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Abstract

A (1,≤ `)-identifying code in a digraph D is a subset C of vertices of D such
that all distinct subsets of vertices of cardinality at most ` have distinct closed in-
neighbourhoods within C. In this paper, we give some sufficient conditions for a
digraph of minimum in-degree δ− ≥ 1 to admit a (1,≤ `)-identifying code for ` =
δ−, δ− + 1. As a corollary, we obtain the result by Laihonen that states that a graph
of minimum degree δ ≥ 2 and girth at least 7 admits a (1,≤ δ)-identifying code.
Moreover, we prove that every 1-in-regular digraph has a (1,≤ 2)-identifying code
if and only if the girth of the digraph is at least 5. We also characterize all the
2-in-regular digraphs admitting a (1,≤ `)-identifying code for ` = 2, 3.

Mathematics Subject Classifications: 05C69, 05C20

Keywords: Graph; digraph; identifying code.

1 Introduction

The aim of this paper is to study identifying codes in digraphs. We consider simple
digraphs (or directed graphs) without loops or multiple edges. Unless otherwise stated,
we follow the book by Bang-Jensen and Gutin [3] for terminology and definitions.

Let D = (V,A) be a digraph with vertex set V (D) = V and arc set A(D) = A. A vertex
u is adjacent to a vertex v if (u, v) ∈ A. If both arcs (u, v), (v, u) ∈ A, then we say that they
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form a digon. A digraph is symmetric if (u, v) ∈ A implies (v, u) ∈ A. A digon is often said
a symmetric arc of D. A digraph D is said to be oriented graph if D has no digon. The
girth g of a digraph is the length of a shortest directed cycle. Hence, an oriented graph has
girth g ≥ 3. Moreover, observe that every graph G with vertex set V and edge set E can

be seen as a symmetric digraph denoted by
↔
G, replacing each edge uv ∈ E by the digon

(u, v) and (v, u). The out-neighborhood of a vertex u is N+(u) = {v ∈ V : (u, v) ∈ A} and
the in-neighborhood of u is N−(u) = {v ∈ V : (v, u) ∈ A}. The closed in-neighbourhood
of u is N−[u] = {u} ∪ N−(u). The out-degree of u is d+(u) = |N+(u)| and its in-degree
d−(u) = |N−(u)|. We denote by δ+(D) the minimum out-degree of the vertices in D, and
by δ−(D) the minimum in-degree. The minimum degree is δ(D) = min{δ+(D), δ−(D)}.
A digraph D is said to be d-in-regular if d−(v) = d for all v ∈ V , and d-regular if
d+ (v) = d−(v) = d for all v ∈ V .

Given a vertex subset U ⊆ V , let N−[U ] =
⋃
u∈U N

−[u]. For a given integer ` ≥ 1,
a vertex subset C ⊆ V is a (1,≤ `)-identifying code in D when for all distinct subsets
X,Y ⊆ V , with 1 ≤ |X|, |Y | ≤ `, we have

N−[X] ∩ C 6= N−[Y ] ∩ C. (1)

The definition of a (1,≤ `)-identifying code for graphs was introduced by Karpovsky,
Chakrabarty and Levitin [15], and it is obtained by omitting the superscript sign minus
in the neighborhoods in (1). Thus, the definition for digraphs is a natural extension of the
concept of (1,≤ `)-identifying codes in graphs. A (1,≤ 1)-identifying code is known as an
identifying code. Thus, an identifying code of a graph is a set of vertices such that any two
vertices of the graph have distinct closed neighborhoods within this set. Identifying codes
model fault-diagnosis in multiprocessor systems, and these are used in other applications
such as the design of emergency sensor networks. Identifying codes in graphs have received
much more attention by researchers. Honkala and Laihonen [14] studied identifying codes
in the king grid that are robust against edge deletions. More recently, identifying codes
have been considered for vertex-transitive graphs and strongly regular graphs by Gravier
et al. [13], and for graphs of girth at least five by Balbuena, Foucaud and Hansberg [2].
Other results on identifying codes in specific families of graphs, as well as on the smallest
cardinality of an identifying code C, can be seen in Bertrand et al. [4], Charon et al. [5],
Exoo et al. [8, 9], and the online bibliography of Lobstein [18].

A graph G is said to admit a (1,≤ `)-identifying code if there is a subset of vertices
C ⊆ V (G) such that C is a (1,≤ `)-identifying code in G. Not all graphs admit (1,≤ `)-
identifying codes. For instance, Laihonen [16] pointed out that a graph containing an
isolated edge cannot admit a (1,≤ 1)-identifying code, because clearly, if uv ∈ E(G) is
isolated, then N [u] = {u, v} = N [v]. In fact, a graph containing an isolated complete
bipartite graph Kr,d, with r ≤ d, cannot admit a (1,≤ d)-identifying code. It is not
difficult to see that if G admits a (1,≤ `)-identifying code, then C = V is also a (1,≤ `)-
identifying code. Hence, a graph admits a (1,≤ `)-identifying code if and only if the sets
N [X] are mutually different for all X ⊆ V , with |X| ≤ `. Laihonen and Ranto [17] proved
that if G is a connected graph with at least three vertices admitting a (1,≤ `)-identifying
code, then the minimum degree is δ(G) ≥ `. Gravier and Moncel [12] showed the existence
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of a graph with minimum degree exactly ` admitting a (1,≤ `)-identifying code. Laihonen
[16] proved the following result.

Theorem 1. [16] Let k ≥ 2 be an integer.

1. If a k-regular graph has girth g ≥ 7, then it admits a (1,≤ k)-identifying code.

2. If a k-regular graph has girth g ≥ 5, then it admits a (1,≤ k − 1)-identifying code.

Araujo et al. [1] characterized the bipartite k-regular graphs of girth at least 6 having
a (1,≤ k)-identifying code.

Identifying codes for digraphs were considered by Charon et al. [6, 7], and Frieze,
Martin, Moncet et al. [11] studied identifying codes in random networks. Recently, Fou-
caud, Naserasr and Parreau [10] studied identifying codes in digraphs under the name
of separating sets, and they called identifying codes to the separating sets that also are
dominating sets. These authors characterized the finite digraphs that only admit their
whole vertex set as an identifying code in this meaning.

In this paper, we give some sufficient conditions for a digraph of minimum in-degree
δ− ≥ 1 to admit a (1,≤ `)-identifying code for ` = δ−, δ− + 1. As a corollary, we obtain
Theorem 1. Moreover, we prove that every 1-in-regular digraph has a (1,≤ 2)-identifying
code if and only if the girth of the digraph is at least 5. We also characterize all the
2-in-regular digraphs admitting a (1,≤ `)-identifying code for ` = 2, 3.

2 Identifying codes

In this paper we study the concept of a (1,≤ `)-identifying code for digraphs given in (1).
We begin by noting that if C is a (1,≤ `)-identifying code in a digraph D, then the whole
set of vertices V also is. Thus, we have the following straightforward observation.

Lemma 1. A digraph D = (V,A) admits some (1,≤ `)-identifying code if and only if for
all distinct subsets X,Y ⊆ V with |X|, |Y | ≤ `, we have

N−[X] 6= N−[Y ]. (2)

As already mentioned in the introduction, Laihonen and Ranto [17] proved that if G is
a connected graph with at least three vertices admitting a (1,≤ `)-identifying code, then
the minimum degree is δ(G) ≥ `. We present the following similar result for digraphs.

Proposition 1. Let D be a digraph admitting a (1,≤ `)-identifying code. Let u be a vertex
such that d+(u) ≥ 1. Then, ` ≤ d−(u) + 1. Furthermore, if u belongs to a digon, then
` ≤ d−(u).

Proof. Let u ∈ V (D) be such that d+(u) ≥ 1 and v ∈ N+(u). Then, both sets X =
N−(u) ∪ {u, v} and Y = N−(u) ∪ {v} have the same closed in-neighbourhood. Con-
sequently, ` ≤ d−(u) + 1. Furthermore, if v ∈ N−(u), then X ′ = N−(u) ∪ {u} and
Y ′ = N−(u) have the same closed in-neighbourhood implying that ` ≤ d−(u).
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Figure 1: All the forbidden subdigraphs of Theorem 2.

Corollary 1. Let D be a digraph of minimum in-degree δ− admitting a (1,≤ δ− + 1)-
identifying code. Then, any vertex u with d−(u) = δ− does not lay on a digon.

Corollary 2. Let D be a digraph admitting a (1,≤ `)-identifying code. Then, ` ≤
min{d−(u) + 1 | u ∈ V (D) and d+(u) ≥ 1}.

We recall that a transitive tournament of three vertices is denoted by TT3, see F1 of
Figure 1.

Remark 1. Let D be a TT3-free digraph. Then, for every arc (x, y) of D, we have
N−(x) ∩N−(y) = ∅ and N+(x) ∩N+(y) = ∅.

Remark 2. Two distinct vertices u and v of D are called twins if N−[u] = N−[v]. Hence,
a digraph D admits a (1,≤ 1)-identifying code if and only if D is twin-free.

Theorem 2. Let D be a twin-free digraph with minimum in-degree δ− ≥ 1.

(i) Suppose that δ− ≥ 2 and D does not contain any subdigraph as F1 nor F2 of Figure 1,
then D admits a (1,≤ δ− − 1)-identifying code.

(ii) Suppose that D is an oriented graph and does not contain any subdigraph as F1 nor
F2 of Figure 1, then D admits a (1,≤ δ−)-identifying code.

(iii) If D does not contain any subdigraph from F1 to F9 of Figure 1, then D admits a
(1,≤ δ−)-identifying code.

(iv) Suppose that δ− ≥ 2 and the vertices of in-degree δ− do not lay on a digon. If D
does not contain any subdigraph as those of Figure 1, then D admits a (1,≤ δ−+1)-
identifying code.

(v) Suppose that δ− = 1 and the vertices of in-degree 1 do not lay on directed cycles of
length less than five. If D does not contain any subdigraph as F1, F3, F4, F5, F6 nor
F11 of Figure 1, then D admits a (1,≤ 2)-identifying code.
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Proof. By Remark 2, D admits a (1,≤ 1)-identifying code because D is twin-free. In what
follows, for brevity, we made reference to the different cases F1-F11 of Figure 1 without
mentioning the figure.

We reason assuming that D does not admit a (1,≤ `)-identifying code with ` ∈
{δ− − 1, δ−, δ− + 1}. Then there are two different subsets X and Y with |Y |, |X| ≤ `
such that N−[X] = N−[Y ]. Let x ∈ X \ Y and N−(x) = {v1, . . . , vτ} for τ ≥ δ−. As
N−(x) ⊆ N−[X] = N−[Y ], for all vi, i = 1, . . . , τ , there exists a vertex yi ∈ Y such
that yi ∈ N+(vi) or yi = vi ∈ Y . Moreover, all vertices yi are mutually different, since
otherwise some subdigraph F1 or F2 would be contained in D. Hence, |Y | ≥ δ−, which
contradicts the hypothesis of (i), and the proof of (i) is completed.

Observe that both (ii) and (iii) are proved if δ− = 1, so we may assume that δ− ≥ 2
in these two cases.

We continue the proof assuming that ` ∈ {δ−, δ− + 1}. Since x ∈ N−[X] = N−[Y ],
there is y ∈ Y such that y ∈ N+(x). Observe that y 6∈ N−(x) because by hypothesis of
(ii) the digraph is an oriented graph. Moreover, y is different from each yi because D is
free of F1, implying that |Y | ≥ δ− + 1, which contradicts the hypothesis of (ii), and the
proof of (ii) is completed.

Next, to see (iii) let us show that |X| ≥ δ− + 1. To do that, let us see that for each
vi ∈ N−(x) one can associate to it a vertex zi ∈ X \ {x} in such a way that zi 6= zj for
all i 6= j. Let us consider the following partition of N−(x): N−(x) ∩ (Y \X), N−(x) ∩X
and N−(x) ∩ (V \ (X ∪ Y )). We have the following cases (see Figure 2):

Case 1: vi ∈ N−(x)∩ (Y \X). Since δ− ≥ 2, there is wi ∈ N−(vi) \ {x} ⊆ N−[Y ] \ {x} =
N−[X] \ {x}. Hence: If wi ∈ X, then zi = wi and zi 6= x; and if wi 6∈ X, since
wi ∈ N−[Y ] = N−[X], there exists zi ∈ X such that zi ∈ N+(wi). In this case we may
assume that zi 6= x, because D is free of F1.

Case 2: vi ∈ N−(x) ∩X. Then zi = vi and zi 6= x.

Case 3: vi ∈ N−(x) ∩ (V \ (X ∪ Y )) ⊆ N−[X] \ (X ∪ Y ) = N−[Y ] \ (X ∪ Y ). Then we
consider the vertices yi ∈ Y such that yi ∈ N+(vi) and yi 6= yj for i 6= j. If yi ∈ X, then
zi = yi, and yi 6= x because x ∈ X \ Y . If yi ∈ Y \X, then there exists zi ∈ X such that
zi ∈ N+(yi). Observe that zi is different from x, because D is free of F1.

Now let us see that all zi are different. For this, let i, j ∈ {1, . . . , τ} such that i 6= j. If
vi, vj ∈ N−(x)∩(Y \X) and zi = zj , then (see Figure 2 Case 1) it could be wj = zj = zi =
wi ∈ X, and D would contain the subdigraph F3, contradicting the hypothesis of (iii).
It could be zj = zi = wi ∈ X and wj 6∈ X, then D would contain the subdigraph F5, a
contradiction. Finally, it could be wi, wj 6∈ X, zi = zj and zi ∈ N+(wi)∩N+(wj), then D
would contain the subdigraph F8, a contradiction. Therefore, all the zi are different in Case
1. If vi, vj ∈ N−(x)∩X it is clear that zi 6= zj in Case 2. If vi, vj ∈ N−(x)∩(V \(X∪Y )) and
zi = zj , then (see Figure 2 Case 3) it could be zj = yi ∈ X, and D contains the subdigraph
F6. Hence, yi, yj ∈ Y \ X and D contains the subdigraph F8. Therefore, all the zi are
different in Case 3. It remains to prove that for all i, j ∈ {1, . . . , τ}, with i 6= j, zi 6= zj
when vi and vj are in different partite subsets of the considered partition of N−(x). Thus,
if zi = zj for some i 6= j, with vi ∈ N−(x)∩ (Y \X) and vj ∈ N−(x)∩X, then D contains
one of the subdigraphs F1 or F3 (see Figure 2 Cases 1 and 2); if vi ∈ N−(x)∩ (Y \X) and
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Figure 2: All the cases in the proof of (iii) of Theorem 2.

vj ∈ N−(x)∩ (V \ (X ∪Y )), then D contains one of the subdigraphs F4, F6, F7 or F9 (see
Figure 2 Cases 1 and 3); and finally, if vi ∈ N−(x) ∩X and vj ∈ N−(x) ∩ (V \ (X ∪ Y )),
then D contains one of the subdigraphs F1 or F4 (see Figure 2 Cases 2 and 3). In any
case, we can conclude that X has at least δ−+1 vertices, which is a contradiction because
|Y |, |X| ≤ δ− in case (iii), and the proof of this case is completed.

To prove (iv), we assume that |X| = δ− + 1 and |Y | ≤ δ− + 1. Since by hypothesis
δ− ≥ 2, reasoning as in (iii) it follows that X = {z1, z2, . . . , zδ− , x} and d−(x) = δ−.
Hence, by hypothesis x does not lay on a digon. Let y ∈ N+(x) with y ∈ Y \ N−(x).
First, let us show that y ∈ Y ∩X. Suppose that y ∈ Y \X. Observe that for all u ∈ Y \X,
it can be proved analogously that d−(u) = δ−. Since δ− ≥ 2, there is z ∈ N−(y) \ {x}.
Let us show that z 6∈ X. Otherwise, suppose z ∈ X, then z = zj for some j = 1, . . . , δ−. If
vj ∈ N−(x)∩ (Y \X), then D contains F4 or F5 (see Figure 2 Case 1); if vj ∈ N−(x)∩X,
then D contains F1 (see Figure 2 Case 2); and if vj ∈ N−(x)\(X∪Y ), then D contains F3

or F5 (see Figure 2 Case 3). Therefore, z /∈ X. Hence, z ∈ N−(zi) for some i ∈ {1, . . . , δ−}.
If vi ∈ N−(x) ∩ (Y \X), then D contains F7 or F10; if vi ∈ N−(x) ∩X, then D contains
F4; and if vi ∈ N−(x) \ (X ∪ Y ), then D contains F6 or F11, a contradiction. This
implies that y ∈ X ∩ Y as we claimed. So y = zi for some i = 1, . . . , δ−. Notice that
if vi /∈ N−(x) ∩ (Y \ X), then x would be contained in a digon, or D contains F1 or
F3, a contradiction. If vi ∈ Y \ X, then reasoning for vi as for x, we obtain that every
t ∈ N+(vi)∩X satisfies that t ∈ X ∩ Y . However, x ∈ N+(vi)∩X, but x 6∈ Y , which is a
contradiction and the proof of (iv) is done.

To prove (v) we assume that δ− = 1 and |X| = 2. Clearly, the following claims holds
if δ− ≥ 2; moreover, since there are no vertices of in-degree 1 laying on a digon and by
Remark 1, the claim follows.

Claim 1. Let (u, v) ∈ A(D). Then, there is w ∈ N−(u) \N−[v].

First observe that if |Y | = 1, say Y = {y}, then x ∈ N−(y) and by Claim 1, there is
w ∈ N−(x)\N−[y], implying that N−[X] 6= N−[Y ], a contradiction. Then |Y | = |X| = 2.
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Let X = {x, x′}, x ∈ X \Y , and Y = {y, y′} with y ∈ N+(x). Let us prove that the arc
(x, y) is not on a digon. Otherwise, suppose that (x, y), (y, x) ∈ A(D). By Claim 1, there
exist w, z ∈ V (D) such that z ∈ N−(x)\N−[y], and w ∈ N−(y)\N−[x]. Hence, z ∈ N−[y′]
and w ∈ N−[x′]. If z /∈ Y , then z 6= y′ and z ∈ N−(y′). Moreover, since D is free of
F1, y

′ ∈ N−[x′] ⊂ N−[X]. If x′ = y′, then w 6= x′ because D is free of F3; w ∈ N−(x′),
implying that D contains F6, therefore x′ 6= y′ (and so y′ ∈ Y \ X). Moreover, we can
assume that w /∈ {y′, x′}, otherwise D contains F4 or F5. Thus, w ∈ N−(x′) implying
that D contains F11, concluding that If z ∈ Y . Hence, let us assume that Y = {y, z},
and analogously X = {x,w}. By Claim 1, there is u ∈ (N−(z) \N−[x])∩N−[w], because
N−[Y ] = N−[X], then D contains F3 if u = w or F5 if u ∈ N−(w). Therefore, the arc
(x, y) is not on a digon.

Suppose that X ∩ Y 6= ∅. First assume that X = {x, x′} and Y = {y, x′}. Taking
into account that N−[Y ] = N−[X] we have x ∈ N−(y) ∪N−(x′) and y ∈ N−(x′) because
(x, y) is not on a digon. By Claim 1 there is w ∈ N−(x) \N−[y] and w ∈ N−[x′] (because
N−[X] = N−[Y ]). If w = x′, then (xyx′x) is a 3-cycle in D, and by hypothesis there is u ∈
N−(x)\{x′}. By Remark 1, u /∈ N−(y)∪N−(x′), a contradiction. Then, w 6= x′, implying
that D contains F4. Secondly, assume that X = {x, y} and Y = {y, y′}. By Claim 1 there
is w ∈ N−(x)\N−[y] and w ∈ N−[y′]. If w = y′, there is w′ ∈ N−(y′)\N−[x] by Claim 1,
and D would contain a F4. Thus w 6= y′ and w ∈ N−(y′), and since y′ ∈ N−(x) ∪N−(y)
D would contain a F1 or F3, a contradiction.

Suppose that X ∩ Y = ∅. Let X = {x, x′} and Y = {y, y′}. Then, y ∈ N−(x′), and
since y ∈ Y \X, reasoning for y as for x, the arc (y, x′) is like the arc (x, y) and so it is
not lying on a digon. Then x′ ∈ N−(y′) and similarly, y′ ∈ N−(x). By hypothesis there
are no vertices of in-degree 1 lying on a 4-cycle, it follows that there is z ∈ N−(x) \ {y′},
but by Remark 1, N−(x) ∩ (N−(y) ∪ N−(y′)) = ∅ implying that N−[X] 6= N−[Y ], a
contradiction.

If for each graph G, we consider its corresponding symmetric digraph
↔
G, obtained by

replacing each edge uv ∈ G by the arcs (u, v) and (v, u), then we obtain the following
corollary from Theorem 2.

Corollary 3. Let G be a graph of girth g and minimum degree δ ≥ 2. Then

1. If g ≥ 7, then G admits a (1,≤ δ)-identifying code.

2. If g ≥ 5, then G admits a (1,≤ δ − 1)-identifying code.

Observe that Theorem 1 by Laihonen is a consequence of Corollary 3.

3 1-in-regular and 2-in-regular digraphs

In this section, we characterize the d-in-regular digraphs admitting a (1,≤ d)-identifying
code and a (1,≤ d + 1)-identifying code for d = 1, 2. Recall that by Proposition 1, if D
is a d-in-regular digraph admiting a (1,≤ `)-identifying code, then ` ≤ d + 1. We start
by giving a characterization of 1-in-regular digraphs admitting a (1,≤ 2)-identifying code.
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Observe that every 1-in-regular digraph D admits a (1,≤ 1)-identifying code if and only
if D does not contain digons.

Theorem 3. Every 1-in-regular digraph D admits a (1,≤ 2)-identifying code if and only
if the girth of D is at least 5.

Proof. Let (u1u2u3u1) be a directed triangle or (v1v2v3v4v1) a 4-cycle in D, then the sets
X1 = {u1, u3}, Y1 = {u2, u3}, X2 = {v1, v3} and Y2 = {v2, v4} are such that N−[Xi] =
N−[Yi], for i = 1, 2. Therefore, if D contains a k-cycle, for some k = 2, 3 or 4, then D does
not admit a (1,≤ 2)-identifying code. Conversely, suppose that the girth of D is at least
5. Since D is 1-in-regular it follows that D does not contain any subdigraph isomorphic to
F1, F3, F4, F5, F6 nor F11 of Figure 1, then by Theorem 2, D admits a (1,≤ 2)-identifying
code. This completes the proof.

The following result gives a complete characterization of all 2-in-regular digraphs ad-
mitting a (1,≤ 1)-identifying code and a characterization of all 2-in-regular digraphs ad-
mitting a (1,≤ 2)-identifying code.

Theorem 4. Let D be a 2-in-regular digraph.

(i) D admits a (1,≤ 1)-identifying code if and only if it does not contain any subdigraph
isomorphic to H1 of Figure 3.

(ii) D admits a (1,≤ 2)-identifying code if and only if it does not contain any subdigraph
isomorphic to one of the digraphs of Figure 3.

Proof. In what follows, for brevity, we made reference to the different cases H1-H13 of
Figure 3 without mentioning the figure. First note that any digraph with twins and
minimum in-degree at least 2, necessarily contains H1. Hence, the proof of (i) follows by
Remark 2, because the vertices x, y of H1 are twins. To prove (ii), first let X = {x, x′}
(or X = {x}) and Y = {y, y′}. It is direct to check that N−[X] = N−[Y ] in each one
of the digraphs shown in Figure 3. For the converse, we assume that D does not contain
any subdigraph isomorphic to the digraphs depicted in Figure 3, and N−[X] = N−[Y ]
for X 6= Y such that 1 ≤ |Y | ≤ |X| ≤ 2. According to (i), |X| = 2, consequently
3 ≤ |N−[X]| ≤ 6. Notice that if |Y | = 1, then |N−[Y ]| = 3, and so |N−[X]| = 3 yielding
that D contains H1. Therefore, we assume that |Y | = |X| = 2. Let X = {x, x′} and
Y = {y, y′} with x ∈ X \Y . Let N−(x) = {v1, v2} and y ∈ Y such that y ∈ N+(x). As we
did in the proof of Theorem 2 we consider the different cases according to the partition of
N−(x): N−(x) ∩ (Y \X), N−(x) ∩X and N−(x) ∩ (V \ (X ∪ Y )).

Case 1: Suppose that v1, v2 ∈ Y \ X. Let y = v1 and y′ = v2 and observe that in this
case x′ /∈ Y . As D is H1-free and H3-free, (N−(y) \ {x}) ∩ N−[y′] = ∅ and there is no
arc between y′ and N−(y) \ {x}. Let w ∈ N−(y) \ {x} and w′ ∈ N−(y′) \ {x}, then
w,w′ ∈ N−[x′].

Subcase 1.1: Suppose that {w,w′} ∩ {x′} = ∅. Hence, N−(x′) = {w,w′}. Since
x′ ∈ N−[Y ] it follows that x′ ∈ N−(y′) implying that D contains H13, a contradiction.
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Figure 3: The forbidden subdigraphs in a 2-in-regular digraph admitting a (1,≤ 2)-
identifying code.

Subcase 1.2: Suppose that x′ = w. Hence, w′ ∈ N−(x′). If there is z ∈ N−(x′) \ (X ∪
Y ∪ {w′}), then z ∈ N−(y′), implying that D contains H10, a contradiction. Therefore,
N−[X] = X ∪ Y ∪ {w′}, implying that N−(x′) = {w′, x} or N−(x′) = {w′, y}. First
suppose that N−(x′) = {w′, x}. If x ∈ N−(y′) then D contains H5 and if y ∈ N−(y′),
then D contains H4, a contradiction. Therefore, N−(x′) = {w′, y}. If x ∈ N−(y′) then D
contains H6 and if y ∈ N−(y′), then D contains H5, a contradiction.

Subcase 1.3: Supposse that x′ = w′. Hence, w ∈ N−(x′). If there is z ∈ N−(x′) \ (X ∪
Y ∪ {w′}), then z ∈ N−(y′), implying that D contains H13, a contradiction. Therefore,
N−[X] = X ∪ Y ∪ {w′}. Hence, N−(x′) = {w, x} or N−(x′) = {w, y}. First suppose that
N−(x′) = {w, x}. If x ∈ N−(y′) then D contains H4 and if y ∈ N−(y′), then D contains
H9, a contradiction. Therefore, N−(x′) = {w, y}. Hence, if x ∈ N−(y′) then D contains
H4 and if y ∈ N−(y′), then D contains H7, a contradiction.

Case 2: Suppose that v1, v2 ∈ X. Since |X| = 2 this case is not possible.

Case 3: Suppose that v1, v2 /∈ (X ∪ Y ). Since x ∈ N−(y), then |N−(y) ∩ {v1, v2}| ≤ 1
implying that {v1, v2}∩N−(y′) 6= ∅. Without loss of generality suppose that v1 ∈ N−(y′).

Subcase 3.1: If y ∈ Y \ X, then y ∈ N−(x′). If y′ ∈ X ∩ Y , i.e. y′ = x′, then
v2 ∈ N−(y), implying that D contains H4. If y′ ∈ Y \ X, then N−(x′) = {y, y′} and
x′ ∈ N−(y) ∪ N−(y′). If x′ ∈ N−(y), then v2 ∈ N−(y′), implying that D contains H10.
And, if x′ ∈ N−(y′), then v2 ∈ N−(y), implying that D contains H13.

Subcase 3.2: If y ∈ X ∩ Y i.e. x′ = y, then y′ ∈ N−(y) and v1, v2 ∈ N−(y′), hence D
contains H9, a contradiction. Therefore, the proof of Case 3 is finished.

Case 4: Suppose that v1 ∈ Y \X and v2 ∈ X, that is, v2 = x′. Observe that if v1 ∈ N+(x),
since D is H1-free, there is w ∈ V (D) \ X such that w ∈ N−(v1) ⊂ N−[Y ]. Thus,
w ∈ N−(x′), implying that D contains H3, a contradiction. Then v1 6∈ N+(x) and
so v1 = y′, and moreover y ∈ N−(x′). If x′ ∈ N+(x), then N−[X] = {x, x′, y, y′},
yielding that y ∈ N−(y′), contradicting that D is H3-free. Therefore, N+(x)∩{y′, x′} = ∅
and recall that y ∈ N−(x′). Moreover, reasoning for y as for x in Case 1, we get that
x′ /∈ N−(y). Moreover, if y′ ∈ N−(y), then D contains H2, a contradiction. Therefore,
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there is w ∈ N−(y) \ (X ∪ Y ). Hence, w ∈ N−(x′), implying that D contains H2, a
contradiction.

Case 5: Suppose that v1 ∈ Y \X and v2 /∈ (X ∪ Y ).

Subcase 5.1: Suppose that v1 ∈ N+(x), then, we can assume that v1 = y. Since
D is H1-free, v2 ∈ N−(y′) and there is w ∈ V (D) \ {x, v2} such that N−(y) = {x,w}.
Observe that since D is H3-free, v2 /∈ N−(w), then w 6= y′. Moreover, since D is H6-free,
w /∈ N−(y′). Hence, w ∈ N−[x′], implying that x′ 6= y′. Observe that reasoning for y as
for x in Case 1, we get that w 6= x′. Then, w ∈ N−(x′) and, since x′, y′ ∈ N−[X] = N−[Y ],
it follows that x′ ∈ N−(y′) and y′ ∈ N−(x′), therefore D contains H11, a contradiction.

Subcase 5.2: Suppose that v1 /∈ N+(x), then v1 = y′ and y ∈ N−[x′]. First suppose
that y = x′. If N−(y′) ⊆ X ∪ {v2}, then N−(y′) = {x′, v2} implying that D contains H2.
Hence, there is w ∈ N−(y′)\(X∪{v2}). Then, w ∈ N−(x′) and v2 ∈ N−(y′), implying that
D contains H4, a contradiction. Therefore, y 6= x′, implying that y ∈ N−(x′). Reasoning
for y as for x in Case 1 and Case 4 it follows that N−(y)∩{x′, y′} = ∅. Then, x′ ∈ N−(y′).
Moreover, since v2 ∈ N−(x), v2 ∈ N−(y) ∪ N−(y′). Also, reasoning for x′ as for x in
Case 1 and Case 4 it follows that N−(x′) ∩ {x, y′} = ∅. Hence, if v2 ∈ N−(y) ∩ N−(y′),
then N−[Y ] = X ∪ Y ∪ {v2}, implying that v2 ∈ N−(x′). Then, D contains H8, a
contradiction. If v2 ∈ N−(y′) \N−(y), then there is z ∈ N−(y) \ (X ∪Y ∪{v2}), implying
that N−(x′) = {y, z} and D contains H12. Analogously if v2 ∈ N−(y) \N−(y′). And the
proof of this case is completed.

Case 6: Suppose that v1 ∈ X and v2 /∈ (X ∪ Y ). That is, v1 = x′. If x′ ∈ X \ Y , then
y ∈ N−(x′). Since y ∈ Y \ X, reasoning for x′ as for x in Case 1, 4 and 5, we reach a
contradiction. Hence, x′ ∈ X ∩ Y . If x′ = y, then y′ ∈ N−(x′) and v2 ∈ N−(y′), implying
that D contains H3. Therefore, x′ 6= y and hence, y ∈ Y \X. Since x ∈ N−(y), reasoning
for y as for x in Case 1, 4 and 5, we reach a contradiction.

Corollary 4. Every TT3-free 2-in-regular oriented graph admits a (1,≤ 2)-identifying
code if and only if it does not contain any subdigraph isomorphic to H9 of Figure 3.

Observe that Corollary 4 is an improvement of Theorem 2 (ii) for 2-in-regular oriented
digraphs. Now, the TT3-free and 2-in-regular oriented graph can have two distinct vertices
u, v with |N−(u)∩N−(v)| = 2, that is, a subdigraph F2 of Figure 1, but in this case there
is no vertex w ∈ V such that u, v ∈ N−(w).

In the following theorem we characterize the 2-in-regular digraphs admitting a (1,≤ 3)-
identifying code.

Theorem 5. Let D be a 2-in-regular digraph. Then D has a (1,≤ 3)-identifying code if
and only if it is a TT3-free oriented graph, and does not contain any subdigraph isomorphic
to one of the digraphs of Figure 4.

Proof. By Proposition 1, if D contains a digon, then D does not admit a (1,≤ 3)-
identifying code. Suppose that D contains a TT3, let say w ∈ N−(u) ∩ N−(v) and
(u, v) ∈ A(D), and let z ∈ V (D) such that N−(u) = {w, z}. Hence, the sets X = {z, u, v}
and Y = {z, v} has the same closed in-neiborhood. Furthermore, for every digraph shown
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Figure 4: All the forbidden subdigraphs of Theorem 5.

in Figure 4 let X = {x1, x2, x3} (or X = {x1, x2}) and Y = {y1, y2, y3}. It is direct to
check that N−[X] = N−[Y ] in each case. To the converse, we reason by contradiction. Let
D be a TT3-free oriented graph without the subdigraphs of Figure 4. Let X,Y ⊆ V (D),
X 6= Y , with N−[X] = N−[Y ] and such that 1 ≤ |X| ≤ |Y | ≤ 3. Since D does not
contain a subdigraph isomorphic to J1 of Figure 4, then it does not contain a subdigraph
H9 of Figure 3. By Corollary 4, D admits a (1,≤ 2)-identifying code. Hence, |Y | = 3,
|N−[Y ]| ≥ 6 and |X| ≥ 2. In what follows, for brevity, we always make reference to the
different cases J1-J15 of Figure 4 without mentioning the figure. Let us prove the following
claim.

Claim 2. Let a, b ∈ V (D), with a 6= b, be such that N−(a) ⊆ N−[b]. Then, N−(a) =
N−(b) and N+(a) = N+(b) = ∅.

Proof. If b ∈ N−(a), then D contains a TT3, which is a contradiction. Hence, N−(a) =
N−(b) and N+(a) = N+(b) = ∅, because otherwise D contains J1.

Suppose X = {x1, x2}, then |N−[X]| = 6 (because N−[X] = N−[Y ]) and N−[x1] ∩
N−[x2] = ∅. LetN−(x1) = {u, v} andN−(x2) = {z, t}, so thatN−[X] = {x1, x2, u, v, z, t} =
N−[Y ]. Without loss of generality, we may assume that u ∈ Y . Since D has neither
digon nor TT3, N

−(u) ⊆ N−[x2], which implies by Claim 2 that N−(u) = N−(x2) and
N+(u) = ∅, a contradiction. Therefore, |X| = |Y | = 3. Let us denote X = {x1, x2, x3}.
We prove the following claims.

Claim 3. Let a, b, c ∈ V (D). If N−[a] ⊆ N−[b] ∪N−[c], then a ∈ {b, c}.

Proof. If a /∈ {b, c}, then without loss of generality let us assume that a ∈ N−(b). Hence,
by Remark 1, N−(a) ⊆ N−[c], which contradicts Claim 2 because N+(a) 6= ∅.

Claim 4. N−(xi) 6= N−(xj) for all 1 ≤ i < j ≤ 3.
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Proof. Suppose that N−(x1) = N−(x2). Then, N+(x1) = N+(x2) = ∅, because D is J1-
free, which implies x1, x2 ∈ Y . Since |N−[X]| ≥ 6, there is z ∈ N−(x3)\(N−[x1] ∪N−[x2]).
Because {x3, z} ⊆ N−[Y ], D must contain a digon if z = y3 ∈ Y , or a TT3 if {x3, z} =
N−(y3), which is a contradiction. Therefore, N−(x1) 6= N−(x2).

Claim 5. If 7 ≤ |N−[X]| ≤ 8, N−(xi) ∩N−(xj) = {v}, i 6= j, and there are exactly two
or no arc between the elements of X, then |Y ∩ {xi, xj}| ≤ 1.

Proof. We proceed by contradiction. Assume Y = {x1, x2, y}. First suppose that there is
no arc between the elements of X. If v ∈ N−(x1) ∩N−(x2) ∩N−(x3), then according to
Claim 4 |N−[X]| = 7 and N−[x3] ⊆ N−[x1] ∪N−[y], which contradicts Claim 3. Hence,
N−(x1) ∩ N−(x2) ∩ N−(x3) = ∅. If |N−[X]| = 7, let N−(x1) = {u, v}, N−(x2) = {v, z}
and N−(x3) = {z, w}. Since N−(v) ∩ N−[X] ⊆ {x3, w}, by Remark 1, v /∈ Y , and
analogously z /∈ Y . Consequently, N−[x3] ⊆ N−[x2] ∪N−[y], which contradicts Claim 3.
If |N−[X]| = 8, then N−(x3) ⊆ N−[y], a contradiction to Claim 2 because y 6∈ X and so
N+(y) 6= ∅. Finally assume that there are two arcs between the elements of X. Notice
that by Remark 1, both arcs between the elements of X are incident in x3. Furthermore,
since 7 ≤ |N−[X]| ≤ 8 and N−(x1) ∩ N−(x2) = {v}, v = x3 and |N−[X]| = 7, we have
N−(x3) ⊆ N−[y], a contradiction to Claim 2.

Let N−(x1) = {u, v}. We distinguish the following cases according to the number of
arcs between the vertices of X.

Case 1: First let us assume that there are no arcs between the elements of X.

Subcase 1.1: Suppose |N−[X]| = 6. Then, N−[X] = {x1, x2, x3, u, v, z}, so Claim 4
implies that |N−(xi) ∩ N−(xj)| = 1 for all i 6= j. Let N−(x2) = {v, z}. Observe that
v 6∈ N−(x3), otherwise N−(x3) = N−(xi) for some i ∈ {1, 2}, contradicting Claim 4.
Therefore N−(x3) = {u, z}. Let y ∈ Y \ X, then y ∈ {u, v, z}. We can check that
|N−(y) ∩N−[X]| ≤ 1 for all y ∈ {u, v, z}, because D is a TT3-free oriented graph, which
is a contradiction.

Subcase 1.2: Suppose |N−[X]| = 7. Then N−[X] = {x1, x2, x3, u, v, z, w}. By Claim
4, there are two cases to be considered, namely, |N−(x1) ∩ N−(x2) ∩ N−(x3)| = 1 and
|N−(x1) ∩N−(x2) ∩N−(x3)| = 0.

Subsubcase 1.2.1: If |N−(x1) ∩ N−(x2) ∩ N−(x3)| = 1, w.l.o.g. N−(x2) = {v, z} and
N−(x3) = {v, w}. Since D is an oriented graph and does not contain TT3, N

−(v) ∩
N−[X] = ∅, which means that v /∈ Y and v ∈ N−(Y ). Since N+(v) ∩ {u, z, w} = ∅, it
follows that Y ∩X 6= ∅. By Claim 5, |X ∩ Y | = 1. W.l.o.g. suppose that X ∩ Y = {x1}.
If Y = {x1, z, w}, then x2 ∈ N−(w) and x3 ∈ N−(z), implying that D contains J4. If
Y = {x1, u, z}, then x2 ∈ N−(u) and N−(u) ⊆ {x2, x3, w}. If N−(u) = {x2, x3}, then
w ∈ N−(z) and hence D contains J6. If N−(u) = {x2, w}, then x3 ∈ N−(z), which implies
that D contains J5.

Subsubcase 1.2.2: If |N−(x1) ∩ N−(x2) ∩ N−(x3)| = 0, w.l.o.g. N−(x2) = {v, z} and
N−(x3) = {z, w}. By Claim 5, |Y ∩ {x1, x2}| ≤ 1 and |Y ∩ {x2, x3}| ≤ 1. Moreover, if
{x1, x3} ⊆ Y , then since x2 ∈ N−[Y ], we have {u,w} ∩ Y 6= ∅; w.l.o.g. let us assume that
Y = {x1, x3, u}. Then, x2 ∈ N−(u) and N−(u) ⊆ {x2, x3, w}. If N−(u) = {x2, x3}, then
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D contains J8, and if N−(u) = {x2, w}, then D contains J10. Therefore, |Y ∩ X| ≤ 1.
Suppose that X ∩ Y = {x1} and let Y = {x1, y, y′}, then N−[x3] ⊆ N−[y] ∪ N−[y′],
which contradicts Claim 3. Hence, X ∩ Y 6= {x1}, and similarly X ∩ Y 6= {x3}. Then,
X ∩ Y = {x2}. If v ∈ Y , then there is y ∈ Y \ {x2, v}, such that N−(y) = {x1, u}
contradicting Remark 1. Hence, v 6∈ Y , and analogously z /∈ Y . Therefore Y = {x2, u, w},
and then x1 ∈ N−(w), implying that N−(u) = {x3, x2}. Consequently, D contains J8.
If |Y ∩ X| = 0, by symmetry, we only have to consider the following two cases. If Y =
{u, v, z}, then x2 ∈ N−(u) and x1 ∈ N−(z), implying that D contains J4. If Y = {u, z, w},
then x3 ∈ N−(u) implying that N−(u) = {x2, x3}, and D contains J8.

Subcase 1.3: Suppose |N−[X]| = 8. W.l.o.g. N−(x2) = {v, z}, and N−(x3) = {t, w}.
Observe that v /∈ Y , otherwise N−(v) ⊆ N−[x3] in contradiction to Claim 2. If Y ∩X = ∅,
then we can assume that t ∈ Y and v ∈ N−(t). Consequently, {u, z}∩N−(t) = ∅, otherwise
D contains J1, therefore {x3, w} ∩ N−(t) 6= ∅, a contradiction. Therefore Y ∩X 6= ∅. If
|Y ∩ X| = 2, then by Claim 5, {x1, x3} ⊆ Y or {x2, x3} ⊆ Y . If Y = {y, x2, x3},
then N−[x1] ⊆ N−[x2] ∪ N−[y], contradicting Claim 3. Then, Y 6= {y, x2, x3}, and
similarly Y 6= {y, x1, x3}. Thus |Y ∩ X| = 1. If Y = {x1, y, y′} or Y = {x3, y, y′}, then
N−[x3] ⊆ N−[y] ∪ N−[y′] or N−[x1] ⊆ N−[y] ∪ N−[y′], respectively, which contradicts
Claim 3.

Subcase 1.4: Suppose |N−[X]| = 9. Hence, the in-neighborhoods of the elements of X
must be disjoint, the same is true for Y . Let N−(xi) = {ui, vi}, for i = 1, 2, 3. Observe that
if 1 ≤ |X∩Y | ≤ 2, then N−[xi] ⊆ N−[y]∪N−[y′] for some i ∈ {1, 2, 3} and y, y′ ∈ Y \{xi},
in contradiction to Claim 3. Therefore, X ∩ Y = ∅. Without loss of generality there are
two cases to be considered.

Subsubcase 1.4.1: If Y = {u1, v1, u2}, then x1 ∈ N−(u2). If x3 ∈ N−(u1), then without
loss of generality u3 ∈ N−(v1) and v3 ∈ N−(u2); moreover, x2 ∈ N−(v1) and v2 ∈ N−(u1)
or x2 ∈ N−(u1) and v2 ∈ N−(v1), implying that D contains J14 or J15, respectively.
If x3 ∈ N−(u2), then we may assume that u3 ∈ N−(u1) and v3 ∈ N−(v1), and so
x2 ∈ N−(u1) and v2 ∈ N−(v1), implying that D contains J15.

Subsubcase 1.4.2: Let Y = {u1, u2, u3}. Without loss of generality, suppose x2 ∈ N−(u1),
then by Remark 1, N−(u1) \ {x2} ⊆ N−[x3]. Since there is no arc between the elements
of Y there are two cases to be considered.

1.4.2.1: If N−(u1) = {x2, x3}, then v3 ∈ N−(u2) and v2 ∈ N−(u3). Hence, x1 ∈
N−(u2) and v1 ∈ N−(u3), or v1 ∈ N−(u2) and x1 ∈ N−(u3); in any case D contains J14.

1.4.2.2: If N−(u1) = {x2, v3}, then x3 ∈ N−(u2), and v2 ∈ N−(u3). If x1 ∈ N−(u2),
then v1 ∈ N−(u3), implying that D contains J14. Finally, if x1 ∈ N−(u3), then v1 ∈
N−(u2), implying that D contains J13.

Case 2: Suppose there is just one arc between the elements of X, say (x1, x2) ∈ A(D).
Then, |N−(X)| = 6, 7, 8, and N−(x1) ∩N−(x2) = ∅ by Remark 1. Let N−(x2) = {x1, z}
and let us distinguish the following cases.

Subcase 2.1: |N−[X]| = 6. Hence, N−[X] = {x1, x2, x3, u, v, z}, and by Claim 4 let us
assume w.l.o.g. that N−(x3) = {v, z}. Moreover, since D is an oriented graph and does
not contain J1, N

−(z) ∩ N−[X] ⊆ {u} and N−(v) ∩ N−[X] ⊆ {x2}, therefore z, v /∈ Y ;
hence u ∈ Y . Since D is a TT3-free oriented graph, N−(u) ⊆ {x2, x3, z}. Moreover, by
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Remark 1 z /∈ N−(u). Hence, N−(u) = {x2, x3}, implying that D contains J2.

Subcase 2.2: |N−[X]| = 7. In this case, there is w ∈ N−(x3) \ (X ∪ {u, v, z}). By symme-
try, N−(x3) = {z, w} or N−(x3) = {v, w}. First suppose that N−(x3) = {z, w}. Since D
is a TT3-free oriented graph, if z ∈ Y , then N−(z) = N−(x1), which is a contradiction by
Claim 2. Hence z 6∈ Y . Analogously, if w ∈ Y and x2 ∈ N−(w), then N−(w) ⊆ {x2, u, v},
implying that D contains J7; and if x2 6∈ N−(w), then N−(w) ⊆ N−[x1], contradict-
ing Claim 2. Thus, w /∈ Y . If v ∈ Y , then N−(v) ⊆ (N−[x3] ∪ {x2}). Hence, by
Claim 2, x2 ∈ N−(v), implying that N−(v) ⊆ {x2, x3, w}, but if N−(v) = {x2, x3} or
N−(v) = {x2, w}, then D contains J2 or J9, respectively. Therefore, v /∈ Y , and by
symmetry we can conclude also that u /∈ Y , a contradiction.

Assume now that N−(x3) = {v, w}. Observe that N−(v) ∩ N−[X] ⊆ {x2, z}, then
v /∈ Y . If u ∈ Y , then N−(u) ⊆ {x2, x3, z, w}, but it could not be neither {x2, z} nor
{x3, w} (by Remark 1). If N−(u) = {x2, x3}, then D contains J3; if N−(u) = {x2, w},
then D contains J9; if N−(u) = {x3, z}, then D contains J7; and if N−(u) = {z, w}, then
D contains J10. Therefore, u /∈ Y . If w ∈ Y , then N−(w) ⊆ {x1, x2, u, z}. Hence, by
Remark 1 and Claim 2, N−(w) = {u, z} or N−(w) = {u, x2}, implying that D contains
J12 or J5, respectively. Therefore, w /∈ Y . If z ∈ Y , then N−(z) ⊆ (N−[x3] ∪N−(x1)).
Hence, by Claim 2 and Remark 1, N−(z) = {u,w} or N−(z) = {u, x3}, yielding that D
contains J11 or J6, respectively. Hence, z /∈ Y , a contradiction.

Subcase 2.3: |N−[X]| = 8. In this case, N−(x3) = {t, w} for t, w 6∈ N−[x1] ∪ N−[x2].
First, observe that if Y ∩ {x1, x2} = ∅, then without loss of generality t ∈ Y , x1 ∈ N−(t),
yielding that N−(t) = N−(x2), a contradiction to Claim 2. Therefore Y ∩ {x1, x2} 6= ∅.
Hence, since N−[x3] ∩ (N−[x1] ∪ N−[x2]) = ∅ it follows that N−[x3] ⊆ N−[y] ∪ N−[y′],
with y, y′ ∈ Y , yielding by Claim 3 that x3 ∈ Y . If x2 /∈ Y , then Y = {x1, x3, y} and
{x2, z} = N−(y), which is a contradiction to Remark 1. Therefore, Y = {x2, x3, y},
yielding that N−(x1) ⊆ N−[y], contradicting Claim 3.

Case 3: Suppose there are exactly two arcs between the elements of X. Then, |N−[X]| =
6, 7. Let us distinguish the following cases.

Subcase 3.1: First, assume that (x1x2x3) is a path of D. Then, N−(x2) ∩ N−(x3) =
N−(x2) ∩N−(x1) = ∅ by Remark 1. Hence, N−(x2) = {z, x1}.
Subsubcase 3.1.1: |N−[X]| = 6. Without loss of generality, we may assume that N−(x3) =
{x2, u}. Observe that if u ∈ Y , then N−(u) = {x2, z}, a contradiction to Remark 1, and
then u 6∈ Y . If v ∈ Y , then x2 /∈ N−(v) again by Remark 1. Hence, if v ∈ Y then
N−(v) = {x3, z}, yielding that D contains J4. Therefore, z ∈ Y and |Y ∩ X| = 2. By
Remark 1 and Claim 2, N−(z) = {x3, v}, implying that D contains J3.

Subsubcase 3.1.2: |N−[X]| = 7. Then N−(x3) = {x2, w} for some w 6∈ N−[x1] ∪N−[x2].
If w ∈ Y , then N−(w) ⊆ (N−[x1] ∪ {z}) and, by Claim 2 and Remark 1 z ∈ N−(w) and
N−(w) ⊆ {u, v, z}. This implies that D contains J6. Therefore, w /∈ Y . If z ∈ Y , then
N−(z) ⊆ N−(x1) ∪ {x3, w}. Hence, by Claim 2 and Remark 1, without loss of generality,
N−(z) = {v, w} or N−(z) = {v, x3}, implying that D contains J8 or J2, respectively.
Therefore, z /∈ Y . If u ∈ Y , then N−(u) ⊆ N−[x3] ∪ {z}. By Claim 2 and Remark
1, N−(u) = {z, x3} or N−(u) = {z, w}, yielding that D contains J4 or J5, respectively.
Therefore, u /∈ Y and, by symmetry v /∈ Y , hence, Y \X = ∅, a contradiction.

14



Subcase 3.2: Second, let us assume that N−(x2) = {x1, x3}. If |N−[X]| = 6, then
without loss of generality suppose that N−(x3) = {v, z}. Observe that v 6∈ Y , otherwise
N−(v) = {x2}. If z ∈ Y , then N−(z) ⊆ {x1, x2, u} and by Remark 1, N−(z) = {x2, u},
yielding that D contains J3. Hence, z 6∈ Y , and reasoning similarly, u 6∈ Y , a contradiction.
If |N−[X]| = 7, then N−(x3) = {z, w} for some w 6∈ {x1, x2, x3, u, v, z}. If u ∈ Y , then
N−(u) ⊆ N−[x3] ∪ {x2}, and by Claim 2 and Remark 1, x2 ∈ N−(u) and N−(u) ⊆
{x2, z, w}, implying that D contains J3. Therefore, u /∈ Y . Analogously, v, z, w /∈ Y ,
yielding that Y \X = ∅, a contradiction.

Subcase 3.3: Third, without loss of generality, let us assume that (x1, x2), (x1, x3) ∈ A.
If |N−[X]| = 6, then N−(x2) = {x1, z} = N−(x3), which contradicts Claim 4. Hence,
|N−[X]| = 7. Let N−(x2) = {x1, z} and N−(x3) = {x1, w}. Observe that we also may
assume that there are exactly two arcs between the elements of Y and there is some y ∈ Y
satisfying the same as x1, that is, N+[y] ∩ Y = Y − y. Therefore, if x1 ∈ Y we can
assume that Y = {x1, u, w} and N+(u) ∩ Y = {x1, w}. Then, N−(u) ⊆ {x3, x2, z} and
by Remark 1, x3 ∈ N−(u), implying that N−(u) = {x3, x2} or N−(u) = {x3, z} yielding
that D contains J2 or J9, respectively. Moreover, since N+(x1) ∩ N−[X] = {x2, x3}, it
follows that Y ∩ {x2, x3} 6= ∅. Furthermore, by Claim 5, |Y ∩ {x2, x3}| = 1. Without loss
of generality, suppose Y ∩ X = {x2}. If Y = {x2, z, u}, then u ∈ N+(z), yielding that
N−(z) ⊆ {v, x3, w}. By Remark 1, N−(z) = {v, w} or N−(z) = {v, x3}, implying that D
contains J5 or J4, respectively. If Y = {x2, z, w}, then z ∈ N−(w) and x3 ∈ N−(z). Then,
without loss of generality u ∈ N−(z) yielding that D contains J3. Therefore, z /∈ Y . If
Y = {x2, u, v}, then without loss of generality x3 ∈ N−(u) and w ∈ N−(v), implying that
D contains J3. Finally, if Y = {x2, u, w}, then x3 ∈ N−(u) and v ∈ N−(w), yielding that
D contains J2.

Case 4: Suppose there are three arcs between the elements of X. Hence, |N−[X]| = 6
and since D is TT3-free, we may assume that (x1x2x3x1) is a directed triangle. Then,
N−(xi) ∩ N−(xj) = ∅, for all i 6= j. Let N−(x1) = {x2, u}, N−(x2) = {x3, v} and
N−(x3) = {x1, z}. Notice that if z ∈ N−(u) or v ∈ N−(u), then D contains J2 or J3,
respectively. Therefore, since D is a TT3-free oriented graph, N−(u)∩N−[X] ⊆ {x2} and
u /∈ Y . Observe that, by symmetry, we can conclude the same for v and z, obtaining again
a contradiction.
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