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The use of terahertz-based techniques has grown very fast since they are capable of performing evaluations at 

molecular level, being very suitable for the analysis of biological samples and biomaterials such those for contact 

lenses.  These biomaterials are continuously evolving to enhance the lens wearer’s comfort by improving their 

hydration state and surface wettability. Therefore, this study examines a novel terahertz system for the assessment 

of the temporary in-vitro dehydration of hydrogel contact lenses, which provides a new index to assess their state 

of hydration. Several conventional and silicone hydrogel contact lenses and lens care solutions were analysed. 

Traditional methods such as the gravimetric determination of water content and the measurement of the static 

contact angle were also carried out for the validation of the developed system. The dehydration rate measurements 

of contact lenses obtained with the proposed system correlated with the values provided by traditional methods. 

As a whole, conventional hydrogel contact lenses exhibited the lowest values for dehydration rate. The tests 

conducted on various solutions showed a correlation between the wetting action of the solution and the dehydration 

rate of the contact lens material.  

Keywords: terahertz radiation, terahertz systems, hydrogel contact lens dehydration, water content, lens care 

solutions. 

1. Introduction 

The use of new methods based on terahertz (THz) radiation is growing fast in biomedical research, 

mainly because it is a non-invasive technique with non-ionizing properties [1].  THz radiation has 

a spectral range between 100 GHz and 10 THz, corresponding to wavelengths from 3 mm in the 

microwave domain to 30 µm in the far infrared. Specifically, THz energy corresponds to the 

intermolecular oscillations, which can identify and differentiate between different polymorphic 

crystals or crystal orientations of the same molecule. 

THz radiation is currently used to determine the hydration state of living cells and biomaterials 

since the dielectric responses are selectively sensitive to bulk water [2]. Any other polar liquid 

can also absorb THz radiation and can thus be used in remote sensing of any process that results 

from changes in the water content (WC) of the sample [1]. For instance, it is commonly applied 

to non-invasive inspection of the WC in leaves [3,4], drying paint [5,6]  and to evaluate variations 

in WC when a healthy tissue becomes cancerous [7,8].  

The development of hydrogel biomaterials for contact lens (CL) application has been driven 

by the need to increase the biocompatibility of CLs as a means to extend the wearing time. 

Biocompatibility is dependent on multiple factors, which can be classified in 2 main categories: 

(1) bulk parameters, such as oxygen permeability, Dk, and equilibrium WC; (2) interfacial 

phenomena, such as wettability of the polymeric surface. In essence, biocompatibility of CLs 

refers to the characteristics of both bulk and surface properties when interacting with the tear film 

and the lens care solution. 

Conventional hydrogel biomaterials for CLs were based in the synthetic biocompatible 

material poly(hydroxyethylmethacrylate) (PHEMA), which presents a matrix surface with 

hydrophilic character that allows sufficient surface wettability at the interface between the CL 

and the tear film. The increased equilibrium WC of the hydrogel polymeric matrix has led to the 

development of new PHEMA-based hydrogel materials with higher Dk [9]. On the other hand, 

the first generation of silicone hydrogel biomaterials for cCLs was formulated by block 
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polymerization of tris(trimethylsiloxy)silylpropylmethacrylate (TRIS), polydimethylsiloxane 

(PDMS) and dimethylacrylamide macromers [10]  that resulted in higher Dk values than 

conventional hydrogel CLs. However, the hydrophobic character of the polymeric surface 

requires treatment to ensure wettability. This is usually achieved by increasing the WC of the 

hydrogel matrix without decreasing its Dk, while also lowering the tensile modulus of the first 

silicone hydrogel generation materials to improve comfort [11,12].  

With regard to the evaluation of WC and CL dehydration, gravimetric [13-16] and 

refractometric [17,18]  methods have been widely applied to silicone and conventional hydrogel 

CLs for in-vitro evaluation, since they can determine the dehydration rate in different 

environments. Wettability of silicone and conventional hydrogel materials has also been assessed 

by means of the contact angle of pure water and surfactant solutions for CLs preserved in different 

solutions [19,20]. 

In this work, we propose a novel THz system for the in-vitro evaluation of the dehydration 

process of different materials used for conventional and silicone hydrogel CLs and the influence 

of conditioning solutions with different surfactants and lubricant agents. The gravimetric WC and 

wettability of the CL polymeric surface were also assessed to validate the performance of the 

system. The main goal was to provide a more precise analysis of water loss considering the bulk 

and superficial performance of CL materials by means of a THz-based approach that, to the 

authors’ knowledge, has not been used previously for this purpose. Furthermore, the system can 

contribute to a better understanding of user’s wearability of hydrogel CLs as a function of the 

material, WC and the solution used to achieve the hydrated state of the hydrogel as 

complementary and valuable information not available in the literature can be obtained by means 

of the proposed technique. 

2. Material and methods  

2.1 Dehydration measurements 

2.1.1 Experimental setup 

The dehydration process of CLs was evaluated with a novel THz-based system (Figure 1), which 

consisted of a mechanically tuned Gunn oscillator SOM-94301313-10-SC coupled to a voltage 

regulator SOR-R3, and an amplitude GaAs Schottky detector SFD-753114-10SF-N from SAGE 

Millimeter, Inc. The Gunn oscillator was fed with 7.3 V and emitted a linearly polarized, free 

space radiation at 94 GHz with approximately 1 GHz frequency modulate bandwidth. 

Additionally, 2 SGH-26-WR10 B horn antennas from Anteral, S.L. were attached to the oscillator 

and detector; a polarizer FPOL-MMW-20 from the same company was also placed in front of the 

oscillator-antenna assembly in order to maximize the signal. A NI USB-3211 acquisition card 

from National Instruments Corp. was incorporated to retrieve the signal detected by the sensor. 
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Fig. 1. (a) General view of the setup and (b) ray tracing from the emitter to the detector. L1, L2, L3 and L4 refer to 

the four TeflonTM lenses. 

The beam propagation from the emitter to the detector was handled by a configuration of 4 

TeflonTM lenses from Thorlabs GmbH, which included 2 collimating lenses of 100-mm focal 

length (L1 and L4) and two aspherical lenses with a focal length of 50 mm (L2 and L3).  In order 

to guarantee the perpendicular positioning of the CL with respect to the optical path, a transparent 

plastic holder with a semi-A sphere of 8-millimeter radius in the centre that simulated the cornea 

was used. 

2.1.2 Hydration index (HI) 

Dehydration was measured in terms of transmission by comparing the voltage detected with and 

without the CL in the optical path. This transmitted voltage was expressed as a percentage through 

a hydration index (HI) as follows: 

𝐻𝐼 = 100 −
(𝑉0−𝑉𝑖)

𝑉0
∙ 100, (1) 

𝑉0 refers to the initial value of voltage and 𝑉𝑖 indicates the voltage for each individual 

measurement over time. The computation of each voltage value (either 𝑉0 or 𝑉𝑖,) was calculated 

as follows,  

𝑉𝑖 = 1 −
𝑅𝑖−∆𝑅

𝑅𝐻
    (2) 

where 𝑅𝑖 is the raw voltage value obtained when measuring the transmission of the CL and 

its holder, 𝑅𝐻 is the voltage transmitted only using the holder; the influence of the holder on the 

total transmission is thus avoided. Moreover, dividing by 𝑅𝐻 also benefits the minimization of 

the effect of environmental conditions such as variations of humidity, i.e., water vapour present 

in the air, which where monitored during measurements, showed fluctuations below 2%. The term 

R is calculated as Rn - RH and was added to obtain HI values of zero when the signal was constant, 

which meant that the CL was completely dehydrated at time n. At this time, some CLs showed a 

constant signal but with values slightly above zero, which might have been caused by the inner 

structure of the material. In relation to the assessment of different lens care solutions, the R 

remained constant for each CL material but was different among the solutions. In this case, the 

R selected as a reference was the R of the CL preconditioned in MilliQ® water (DW). This 

voltage ratio was finally subtracted from 1 to obtain a curve decreasing over time in consonance 

with the expected behaviour of the HI.  

2.1.3 CLs preconditioning 

With regard to the assessments of the different solutions, once the CLs had been 24 hours in DW 

and before the THz measurements, they were immersed in the solution under test for 24 additional 

hours. Next, the residual water was eliminated with lens cleaning tissue and the sample was 

weighted to establish the initial mass.  The time needed for these processes was about 1 minute 

to minimize dehydration before THz measurements. The dehydration was measured until the 

complete stabilization of the signal, indicated by constant and very low values of voltage. Each 

CL was tested once, but the transmitted voltage measurement was repeated at least twice, with 

new samples for each material and preconditioning process, in order to assure the repeatability of 

the HI index. Other factors also considered during the preconditioning processes were the use of 

silicone tweezers and nitrile gloves to avoid any contamination of the CLs. Room temperature 

and relative humidity were kept constant at 22±1oC and 32±2 %, respectively. 

2.1.4 Gravimetric determination of the WC 

The WC of the different materials was gravimetrically quantified by means of a PCE-AB 100 

analytical balance from PCE InstrumentsTM, with a precision of 0.1 mg. The following formula 

was used to calculate the WC as a percentage: 



 4 

𝑊𝐶 =
(𝑚0−𝑚𝑛)

𝑚0
∙ 100, (3) 

where 𝑚0 refers to the initial value of mass measured just after the preconditioning process, 

and 𝑚𝑛 indicates the final mass calculated when the CL is completely dehydrated, i.e., when the 

THz signal becomes stable.  

2.2 CL materials and solutions 

Eight CLs were analysed: 5 silicone hydrogel (SiHy) and 3 conventional hydrogel (Hy), i.e., 

poly(hidroxyethylmethacrylate)-based, CLs (Table 1). All had the same optical power (-4.00 D) 

to prevent differences among them. Concerning hydration, 3 CL materials with high (> 50%) and 

5 with low WC (< 50%) were included in the study. With regard to the material characteristics, 2 

were ionic and 6 non-ionic. This sample set consisted of monthly and biweekly replacement CLs 

except for the etafilcon A, which is a material for daily use only.  

Table 1. Material name (United States Generic name), principal monomers, nominal water content (WCNominal), ionic 

character (FDA), surface treatment, and brand name of the contact lenses evaluated. 

Material Principal monomers WCnomial (%) Ionic character 
Surface 

treatment 
Brand name 

lotrafilcon B 
DMA, TRIS, fluorine 

containing siloxame 

macromer 

33 Non-ionic SiHy Plasma coating Air Optix 

 

senofilcon A 
mPDMS, DMA, 

HEMA, SiGMA, 

TEGDMA, PVP 

38 Non-ionic SiHy None 

 

Acuvue 

Oasys 

 

asmofilcon A 
Silicone 

methacrylates, 

silicone acrylates, 

DMA, pyrrolidone 

derivative 

40 Non-ionic SiHy Plasma coating Menicon 

PremiO 

 

comfilcon A 
M3U, FMM, TAIC, 

IBM, NMNVA, 

NVP, HOB 

48 Non-ionic SiHy None Biofinity 

 

balafilcon A NPV, TPVC, NVA, 

PBVC 

36 Ionic SiHy Plasma oxidation Pure Vision 

omafilcon A HEMA, PC 62 Non-Ionic Hy - Proclear 

hilafilcon B HEMA, NVP 59 Non-Ionic Hy - 
Acuvue 1-

Day  

etafilcon A  HEMA, MA  58 Ionic Hy - SofLens59  

DMA: N,N-dimethylacrilamida; PVP: poly(vinyl pyrrolidona); TRIS: methacriloxypropyl tris(trimetrhyl 

siloxy)silane; mPDMS: monofuncional methacryloxypropyl terminated polydimethylsiloxane; HEMA: 2-

hydroxyethylmethacrylate; SiGMA: 2-propenoic acid-2-methyl-2hydroxy-3(3(1,3,3,3-tetramethyl-1-

(trimethylsilyl)oxy)disiloxanyl)propoxypropyl ester; TEGDMA: tetraethyleneglycol dimethacrylate; NVP: N-

vynilpirrolidone; PC: phosphorylcoline; MA: methacrilyc acid; M3U: -bis(methacryloyloxiethyl iminocarboxy 

ethyloxypropyl)-poly(dimethylsiloxane)-poly(trifluoropropylmethylsiloxane)-poly(methoxy-

poly(ethyleneglycol)propylmethyl-siloxane; FMM: -methacryloyloxiethyl iminocarboxyethyloxypropyl-

poly(dimethylsiloxy)-buthyldimethylsilane; TAIC: 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione; IBM: 

isobornyl methacrylate; HOB: 2-hydroxybuthyl methacrylate; NMNVA: N-methyl-Nvinylacetamide; HOB: 

2.hydroxybuthyl methacrylate; TPVC; tris-(trinethyl siloxysilyl) propylvinyl carbamate; NVA: N-vinyl amino acid; 

PBVC: poly(dimethylsiloxy) di (silylbutanol) bis (vinyl carbamate).  

Borate buffered saline solution was prepared using analytical grade reagents from Sigma-

Aldrich Co and deionized ultrapure MilliQ®. The BBS solution (pH = 7.40±0.02 and osmolarity 

of 304 ±0.5 mOsm/L) contained boric acid (0.01M), sodium tetraborate decahydrate (0.16 mM) 

and sodium chloride (0.14 M). BBS solutions containing in addition hyaluronic acid sodium salt 

(HA, molecular weight of 1.5-1.8 103 kDa) and/or purified Poloxamer-407 (P, molecular weight 
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12.6 kDa,) were also prepared. The BBS-HA, BBS-P, and BBS-HA-P solutions contained 0.01 

% wt/vol HA, 0.2 % wt/vol P and 0.01 % wt/vol HA + 0.2 % wt/vol P, respectively. Finally, the 

commercial multi-purpose solution Biotrue® from Bausch&Lomb (pH = 7.50±0.02 and 

osmolarity = 285±1.0 mOsm/L)  [21, 22] was also evaluated.  

2.3 Static contact angle evaluation 

The static contact angles (θ) of water drops on the surface of CLs were measured by means of the 

sessile drop method using a DSA100 drop shape analyser from KRÜSS GmbH. All measurements 

were also conducted at a room temperature of 22±1oC. Prior to these measurements, the CLs were 

removed from the blister packages and immersed in BBS solution during two minutes, followed 

by the immersion in the test solution for 48 hours.  

The methodology followed to obtain the contact angle measurements was based on previous 

works [19, 20]. Firstly, the CL was removed from the storage solution using silicone tweezers 

and repeatedly placed on a lens cleaning tissue to collect any residual surface liquid. Next, the CL 

was placed on a holder and a 4 µl water drop controlled by a micrometre pass dosage was 

transferred to the CL surface, ensuring a total time of exposure to air of 2 minutes. This process 

was captured in the digital video by the camera integrated in the drop shape analyser, controlled 

and analysed by the software DSA4. A tangent method was used to measure the contact angles. 

Three independent fittings were performed to provide three mean contact angles of the same drop 

image and the average (θm) was determined. This procedure was repeated for a second video of 

the same CL solution to verify the reproducibility of the measurement. 

3. Results and discussion  
 

3.1. Dehydration evaluation of different CL materials preconditioned  in DW 

Figure 2 shows the dehydration process, indicating the HI index for the eight CLs preconditioned 

in DW at different times (Figure 2a) and for 5000 s (Figure 2b). The first time of 20 s was selected 

to simulate natural eye conditions, where the average tear film break up time (TFBUT) is 17 s, 

approximately29. On the other hand, between 4000 s and 5000 s, the voltage of all CLs remained 

constant and at minimum values; therefore, 5000 s were thus assumed to be enough for all CLs 

to dehydrate completely.  

  

Fig. 2.  Dehydration evolution for the eight contact lenses conditioned in MilliQ® water (DW) analysed at different 

times (a) and during 5000 s (b). 

The dehydration process within the first time interval (0 s, 20 s) in Figure 2b revealed that the 

HI was not dependent on the tested WC of the CL material (Table 2). Six CL materials showed a 

mean dehydration under 2 % (balafilcon A, comfilcon A, omafilcon A, hilafilcon B and lotrafilcon 
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B); 2 other materials exhibited values between 2 % and 3 % (etafilcon A and senofilcon A); and 

only one led to a mean dehydration of almost 5 % (asmofilcon A).  In the second time interval 

(20 s, 1000 s), the dehydration was more dependent on the tested WC and the CL polymeric 

matrix material. All Hy CLs had dehydration rates lower than SiHy materials, as expected due to 

their higher WC, with the exception of comfilcon A. The three Hy CLs and comfilcon A (SiHy) 

showed a HI ≥ 40% at t = 1000 s. Among all Hy CLs evaluated, the hilafilcon A material presented 

the lowest dehydration rate, i.e., the highest HI in this range; the ionic character did not seem to 

influence the dehydration process. In the case of SiHy materials, comfilcon A reached the highest 

HI values up to 2000s, which corresponds to its inherent wettability as a third generation SiHy 

CL [10]. The remaining SiHy materials showed HI < 40% at t = 1000 s. The ionic material 

balafilcon A exhibited the slowest dehydration rate, even though its dehydration behaviour is very 

similar to that of lotrafilcon B, both belonging to the first generation of SiHy CLs. Although the 

HI decrease of senofilcon A was initially faster, it presented the slowest dehydration decay beyond 

1000 s (third time interval) due to the PVP internal wetting agent. Beyond 3000 s, most CL 

materials were completely dehydrated. The materials with the longest dehydration times were 

etafilcon B and senofilcon A, while asmofilcon A and omafilcon A presented the shortest 

dehydration times, with HI ~ 0 at 2500 s and 2750 s, respectively.  

Table 2 shows the WC provided by the manufacturers (WCNominal) and the mean and standard 

deviation (SD) values of WC experimentally measured as previously described in equation (3) 

(WCTested) for the eight CLs and calculated at t = 5000 s. A good Pearson correlation was obtained 

between both WCTested and WCNominal values (R2= 0.9854, p<0.0001), with a decreasing tendency 

in the WCTested values for the CLs conditioned in DW respect to the WCNominal values measured in 

standard saline solution (following ISO 18369-3: 2017 for measuring methods in ophthalmic 

optics). 

Table 2. Nominal and tested WC of the eight contact lenses. Both are expressed as a percentage. 

Material WCNominal  WCTested ± SD 

lotrafilcon  B 33 32.7 ± 0.6 

senofilcon A 38 37.0 ± 0.0 

asmafilcon A 40 41.3 ± 1.2 

comfilcon A 48 45.0 ± 1.7 

balafilcon A 36 36.3 ± 0.6 

omafilcon A 62 61.7 ± 1.2 

hilafilcon B 59 57.7 ± 4.6 

etafilcon A 58 58.0 ± 1.7 

 

In general, the THz evaluation showed good inter-blink hydration since the mean HI of all CL 

materials was above 95% during the first 20 s. Because of their slower dehydration decay, 

hilafilcon B, etafilcon A and comfilcon A were shown to be the most comfortable materials for 

long-time use. These results agreed with other studies where conventional hydrogel materials also 

presented lower dehydration decay than silicone-containing hydrogels [15] and CLs of higher 

WC dehydrated at a slower rate [23].  

3.2. Dehydration evaluation of CLs preconditioned in different lens care solutions 

Additionally, the dehydration of balafilcon A and senofilcon A materials was studied after 

preconditioning the CLs in the different prepared solutions and in the commercial Biotrue® 

solution. Balafilcon A and senofilcon A CLs were chosen to account for materials with similar 

WC belonging to different SiHy generations and with different ionic character. The objective of 

this second test was to study the behaviour of CL dehydration when using solutions with different 

lubricant or wetting agents. 

The latest formulations of multipurpose CL solutions [24] try to mimic the physicochemical 

properties of natural tear film (pH, osmolarity, viscosity and surface tension) [25-27]. This is the 
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case of the Biotrue® and some of the prepared solutions, which incorporate HA and poloxamers 

or poloxamines agents. HA is a natural polysaccharide present in biological fluids and tissues, 

including human tears, that is commonly used in CL solutions for its wetting and lubricant 

properties. Poloxamers and poloxamines are non-ionic surfactants [28]. 

Figures 3 and 4 show the evolution of the HI index of both materials conditioned in the 

different solutions at different times and during 5000 s, respectively. In both figures the 

dehydration in MilliQ® DW was also included as reference.  

 
Fig. 3. Dehydration evolution of the balafilcon A (a) and the senofilcon A (b) contact lens materials conditioned in 

the different lens care solutions at different times. 

 

   

Fig. 4. Dehydration evolution of the balafilcon A (a) and the senofilcon A (b) contact lens materials conditioned in 

the different lens care solutions during 5000 s. 

The assessments of balafilcon A revealed that for the first time interval (0 s, 20 s), the mean 

HI was above 96% for all solutions. The highest mean HI was obtained in the case of DW, BBS 

and the multipurpose Biotrue® solutions (Figure 3a). In the second interval (20 s, 1000 s), the DW 

led to higher mean HI than BBS and both of them presented higher mean HI than the rest of 

solutions (Figures 3a and 4a). Moreover, the decrease of the HI was constant for the Biotrue®, 

BBS-HA-P, BBS-HA and BBS-P solutions until around 95% of water had been lost, presenting 

a change in the dehydration profile respect to that of DW. For all solutions and DW, balafilcon A 

became completely dehydrated around 3000 s (Figure 4a) and the values of WC tested were 
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almost identical to the nominal WC (Table 3), except for the Biotrue® that presented a value 

slightly higher and for the BBS-P slightly lower. This allowed us to conclude that the total 

equilibrium WC of balafilcon A is few affected by the presence of surfactant or lubricant agents 

in the lens care solutions. However, in contrast with DW, the osmolarity change and the addition 

of these agents in the preconditioning solution affected the kinetics of the dehydration process 

increasing the dehydration rate. This phenomenon was less noticeable during the first 20 s of the 

dehydration process since a similar performance with a decrease of the HI below 6 % was 

observed for all solutions.  

On the other hand, the tests for senofilcon A in the interval (0 s, 20 s) showed that the mean 

HI was above 94% for all solutions. The highest mean HI values were obtained for the BBS-HA, 

BBS-HA-P and Biotrue® (Figure 3b). In the interval (20 s, 1000 s) BBS-P, BBS-HA, BBS-HA-

P, and Biotrue® solutions produced very similar dehydration curves (Figure 4b), always above 

those of DW and BBS, with higher mean HI values at t=1000 s (Figure 3b). Senofilcon A became 

completely dehydrated around 4000 s in the case of DW and BBS, and at 4500 s in the case of 

BBS-P; in all cases, the dehydration process lasted longer than that of balafilcon A. For the 

remaining solutions, an apparent residual HI value under 5% was observed when the signal was 

considered stable (5000 s). However, the values of WC tested at 5000 s (Table 3) indicated that 

in all cases the senofilcon A CLs were completely dehydrated since these values essentially 

coincided with the nominal WC. On the one hand, it can be concluded that the total equilibrium 

WC of senofilcon A behaves similar to that found for balafilcon A, i.e., is almost independent 

from the presence of these agents. On the other hand, the THz data transmitted by the senofilcon 

A material in a dehydrated state seemed to be affected by the presence of HA, P and/or 

poloxamine in the BBS solution, since a remaining amount of HI persisted up to 5000 s. It 

probably occurred because these agents were adsorbed on the polymeric matrix surface during 

the preconditioning process. In order to obtain more in depth information about this fact, the 

contact angle of both balafilcon A and senofilcon A conditioned in DW and in the different care 

solutions was measured. 

 

The gravimetric determination of the WC and the static contact angle were also 

experimentally evaluated for this second set of measurements. The contact angles shown in Table 

3 indicate the effect of the lens care solutions on the polymeric surface wettability of the CLs. As 

previously mentioned, the balafilcon A material incorporates a surface treatment to increase its 

wettability, which was confirmed by the contact angle values when conditioned in DW or BBS. 

The presence of only one agent (HA or P) in the BBS solution did not produce noticeable changes 

in surface wettability. However, the inclusion of two agents as in the BBS-HA-P (HA and P) and 

the Biotrue® solutions (HA and poloxamine) achieved an improvement of surface wettability. 

Comparing the contact angle measurements with the mean HI values in the interval time (0 s, 20 

s) in Figure 3a for the 4 solutions containing surfactant and lubricant agents, the BBS-HA and  

Biotrue® showed slightly higher HI values. The selection of the most suitable solution for 

balafilcon A is complex because this material showed a very good hydration performance when 

using only DW and BBS. However, the wettability of the surface is also important in the ocular 

environment, since it determines how the tear film is spread over the surface of the CL. 

Considering the results for these two parameters, BBS-HA-P and Biotrue® would be the best 

solutions due to their high mean HI value during the first 20 s and the low contact angles, although 

long-term HI values were below those of DW and BBS. 
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Table 3. Tested WC in percentage and static contact angles (m, degrees) of the balafilcon A and the senofilcon A 

contact lenses for the different lens care solutions. 

Solution 
balafilcon A senofilcon A 

WC tested ± SD m ± SD WC tested ± SD m ± SD

DW 36.3 ± 0.6 29.9 ± 2.6 37.0 ± 0.0 97.2 ± 1.2 

BBS 35.0 ± 0.0 33.6 ± 1.3 38.0 ± 0.0 55.1 ± 1.7 

BBS-P 33.5 ± 2.4 31.0 ± 0.8 36.5 ± 0.7 36.8 ± 2.1 

BBS-HA 36.5 ± 0.7 36.7 ± 1,9 38.0 ± 0.0 26.8 ± 1.1 

BBS-HA-P 35.0 ± 0.0 25.1 ± 0.6 36.0 ± 0.0 39.0 ± 2.6 

Biotrue® 39.0 ± 0.0 26.6 ± 0.3 38.0 ± 0.0 39.5 ± 1.6 

Senofilcon A incorporates PVP to increase the hydrophilicity of the surface [2]. Despite this 

fact, the contact angle of senofilcon A conditioned in DW and BBS solution indicated a low 

hydrophilic surface character (Table 3). Consequently, the presence of wetting or lubricant agents 

in the BBS solution improved the wettability considerably, especially in the case of HA.  On the 

other hand, the hydrophobic character of the senofilcon A surface was shown to depend on the 

non-ionic surfactant agents added to the lens care solutions such as BBS-P, BBS-HA-P and 

Biotrue®. This behaviour indicated that non-ionic surfactants P and poloxamine were less 

effective than using HA without surfactants. The contact angles for senofilcon A also correlated 

with the mean HI values during the first 20 s; the lower the static contact angle, the higher the HI 

values. In addition, the stronger adsorption of HA and HA+P or HA+poloxamine on the 

senofilcon A surface correlated with the residual water content that was observed for these 

solutions at 5000 s (Figure 4b). Considering the results of HI and contact angle, the most suitable 

solution for senofilcon A CLs is the BBS-HA, since it showed the best hydration throughout time 

and wettability, with a contact angle below 30º.  

4. Conclusions 

A THz system was developed to evaluate the dehydration of conventional and silicone hydrogel 

CLs and to analyse the performance of different lens care solutions by means of a THz-based 

system. This presents a significant extension of existing works in this field as THz technology is 

used for the first time for the CLs study. Based on THz measurements, a new expression for the 

quantification of the hydration state of CLs was defined. The results of the new system correlated 

with results obtained with traditional methods. 

The assessment of the in-vitro dehydration process of different CL materials conditioned in 

MilliQ® DW revealed different dehydration kinetics in the first stages (0s, 20s) compared to the 

dehydration kinetics at longer times (20 s, 5000s). Although the dehydration profile of the 

different materials was similar within the Hy group and among SiHy CLs of the same generation, 

each dehydration profile presented specific features that could be used as a fingerprint for material 

identification.  

The study of the effect of different solutions on the in-vitro dehydration profile of CLs was 

analysed for the balafilcon A and senofilcon A materials. The solutions used were based on BBS 

in combination with wetting and/or lubricant components. For each solution, a correlation was 

observed between the measurements of dehydration by means of the HI and of the static contact 

angle.  

To conclude, the THz-based system contributed to improve the accuracy in the study of 

hydrogel CL materials and their interaction with lens care solutions. The system evaluated the 

performance of biomaterials and solutions in terms of dehydration and can be a useful technique 

to evaluate new hydrogel biomaterials and their behaviour prior to in-vivo tests.  
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