubusercontent.com/u/478332?s=400&v=4
https://openmvg.readthedocs.io/en/latest/openMVG/cameras/cameras/
https://openmvg.readthedocs.io/en/latest/openMVG/cameras/cameras/
http://www.pointclouds.org/assets/images/contents/logos/pcl/pointcloudlibrary_vert_large_pos.png
http://www.pointclouds.org/assets/images/contents/logos/pcl/pointcloudlibrary_vert_large_pos.png
http://www.pointclouds.org/assets/images/contents/logos/pcl/pointcloudlibrary_vert_large_pos.png
https://www.generationrobots.com/blog/wp-content/uploads/2016/03/Logo-ROS-Robot-Operating-System1-687x241.jpg
https://www.generationrobots.com/blog/wp-content/uploads/2016/03/Logo-ROS-Robot-Operating-System1-687x241.jpg
https://www.generationrobots.com/blog/wp-content/uploads/2016/03/Logo-ROS-Robot-Operating-System1-687x241.jpg
https://raw.githubusercontent.com/ros-visualization/rviz/melodic-devel/images/splash.png
https://raw.githubusercontent.com/ros-visualization/rviz/melodic-devel/images/splash.png

Universitat Politècnica de Catalunya

[24] Roland Smeenk. Kinect FOV explorer tool. http://www.smeenk.com/webgl/

kinectfovexplorer.html. Accessed: 2019-03-20.

[25] Radu Bogdan Rusu, Gary Bradski, Romain Thibaux, and John Hsu. Fast 3D recogni-
tion and pose using the viewpoint feature histogram. IEEE/RSJ 2010 International
Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings,
pages 2155–2162, 2010.

[26] Mohammad Taghi Saffar, Mircea Nicolescu, Monica Nicolescu, and Banafsheh Rek-
abdar. Context-based intent understanding using an Activation Spreading archi-
tecture. IEEE International Conference on Intelligent Robots and Systems, 2015-
December:3002–3009, 2015.

[27] Giovanni Saponaro, Giampiero Salvi, and Alexandre Bernardino. Robot anticipa-
tion of human intentions through continuous gesture recognition. Proceedings of
the 2013 International Conference on Collaboration Technologies and Systems, CTS
2013, 1(Cts):218–225, 2013.

[28] Laura Sminkey. World Report on Disability. World Health Organisation, 2011.

[29] Shiva Soleimanizadeh, Dzulkifli Mohamad, Tanzila Saba, and Amjad Rehman.
Recognition of Partially Occluded Objects Based on the Three Different Color Spaces
(RGB, YCbCr, HSV). 3D Research, 2015.

[30] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. DeepFace: Clos-
ing the gap to human-level performance in face verification. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2014.

107

http://www.smeenk.com/webgl/kinectfovexplorer.html
http://www.smeenk.com/webgl/kinectfovexplorer.html

	Abstract
	Acronyms
	List of Figures
	List of Tables
	I Introduction
	Objectives
	Scope

	II State of the Art Analysis
	RGBD Object Recognition
	Category and Instance Object Recognition
	Object Descriptors
	Recognition Methods

	Action Intention Recognition
	Recognition Approaches
	Project Approach

	III System Setup
	Overview
	Robots
	Mico
	Baxter
	CAPDI

	Other Hardware
	Kinect One
	Server PC

	Software
	ROS
	RViz
	MoveIt!
	OpenCL & OpenCV
	IAI-Kinect & libfreenect2
	Point cloud library
	Docker

	IV Object Recognition
	Camera Input
	Camera Setup
	Placement
	Calibration

	Algorithm Overview
	Nodelet Structure
	Calibration nodelet
	Plane Segmentation Nodelet
	Surface Segmentation Nodelet
	Object Segmentation Nodelet
	Object Recognition Nodelet
	Recognition methods
	SVM Classification
	Histogram Comparison Classification
	Descriptors
	Two stage classification

	Dispatcher Node
	Message Synchronization

	ROS Graph

	V Action Intention Recognition
	Activation Spreading Networks
	Structure
	Activation and recognition procedures
	Performance indicators
	Limitations and improvements

	Autonomous Activation Spreading State Networks
	A2SN structure
	Autonomous creation of A2SN
	A2SN decision function
	Node Depth
	Relative Value between Graphs
	Minimum Value Threshold
	Final Decision Function

	Training A2SN networks
	Performance Metrics

	Algorithm Implementation
	Auxiliary classes
	State
	KitchenObject/s
	SequenceGenerator

	A2SN implementation
	A2SN_BASE
	A2SN_BUILD
	A2SN_RUN
	Input handling
	Activation message flow
	Activation values evolution
	Consecutive Action Recognition
	A2SN_RUN Structure

	Running the Action Intention Recognition

	VI Results
	Object Recognition Results
	Recognition by Volume and Color
	Algorithm Performance
	Test Parameters

	Action Intention Recognition Results
	Testing database
	Test process
	A2SN recognition results
	A2SN performance results

	VII Project Schedule and Budget
	Schedule
	Budget

	VIII Environmental Impact
	IX Conclusions
	Future Work

	References

