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Abstract 
 

Rising sea temperatures through climate change produce shifts in the distribution of 
tropical species to temperate regions, a process termed “tropicalisation”. The poleward 
expansion of tropical herbivores into temperate seagrass meadows is predicted to increase 
grazing pressure and alter ecosystem services and processes in these seagrass systems. This 
study attempted to examine the effects of tropicalisation on temperate seagrass meadows along 
the western coast of Australia, where the increasing abundance of tropical consumers such as the 
herbivorous Siganus fuscescens has already been documented. Through the assessment of fish 
assemblages in seagrass meadows and the grazing levels on seagrass in 2001 and 2016/17, as 
well as in situ and mesocosm feeding preference experiments, this study attempted to estimate 
the grazing rates and impact that the growing abundance of S. fuscescens may have in temperate 
seagrass meadows. 

Shifts in the grazing rates on seagrass between 2001 and 2016/17 were inconsistent, 
varying between seagrass species and location. Based on observational data on the bites on 
seagrass leaves, rates of consumption increased for Posidonia sinuosa while no similar pattern 
was found for Posidonia australis. This was despite an apparent greater consumption on P. 
australis compared to P. sinuosa in 2001, and the minimal amount of grazing on tethered 
seagrass. The higher observed level of P. sinuosa consumption in 2016/17 is likely explained by 
the changed herbivorous fish species composition, even though no fish were clearly observed 
feeding on seagrass in the current study. The tropical herbivore S. fuscescens was more abundant 
in 2016/17 that 2001, although abundances were patchy and no fish was observed feeding on 
seagrass. The higher level of P. sinuosa consumption in 2016/17, compared to 2001, supports 
the prediction that with increasing abundances in temperate seagrass ecosystems, tropical 
herbivores will enhance the consumption of seagrass. However, seagrass consumption is likely 
to be strongly influenced by the availability of macroalgae which were shown as the preferred 
food sources. 

Feeding trials in mesocosms were compromised by the large number of deaths and the 
limited grazing on natural food sources by S. fuscescens, suggesting that the population in the 
Perth region is susceptible to adverse handling and husbandry effects. To maximise the survival 
rate of captured fish, the fishing and handling procedures were altered to adapt to the ongoing 
observations in the response of fish to handling in the field or in the mesocosm facilities. Lesson 
learned from the capture, handling and husbandry of S. fuscescens in feeding trials in the current 
study will hopefully provide greater success for feeding preference experiments in the future. 

The sampling program initiated in 2001 and repeated in 2016/17 provides base-line data 
and the opportunity to monitor and track the shift in abundances of tropical herbivores and 
resultant increases in grazing rates to test the above predictions. The consequences of 
tropicalisation will depend on the variety of abiotic and biotic factors, including the fish 
assemblages in the area, the abundance of tropical species, the availability of food, and the 
feeding preferences that invading species will develop in response to the changed environmental 
conditions. 
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1. Introduction 

1.1 Background 

1.1.1. Climate-driven changes in terrestrial and marine environments 

The rising water and air temperatures in temperate and polar environments worldwide can 
affect a broad range of terrestrial and aquatic species (Walter et al., 2002; Parmesan, 2006; 
Bellard et al., 2012; Vergés et al., 2014a; Heck et al., 2015). In response, plant and animal 
species either: tolerate temperature changes; genetically or physiologically adapt to the changed 
conditions; or shift their geographical distributions (Bates et al., 2014). Numerous examples of 
recent climate-driven changes in species composition and the resultant ecological responses of a 
wide variety of organisms exist in land and marine ecosystems (Parmesan, 2006; Bellard et al., 
2012; Poloczanska et al., 2013; Vergés et al., 2014a; Heck et al., 2015). 

For marine ecosystems, a major observed and predicted impact of climate change is the 
warming-related poleward shift in the distribution of marine plant and animal populations (Perry 
et al., 2005; Cheung et al., 2012). Range shifts can be defined as any change in the distribution 
of species beyond their previously recorded ranges (Sorte et al., 2010; Bates et al., 2014), and 
can involve geographical expansion or contraction. The expansion of range edges occurs when 
new locations become suitable for colonists, and species move into those areas (Sorte et al., 
2010). The contraction occurs as a result of population decline in the areas historically populated 
by a species but environmental conditions become unsuitable for sustaining populations 
(Helmuth et al., 2006). 

The poleward range expansions of marine plants and animals are of special interest. They 
result in the increasing dominance of warmer-water species in cool temperate environments 
where they were previously absent (Wernberg et al., 2011). By shifting polewards, tropical 
species begin to compete and interact with native temperate species. This convergence launches 
changes to various ecological processes, which influence directly and indirectly native species 
and tropical invaders (Thomson et al., 2015), cause dramatic modifications in faunal 
assemblages, and impact function and community structure of existing ecosystems (Dawson et 
al., 2011; Doney et al., 2012). As the global temperatures continue to increase, centres of 
distribution of many tropical species are expected to shift significantly poleward over the next 
100 years (Cheung et al., 2012), where they will influence the productivity and abundance of 
plants in temperate marine environments and most probably rapidly shift the existing temperate 
assemblages to alternative states (Vergés et al., 2014a; Hyndes et al., 2016). However, the 
ecological consequences of these climate-mediated range shifts are not completely understood 
(Gericke et al., 2014). 

 

1.1.2. Tropicalisation of temperate marine ecosystems 

Tropicalisation can be defined as an increase in the ratio of tropical to temperate taxa in a 
given temperate region (Wernberg et al., 2013), resulting from rising water temperatures and 
poleward migration of tropical species. Tropicalisation describes the entire suite of observed or 
anticipated changes in species composition, distribution, abundance and interactions in coastal 
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ecosystems (Vergés et al., 2014a). Clear examples of tropicalisation are transitions from lush 
algal forests to barren unvegetated substrates in the Mediterranean Sea (Vergés et al., 2014b), 
southern Japan (Serisawa et al., 2004), and eastern (Wernberg et al., 2013) and western Australia 
(Vergés et al., 2014a; Zarco-Perello et al., 2017). Studies of tropicalisation in the USA, Europe 
and Japan indicate that, while the local rates of warming differ considerably, the mechanisms of 
ecosystem alteration appear to be similar (Vergés et al., 2014a). 

In the Mediterranean Sea, tropical herbivorous rabbitfishes (Siganus rivulatus, Siganus 
luridus) from the Red Sea have colonised the basin via the Suez Canal (Azzurro & Andaloro, 
2004; Sala et al., 2011; Vergés et al., 2014b). In the recent decades, this artificial path allowed 
them to increase their abundance in the south-eastern part of the warmed Mediterranean Sea and 
become dominant there. This intrusion has profoundly transformed structurally complex benthic 
communities from productive algal forests to denuded ‘barrens’ (Vergés et al., 2014a). As the 
Mediterranean Sea continues to warm (Nykjaer, 2009), rabbitfishes will expand their distribution 
westwards, threatening algal ecosystems of the northern and western Mediterranean Sea. The 
impact of the intrusion of tropical species in south-western Japan is analogous to the 
Mediterranean Sea precedent: increased herbivory and elevated water temperatures have resulted 
in ‘isoyake’, which is the replacement of temperate kelp forests (Ecklonia cava) by deforested 
rocky barrens and then coral reef communities through the decline of seaweed beds (Fujita, 
2010; Vergés et al., 2014a). The overgrazing of kelp beds and creation of denuded substrate is 
largely caused by tropical parrotfish (Calotomus japonicus), rabbitfish (Siganus fuscescens) and 
various kyphosid fishes, which significantly increased their annual grazing rate as water 
temperature rose (Yamaguchi, 2010). 

In North America, a significant number of tropical plant and animal species have become 
established among the native temperate fauna and flora in the northern Gulf of Mexico (Fodrie et 
al., 2010; Heck et al., 2015), including tropical parrotfishes (Nicholsina usta, Sparisoma 
radians), manatees (Trichechus manatorum), green turtles (Chelonia mydas), warm-water corals 
(Acropora palmata), and black mangroves (Avicennia germinans). The impact of herbivore 
invaders in the region could be profound and unpredictable, as they transform the ecosystems 
through disturbing the positive balance between seagrass biomass and the diversity and 
abundance of associated marine organisms. In addition, the geographical ranges of mangrove 
forests are shifting towards higher latitudes along the northeast coast of Florida (Cavanaugh et 
al., 2014). These forests are ecologically and economically important for the coastal ecosystems, 
providing food, nursery grounds and habitat to a great range of terrestrial and marine species 
(Hoegh-Guldberg & Bruno, 2010). Generally, global warming facilitates increases in mangrove 
abundance near tropical–temperate transition zones (Cavanaugh et al., 2014). 

 

1.1.3. Seagrass meadows and their functional role 

Seagrass meadows are particularly important in shallow coastal water habitats around all 
continents except Antarctica (Costanza et al., 1997; Burkholder et al., 2013), although vast areas 
of seagrass meadows have been lost during the past century due to human disturbances (Waycott 
et al., 2009). Seagrass-dominated habitats enhance the structural complexity of coastal marine 
waters and provide a range of critical ecosystem services (Duarte, 2002; Barbier et al., 2011). 
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They are extremely important primary producers which provide food for a wide range of 
organisms from both the seagrass and the associated algae (Kaiser et al., 2011). The organic 
seagrass material is either recycled within the ecosystem or transported to adjacent land and 
marine complexes (Duarte & Cebrian, 1996; Hyndes et al., 2014). Seagrass meadows sequester 
carbon as organic matter (Duarte et al., 2005; Lavery et al., 2013; Hyndes et al., 2014), and 
therefore store large amounts of carbon (Fourqurean et al., 2012). However, they also export 
carbon to other marine and terrestrial ecosystems through the carbon and energy transfer by 
oceanic currents (Duarte et al., 2005; Fourqurean et al., 2012; Lavery et al., 2013; Hyndes et al., 
2014) and its cycling is closely connected to this energy flow. In addition, consumers of seagrass 
transfer this organic carbon across neighbouring ecosystems (Valentine & Heck, 1999) or 
transport it offshore, a process particularly driven by some macrograzers (manatees, dugongs, 
green turtles), which consume large quantities of seagrass (Fourqurean et al., 2010). Carnivores 
also drive carbon across ecosystem boundaries, as they transfer it from their feeding to shelter 
habitats (Nagelkerken, 2007). Seagrasses provide other key ecological services, such as filtering 
the overlaying seawater and improving water quality by intercepting the nutrients and organic 
matter. They enhance stabilisation of sediments and the sandy sea floor, protecting the shoreline, 
and preventing resuspension and erosion of sediments (Barbier et al., 2011; Kaiser et al., 2011). 

Structurally complex seagrass beds play a significant role, serving as important habitats for 
different marine invertebrate and vertebrate consumers. The nursery function of seagrass 
meadows is extremely important. They provide protection from predators and high level of food 
availability to juvenile consumers, including commercially and recreationally valued finfish and 
shellfish (Jackson et al., 2001; Heck et al., 2003). The lower rate of predation on seagrasses 
allows juveniles to survive and grow quickly (Gillanders, 2007), resulting in a greater biomass of 
fish moving into their spawning habitats. 

Many omnivorous, herbivorous and carnivorous organisms, particularly fish and 
invertebrate species are associated with these communities, becoming both obligate and 
facultative inhabitants of seagrass meadows (Heck & Valentine, 1995; Jernakoff & Nielsen, 
1997; Hyndes et al., 2018; York et al., 2018). Compared to unvegetated areas, diversity and 
abundance in seagrass beds are very high (Jackson et al., 2001; Gillanders, 2007). Moreover, 
they provide food sources and shelter from predators, for a wide range of juvenile and adult 
organisms (Kaiser et al., 2011), preying on the small fish  and vertebrates sheltering in the bed. 
The lost leaves with epiphytes on them contribute to the nearshore food webs, providing feeding 
material for a large suite of detrivores and then carnivores (Kirkman, 1997), and contribute to 
the productivity of other ecosystems via export of seagrass detritus (White et al., 2011). 

 

1.1.4. Herbivory on seagrass meadows 

Tropical seagrass meadows often support a high diversity and abundance of herbivorous 
species, compared to the analogous complexes in temperate regions (Horn, 1989; Floeter et al., 
2005; Baskett & Schemske, 2018; Longo et al., 2018), although latitudinal patterns of density 
and biomass remain unclear (Pennings et al., 2009; Poore et al., 2012). Megagrazers, such as 
manatees (Trichechus manatus and T. senegalensis), dugongs (Dugong dugon) and green turtles 
(Chelonia mydas), are often abundant in the tropics where they consume large amounts of 
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seagrass (Aragones & Marsh, 2000; Chilvers et al., 2005; Fourqurean et al., 2010; Lal et al., 
2010; Marsh et al., 2011; Heithaus et al., 2014). Furthermore, the diversity and abundance of 
species grazing on seagrass can be high, with species belonging to Acanthuridae, Siganidae, 
Scaridae and Kyphosidae consuming seagrasses in tropical regions (Unsworth et al., 2007; 
Wilson et al., 2010; Vergés et al., 2012). However, the abundance of herbivorous species in 
temperate regions can still be high. For example, marine waterfowl (ducks, geese, and swans) 
can be highly abundant and graze significantly on seagrass, removing above- and below-ground 
material (Dos Santos et al., 2012). In temperate systems, many small herbivorous invertebrates 
and vertebrates generally feed on the epiphytic algae within seagrass beds, rather than directly 
grazing the living seagrass material (Jernakoff & Nielsen, 1997; Kaiser et al., 2011; White et al., 
2011). Targeting epiphytic flora and fauna, they only incidentally consume small amounts of 
seagrass (Valentine & Duffy, 2006; MacArthur & Hyndes, 2007; Heck et al., 2015). For fishes, 
the diversity of omnivores is relatively high, but their consumption of seagrass is limited. 
Species known to consume seagrass material, albeit in small quantities, or epiphytic algae in 
temperate seagrass meadows belong to the families of Monacanthidae, Labridae (e.g. Odax 
acroptilus, Haletta semifasciata), Terapontidae (Pelates sexlineatus) (MacArthur & Hyndes, 
2007; Hyndes et al., 2018). The only large invertebrates that demonstrate a major grazing impact 
on the seagrass themselves are sea urchins (Tripneusetes gratilla, Lytechinus variegatus, 
Diadema antillarum), but similar to fish, few species appear to solely feed on seagrasses (Heck 
& Valentine, 1995; Ling et al., 2009). 

 

1.1.5. Tropicalisation affecting seagrass meadows and associated organisms 

Tropicalisation in the transitional zones between the tropics and temperate regions has 
been shown to significantly affect the structure and function of seagrass complexes (Fraser et al., 
2014). Over the next century, the tropically associated seagrasses and tropical herbivores 
associated with them are predicted to respond drastically by moving their ranges southwards in 
the southern hemisphere, while temperate seagrass species and herbivores inhabiting them will 
most probably contract southwards (Hyndes et al., 2016). The impacts of such shifts in 
distribution of tropical flora and fauna could be complex and profound for the habitat-forming 
ecosystems. 

Temperature rises along the west coast of Australia are predicted to affect the composition 
and abundance of herbivorous species in seagrass ecosystems, forcing tropical fishes to move to 
higher latitudes. For example, the distribution of marbled parrotfish (Leptoscarus vaigiensis), 
which is common in tropical north-western Australia and is known to have an impact on 
seagrasses in the tropics (Vergés et al., 2012), is likely to expand 500 km poleward over the next 
century (Hyndes et al., 2016). However, the tropical rabbitfish Siganus appears to already have a 
viable breeding population in the temperate coastal waters near Perth (Hyndes et al., 2016), 
while the tropical range-shifting Siganus luridus has also been observed decimating temperate 
Posidonia oceanica meadows in the eastern Mediterranean Sea (Ozvarol et al., 2011).  

Poleward expansion of tropical herbivorous fish to higher latitudes will increase the 
number of species that rely on seagrass as an essential food source in temperate systems (Hyndes 
et al., 2016). These predicted increases in tropical herbivores in temperate zones will most 
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probably increase consumption rates and decrease the standing biomass of temperate seagrasses, 
as herbivores will potentially consume the great amount of above-ground seagrass biomass, 
reducing the habitat complexity of seagrasses and creating a considerable impact on their role as 
a nursery habitat. Concurrently, the food web structures in altered temperate seagrass ecosystems 
are likely to change significantly. In the detritus-based meadows of temperate regions, great 
quantities are exported to other ecosystems (Hyndes et al., 2014). The intrusion of tropical 
herbivores is likely to cause shifts from a detritus-based system to a more grazing-based system, 
although it is not clear at this stage whether tropical invaders will feed on temperate seagrass 
species in the transition period prior to the establishment of tropical seagrasses (Hyndes et al., 
2016). This will probably result in overgrazing of temperate seagrasses by tropical fishes, 
reduced canopy height and meadow biomass, and large-scale negative impacts on a range of 
important ecosystem services that seagrass meadows provide (Hyndes et al., 2016). 
Consumption of plants by tropical herbivores will alter the flow of decomposing seagrass 
material into adjacent ecosystems thus impacting on habitat, food and nutrient availability in 
those connected ecosystems (Hyndes et al., 2014). 

Temperate seagrass-associated fish assemblages are predicted to be altered, not only 
through the influx of tropical species, but also the contraction of subtropical and temperate 
species, thereby significantly altering the biodiversity of seagrass ecosystems in those regions. 
The distribution of some native temperate species might become restricted to the south-western 
corner of Western Australia. However, some species endemic to temperate regions may become 
extinct, especially if they have specific habitat requirements or if they are co-dependent on other 
species (Hyndes et al., 2016). 

 

1.1.6. Range expansion of species in Australia 

With the continued ocean warming, hundreds of species retreat towards and beyond the 
edge of the Australian continent and the temperate marine communities progressively come to 
resemble northern ecosystems (Wernberg et al., 2011). The southward extent of distribution 
along the eastern coast of Australia is documented for several tropical reef fishes (Booth et al., 
2007; Last et al., 2011), including Pomacentridae (Abudefduf vaigiensis, A. sexfasciatus) and 
Chaetodontidae (Chaetodon auriga, C. flavirostris). Despite strong evidence for the role of the 
warm poleward East Australian Current in transporting these species, the range extension for 
many coastal temperate consumers is correlated with increases in water temperature. The eastern 
coast of Australia is experiencing the decline of seagrass meadows due to a complex of reasons, 
including invasive species and global climate change (Vergés et al., 2014a). 

Emerging evidence suggests that diversity and abundance of tropical and subtropical 
herbivorous species increases in the temperate waters along the western coast of Australia 
(Cheung et al., 2012), including damselfish (Abudefduf sexfasciatus, Abudefduf vaigiensis), 
rabbitfish (Siganus spp.), western scalyfin (Parma occidentalis), butterflyfish (Chaetodon 
assarius), convict surgeonfish (Acanthurus triostegus), and lined dottyback (Labracinus 
lineatus) (Hutchins & Pearce, 1994; Pearce & Hutchins, 2009; Wernberg et al., 2013). In 
addition, there has been a widespread loss of kelp (Ecklonia radiata) forests along the temperate 
western coast of Australia as a result of an extreme marine ‘heat wave’ event during 2011 
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(Pearce & Feng, 2013; Smale & Wernberg, 2013; Wernberg et al., 2016). This heat wave was 
followed by the high levels of grazing by tropical and subtropical herbivorous fishes that 
prevented the recovery of kelp (Wernberg et al., 2013; Fraser et al., 2014). Similarly, the heat 
wave caused a range contraction of approximate 100 km for the canopy-forming seaweed 
Scytothalia dorycarpa along the temperate coast of Western Australia (Smale & Wernberg, 
2013; Caputi et al., 2014). In both cases, this caused structural changes both at the community 
and ecosystem levels where canopy-forming seaweed was lost. 

 

1.1.7. Oceanographic processes on the west coast of Australia 

There is evidence that intrusion of tropical species into temperate waters in all regions is 
influenced by poleward flowing boundary currents that create ocean warming hotspots around 
the globe (Hutchins, 1991; Vergés et al., 2014a). Thus, the abundance and distribution of marine 
plant and animal species along the western coast of Australia are strongly influenced by the 
warm poleward flowing Leeuwin Current (Ayvazian & Hyndes, 1995; Watson & Harvey, 2009; 
Feng et al., 2012). That current has been present for millennia, and has influenced the marine 
biological assemblages down the south-west coast of Australia over that period (Hutchins & 
Pearce, 1994; Cresswell & Domingues, 2009). It transports warm, relatively low-saline tropical 
waters towards temperate regions and then eastwards into the Great Australian Bight, far further 
south than would otherwise be expected. It makes possible the presence of tropical fauna in the 
subtropical and temperate waters of the south-western coast (Sen Gupta et al., 2015; Wernberg et 
al., 2016), which can be seen through a variety of tropical fishes and corals already present in 
temperate regions (Hutchins, 1994; Pearce & Hutchins, 2009). Moreover, it enhances dispersal 
and range expansion of marine biota as far as the Great Australian Bight (Maxwell & Cresswell, 
1981) and is predicted to continue to drive poleward shifts of marine communities (Wernberg et 
al., 2013). 

Water temperatures have been increasing particularly in the south-eastern sector of the 
Indian Ocean (Pearce & Feng, 2007). They are projected to increase by up to 20C in south-
western Australian waters by the end of this century (Lough, 2008). These predictions intersect 
with extreme thermal events, such as the ‘heat wave’ in 2011, which produced record nearshore 
temperatures rising to 50C above the average (Caputi et al., 2014). Such events are predicted to 
increase in frequency and intensity in the future (Wernberg et al., 2013; Wernberg et al., 2016). 
All these will facilitate faster tropicalisation of marine complexes in the Western Australian 
waters, with increasing dominance of warmer-water species (Cheung et al., 2012). This is likely 
to lead to wide range expansions of tropical fauna and flora and unexpected trophic effects in the 
communities receiving poleward moving species. 

 

1.2 Significance and aim 

The study of tropicalisation, which causes dramatic changes in terrestrial, marine and 
estuarine ecosystems, is a very topical research challenge. This knowledge allows researchers to 
monitor the impact of global warming on ecosystems and to predict the dynamics of species and 
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habitat changes. Tropicalisation of marine species as a result of global warming is likely to have 
important impacts on Western Australian coastal ecosystems and clearly requires further study. 

Western Australia is a recognised terrestrial and marine biodiversity hotspot with a high 
number of endemic species (Hopper, 2009; Hobday & Pecl, 2014).  The increasing warming of 
coastal waters along Western Australia is predicted to continue during the rest of the current 
century and affect seagrass complexes. It is now necessary to test these predictions of southward 
expansion of some tropical species’ ranges and the contraction of temperate species’ ranges 
down the western coast of Australia. While there are only a few cases where these range shifts 
have been demonstrated, the impact of tropical species moving south into seagrass ecosystems 
along the Western Australian coast could be dramatic (Bennett et al., 2015). The indirect effects 
of tropical species range shifts can be significant, including large alterations in food-web 
structure and extinction of some endemic species from their native habitats (Cheung et al., 
2012). It is therefore imperative that we gain an understanding of the effects of tropicalisation on 
the important temperate seagrass meadows in the region to underpin future management 
approaches to adapt to these changing conditions. 

This thesis has focused on the tropical herbivorous fish species S. fuscescens that has 
expanded its range southwards and has become established in temperate seagrass communities. 
Its aim was to test the predictions by Hyndes et al. (2016) by determining the effects of this 
tropicalisation through this tropical herbivorous fish species on the structure and functioning of 
seagrass meadows in temperate Western Australia. This has been achieved through the following 
objectives: 

1. Determine the levels of grazing on temperate seagrasses and compare them to grazing 
levels in 2001. 

2. Determine the feeding preferences and grazing rates of tropical consumers in temperate 
seagrass meadows in situ and in mesocosm conditions. 
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2. Materials and methods 

2.1 Objective 1 – Determine the levels of grazing on temperate seagrass and 
compare them to grazing levels in 2001 

The level of grazing on temperate seagrass was determined using a combination of: (1) 
counting bite marks on seagrass leaves; (2) estimating grazing rates using the tethering 
technique; and (3) identifying grazers using underwater cameras. The approach and procedures 
followed those of a study by Fiona Tomas (unpublished data) in 2001, when Siganus was 
presumably absent from the temperate region, or its abundance was very low. Using tethering 
experiments, the 2001 study showed that the seagrass consumption was always significantly 
lower than the actual production rate of seagrass at the same time. Video censuses did not show 
any Siganus present in the region of study. The current study intended to revisit the 2001 
sampling regime and compare grazing rates to those estimated in 2001. Video censuses were 
undertaken to determine if abundances of tropical herbivores correspond to any predicted 
increases in bite marks and grazing rates in temperate waters over that period. 

 

2.1.1 Study region 

The study was performed in Marine Protected Areas at Marmion Marine Park (MMP) and 
Rottnest Island Marine Reserve (RIMR), located along the temperate coast of south-western 
Australia. Sampling was conducted during November/ December 2001 (Tomas, unpublished 
data) and again in December 2016/ January 2017. At both MMP and RIMR, sampling was 
conducted in seagrass meadows situated close to limestone rocky reefs at three sites: Whitford’s 
Rock (310 47’ S, 1150 43’ E), Wreck Rock (310 48’ S, 1150 43’ E) and Boy in a Boat (310 49’ S, 
1150 44’ E) at MMP and Parker Point (320 02’ S, 1150 52’ E), Abraham Point (320 01’ S, 1150 
46’ E) and Stark Bay (320 00’ S, 1150 48’ E) at RIMR (Fig. 2.1, 2.2). In each location, the 
seagrass meadows on the shoreward side of the reef were sampled at depths of 2 to 5 m at MMP 
and RIMR. In Marmion Lagoon, sampling was conducted in the meadows of P. sinuosa, mostly 
monospecific or with the presence of algae (Sargassum sp., Ulva sp., Ecklonia radiata), other 
species of seagrass (Amphibolis antarctica, Halophila ovalis, Syringodium sp.) and sandy 
patches. P. australis was absent from all MMP sites except at Whitford’s Rock where a small 
patch was found next to the reef. At RIMR, sampling was conducted in both P. sinuosa and P. 
australis, mostly monospecific meadows, sometimes with the presence of the other species of 
seagrass (Amphibolis antarctica, Halophila ovalis), algae (Sargassum sp.) and sandy patches. 
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Fig. 2.1. Sampling locations within Marmion Marine Park (Whitford’s Rock, Wreck Rock and 
Boy in a Boat) and Rottnest Island Marine Reserve (Parker Point, Abraham Point, 
Stark Bay) in south-western Australia. 

 

A  B  

C  D  

Rottnest Island

Hillarys
Boat Harbour

Boy in a Boat

Wreck Rock

Whitford’s Rock

Parker Point

Stark Bay

Abraham Point

Australia



 
 

16 

 

E  F  
Fig. 2.2. Sampling locations and P. sinuosa meadows at Rottnest Island Marine Reserve (A, B – 

Abraham Point; C, D – Parker Point) and Marmion Marine Park (Whitford’s Rock). 
 

2.1.2 Sampling methods 

 

Indirect measurements of herbivory on temperate seagrasses 
 

Herbivory by fish on P. sinuosa and P. australis was firstly assessed through indirect 
measurements of grazing by recording existing bite marks on seagrass leaves (White et al., 
2011). At each site and year, 50 shoots of P. sinuosa and P. australis (where possible) were 
randomly collected within three replicate belt transects (40 x 10 m in 2001 and 35 x 5 m in 
2016/2017) at different distances from the rocky reef (0-15 m, 20-30 and 40-60 m). Distinctive 
semi-circular bite marks left by herbivorous fish in seagrass leaves were counted (Fig. 2.3). Such 
semi-circular bite marks are known to be specific to herbivorous fish (Mariani & Alcoverro, 
1999; Alcoverro & Mariani, 2002; Kirsch et al., 2002; Tomas et al., 2005; Prado et al., 2007; 
White et al., 2011). The irregular or non-semi-circular shaped marks were not counted to reduce 
the risk of mistaking marks left on the seagrass leaves by invertebrate grazers, or as a result of 
leaf abrasion or necrosis (Heck & Valentine, 2006). The number of bite marks per shoot was 
recorded and the proportion of seagrass shoots with fish bites was determined. 

 

  
Fig. 2.3. Semi-circular fish bite marks on seagrass leaves. 
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All collected leaves with identified fish bite marks were photographed in the laboratory 
over a 1 x 1 cm grid to obtain an estimate of bite mark area, and the number of bite marks and 
leaves with marks were counted for each transect. The average biomass of seagrass removed per 
square meter was calculated using this estimate. The lengths of seagrass leaves collected at each 
site were compared to the expected lengths of undamaged leaves. The difference between the 
actual and expected lengths of leaves was considered an amount of leaf biomass lost to grazing 
(Heck & Valentine, 2006). 

In 2001, the percentage of shoots with fish bite marks was counted only for P. sinuosa for 
all three sites at MMP and one site at RIMR (Abraham Point), and therefore, no data for fish bite 
marks on P. australis is available for 2001. In 2016/ 17, herbivory by fish was measured both for 
P. sinuosa and P. australis (where available) at different distances from the rocky reef. P. 
sinuosa was sampled at all sites and along almost all transects, except 20-30 m and 40-60 m 
from reef at Stark Bay. P. australis was absent from MMP, except 0-15 m to reef at Whitford’s 
Rock, and at RIMR, except 0-15 m to reef at Stark Bay. 

Seagrass leaves were collected and the fish bites on seagrass leaves were counted at three 
distances from the rocky reef. Temperate rocky reefs in near-shore waters around Perth are 
characterised by high biomass and diversity of macroalgae, which attracts herbivorous and 
omnivorous fish. Seagrass meadows in the next to reef zone, therefore, are most likely to 
experience certain grazing pressure from the reef-associated herbivorous fish species. They may 
prefer to target seagrass in the next proximity to the reef or move further from the reef, 
especially due to reduced availability of macroalgae communities. The data collected at different 
distances from the reef allowed to compare the proportions of seagrass consumed in seagrass 
communities where the preferred food source is easily available to fish herbivores. It also 
allowed predicting of fish species responsible for the grazing on seagrass. 

 

Tethering experiments 
 
Using bite marks on seagrass leaves can underestimate the grazing intensity, because 

partly consumed leaves can be weakened and broken off by waves and currents (Prado et al., 
2007). To supplement the above indirect measurements, a tethering experiment was used to 
determine direct grazing rates by herbivorous fishes (Kirsch et al., 2002; Prado et al., 2007). 
Procedures generally followed those of Verges et al. (2014). Seagrass shoots were collected 
from each site to construct tethers. All shoots used in the assays had no evident signs of 
herbivory initially (i.e., no bite marks on tethered leaves) (Vergés et al., 2014b). Eighteen 
similar, medium-sized shoots of P. sinuosa, and where possible, 18 shoots of P. australis were 
tied to a rope and embedded independently and haphazardly in the meadow with metal pegs 
(between 2.0 and 4.5 m depth) within the 0-15 m of reef at each site. A minimum distance of at 
least 0.5 m was kept between tethers. Photos were taken for each shoot before deployment (Fig. 
2.4). At MMP, tethering was performed for P. sinuosa only, and at RIMR both P. sinuosa and P. 
australis were deployed. 
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Fig. 2.4. Tethers of P. sinuosa and P. australis were photographed before deployment. 

 
The deployed tethers were collected after one week and transported back to the laboratory, 

where they were visually assessed and photographed. The rate of seagrass consumed by 
herbivorous fishes in seven days was determined by comparing the before and after digital 
photographs, and fresh bite marks were counted (Fig. 2.5). Leaves that appeared to be torn 
(through wave action), rather than being grazed, were excluded from statistical analyses (Kirsch 
et al., 2002; Fox & Bellwood, 2008). The initial leaf area was compared to the remaining leaf 
area. The area (cm2) of tissue consumed by herbivores was measured with metric paper, and the 
rate of consumption was calculated in cm2 shoot-1 day-1 and then transformed to leaf grazing per 
unit area per day (g dry weight m-2 d-1) based on the data collected. 

 

  

  
Fig. 2.5. Rates of seagrass consumption were assessed from seagrass tethering assays: the photos 

show seagrass leaves before and after deployment. 
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Seagrass production measurement 
 
The rate of consumption (cm2 shoot-1 day-1 removed) was compared to the rate of seagrass 

production (mm day-1). Seagrass production was measured through the hole punch method 
(Zieman, 1974; Cambridge & McComb, 1984; Cambridge & Hocking, 1997; Westera & Lavery, 
2006). Seagrass production was measured only for P. sinuosa and only for MMP sites in 2001, 
whereas it was measured for P. sinuosa at all sites except Boy in a Boat (situated within the 
sanctuary zone) in 2016/17, and P. australis at all three sites at RIMR but not at MMP where 
this seagrass was absent. At each site, 20 shoots per seagrass species were punched in situ 
through the upper section of the leaf sheath near the leaf/sheath junction (Fig. 2.6), producing a 
lesion on each seagrass leaf (Short & Duarte, 2001; Chiu et al., 2013). Tags were placed on 
punched shoots to allow for later collection. After seven days, the shoots were collected and 
transported to the laboratory, where the new growth from the scar (leaf elongation) was 
measured for each shoot to the nearest 0.1 mm (Fig. 2.6). The epiphytic growth was removed 
from the leaves with a razor blade. The newly produced parts of the shoots including any new 
unmarked leaves were removed and dried at 60o C for 44 hours. This allowed the proportion of 
biomass of P. sinuosa and P. australis removed by herbivorous/omnivorous species to be 
compared to the productivity of the seagrass (Lee et al., 2016). 

 

A  B  
Fig 2.6. The whole punch method (A) was used to measure seagrass production in situ in the 

study area, with the collected seagrass showing growth between the scar and sheath 
(B). 

 
Underwater video cameras 

 
To determine the grazing species that were responsible for any bite marks on the tethers 

deployed in 2016/17, two stationary remote underwater video cameras (Sony-HDR SR12) in 
waterproof housings were attached to concrete blocks and deployed on the sea floor, focusing on 
tethered seagrass shoots at each site (Michael et al., 2013) (Fig. 2.7). Fishes biting tethered 
seagrass were recorded over a 2 h period at the same time of the day (between 10.00 and 14.00 
h). The procedure was repeated for three consecutive days within each site (Hoey & Bellwood, 
2009), yielding an average 10 h of filming for each site (2 h x 3 days x 2 cameras recording each 
time). Each fish recorded feeding on seagrass tethers was identified, and the number of bites and 
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the fish size (total length, mm) were recorded from video footage (Rasher et al., 2013). 
Additional attractive assays of seagrass were placed at the edge of meadows and in bare sandy 
patches. This was used to attract more herbivorous fish to the seagrass meadow and facilitate 
their identification. At the beginning of the filming, the camera focal length was calibrated using 
a scale bar of known length (Michael et al., 2013). A bite was considered every time a fish 
strokes the seagrass leaf with its jaws opened, and subsequently closing its mouth, regardless of 
ingestion (Longo & Floeter, 2012). In the case of indiscernible multiple rapid bites, they were 
considered as one bite (Bellwood & Choat, 1990). 

 

  
Fig. 2.7. Underwater video camera to estimate fish diversity and abundance in seagrass 

meadows. 
 
The maximum number of grazing fish observed in one frame over the whole duration of 

filming (MaxN) was recorded (Watson et al., 2005; Watson et al., 2010). The MaxN was also 
used as a supplement to UVC in 2016/17 and provided a more comprehensive suite of 
herbivores/omnivores in the seagrass meadows, since the method produces a larger number of 
species and a greater number of large-bodied species compared to standard UVC technique 
(Watson et al., 2010). 

 

Herbivory censuses 
 
Fish abundances were estimated using underwater visual censuses (UVC) over seagrass at 

different distances from the reef (0-15m, 20-30, 40-60) at each of the three sites in both regions. 
The number of fish of each species was counted at each site along three replicate belt 40 x 10 m 
transects. In 2001, fish counts were performed at the same sites, except Parker Point. Surveys 
were conducted between 9:30 and 12:30 h at all sites. The distance covered for each transect was 
measured by trailing an underwater measuring tape, which was fixed to the substratum at the 
starting point of each transect (Dickens et al., 2011; Mallet et al., 2014). The diver swam one 
way at a constant speed along each survey location recording all the fish encountered (Fig. 2.8). 
Fish counts from UVC were converted into densities per unit area (individuals per 100 square 
meters). 
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Fig. 2.8. Underwater video censuses (conducted by A. Turco). 
 
Statistical analyses 
 

Since MMP was the only region where P. sinuosa was present across all distances from the 
reef, and at all sites, analyses to examine differences in percentage of P. sinuosa shoots with bite 
marks across years were restricted to this region. Variation in rates of consumption of P. sinuosa 
shoots (expressed as the percentage of shoots with fish bite marks from each distance from reef 
within seagrass meadows) was analysed with three-way analyses of variance (ANOVA), testing 
for differences between three fixed factors: site, year and proximity to the rocky reef. Post-hoc 
Turkey’s test examined the difference between the percentages of P. sinuosa shoots with fish 
bite marks for year-site-distance combinations. 

Due to a three-way interaction for the above test, a two-way ANOVA was performed for 
each site at MMP to assess the difference in the percentage of P. sinuosa shoots with fish bite 
marks between the two years (2001 and 2016/17) and among all three distances away from the 
reef (fixed factors). This was followed by post-hoc Turkey’s test, examining the difference 
between the percentages of P. sinuosa shoots with fish bite marks for each year-distance 
combination at MMP. 

All data were checked for normality and homogeneity of variances. Levene’s test (SPSS 
Statistics 23) was used to test for homogeneity of variance. When assumptions of homogeneity 
of variance were violated, square root transformation was applied to meet the homogeneity. The 
significance was accepted at probability level P < 0.01 when data were not homogenous or 
normal after transformation (Underwood, 1981). These procedures apply to all ANOVA 
analyses described below. 

Two-way ANOVA was applied to assess the differences in the percentage of P. australis 
shoots with fish bite marks as well as the number of bites per shoot nearest to the reef between 
the two years (2001 vs 2016/17) and across the three sites at RIMR. The post hoc Turkey’s test 
further examined the combinations between years and sites to find where the difference lay. 

Consumption rates of P. sinuosa tethers nearest to the reef (0-15 m) at MMP, where P. 
sinuosa was found in both years, was analysed with two-way ANOVA to test for differences 
across the years and sites. The post-hoc Turkey’s test was further applied to compare the 
combinations between years and sites, to find out where the difference lay. 
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2.2 Objective 2 – Determine the feeding preferences and grazing rates on 
temperate seagrass and macroalgae 

To achieve the objective, the grazing rates, dietary preferences and composition of 
herbivorous fishes were determined in situ in the study region. Secondly, through laboratory 
experiments, the study intended to determine the effects of increasing sea temperature on grazing 
rates and preferences by the tropical herbivore S. fuscescens. 
 

2.2.1 In situ grazing experiments 

 
In situ consumption rate experiments were conducted to determine the current level of 

grazing and feeding preferences on seagrass and macroalgae in temperate seagrass meadows, 
using the tethering technique and underwater video cameras to identify the grazers. The study 
took place in December 2017 in temperate seagrass meadows situated close to limestone rocky 
reefs in Marmion Marine Park, where tethers comprising a range of potential food sources were 
placed in inshore seagrass meadows (at depths between 3 and 5 m) at three sites: Whitford’s 
Rock (310 47’ S, 1150 43’ E), Wreck Rock (310 48’ S, 1150 43’ E) and Wanneroo Rock (310 48’ 
S, 1150 43’ E) (Fig. 2.1, 2.2 E, F). Tethers were located in mostly monospecific meadows of P. 
sinuosa, with the presence of algae (Sargassum sp., Ulva sp., Ecklonia radiata), other species of 
seagrass (P. australis, Amphibolis antarctica, Halophila ovalis, Syringodium sp.) and sandy 
patches. For tethers, seagrass shoots (P. australis, Zostera nigricaulis) were collected from 
Woodman point, Fremantle (320 13’ S, 1150 74’ E). The macroalgae (Sargassum sp., Ecklonia 
radiata) were collected from the Marmion Marine Park, Iluka Beach (310 73’ S, 1150 71’ E). 
The water temperature was 19-200 C. 

Shoots of the two seagrass species and thalli of the two macroalgae species were tethered 
together to form 10 replicate seagrass / macroalgae tethers, which were deployed randomly 
within the 0-15 m of reef at each site to test for feeding preferences by herbivores (Mariani & 
Alcoverro, 1999; Alcoverro & Mariani, 2002; Kirsch et al., 2002; Tomas et al., 2005; Prado et 
al., 2007; White et al., 2011). Thirty seagrass shoots of similar medium size per each species and 
30 macroalgae thalli were used to construct tethers for deployment (Vergés et al., 2012). Each 
tether consisted of 5-6 shoots of P. australis, a number of shoots of Z. nigricaulis, one thallus of 
Sargassum sp., and one thallus of E. radiata (Fig. 2.9). Multiple shoots of seagrass were 
provided to keep biomass consistent across the species and similar to those of macroalgae. Prior 
to deployment, shoots and thalli were weighed to the nearest 0.1 mg, photographed, tied to sisal 
rope, and then embedded independently in seagrass beds (at 3-5 m depth) next to reef at each site 
(Mantyka & Bellwood, 2007). Out of 10 tethers deployed at each site, 5 were uncaged (treatment 
replicates) and 5 were caged (control), with a mesh size (0.6 cm2) that would exclude fish 
grazers (Fig. 2.10). The caged tethers were used as a control for losses from herbivorous fish. 
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Fig. 2.9. Seagrass (P. australis, Z. nigricaulis) and macroalgae tethers (Sargassum sp., E. 

radiata) prepared in the laboratory prior deployment. 
 

  

 
Fig. 2.10. The caged tethers of seagrass and macroalgae (control replicates) deployed in the 

study sites and covered by the net to exclude fish herbivory. 
 

The deployed tethers were retrieved in 24 hrs. The number of fresh fish bite marks on each 
species on each tether was recorded. In addition, the initial fresh weight of freshly collected 
seagrass and macroalgae appearing similar in size and without epiphytes was recorded to the 
nearest 0.1 mg after the removal of excess moisture by blotting on paper towel (Bennett & 
Bellwood, 2011; Vergés et al., 2012). The number of blots was standardized for each seagrass 
and macroalgae species depending on its water retention capacity (Capper et al., 2006). All 
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procedures were performed by the same person to ensure consistency across samples. The area 
of plant tissue consumed was measured in cm2 shoot-1 (or thallus) day-1 and converted to gDW 
m-2 day-1 (Kirsch et al., 2002), based on the measurements of this study. 

  

Underwater video cameras 
 
RUVs in underwater housings were used to film the species feeding on the assays in situ, 

without the presence of an observer. This was to ensure the plant material loss was due to 
herbivory and not any leaf / thallus damage caused by environmental factors or the conditions of 
deployment (Mallet et al., 2014; Lee et al., 2016). Two video cameras were attached to concrete 
blocks and placed on the seabed at each site, focusing on the deployed tethers (Michael et al., 
2013; Bell et al., 2019) (Fig. 2.11). Fishes near the tethers were recorded at each site for 2 – 3 
hrs straight after deployment (Hoey & Bellwood, 2009), between 09.00 and 13.00 h when the 
feeding rates are considered to be more intense (Zemke-White et al., 2002). From video footage, 
each fish recorded feeding on tethers was identified. 

 

  

  

  
Fig. 2.11. Photos taken from underwater video cameras filming seagrass (P. australis, Z. 

nigricaulis) and macroalgae tethers (Sargassum sp., E. radiata) deployed at study 
site. 
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Statistical analyses 
 

Statistical analyses were performed to determine the difference in the seagrass and 
macroalgae biomass removed by fish from the tethered P. australis, Z. nigricaulis, E. radiata 
and Sargassum sp. replicates deployed in situ within the three seagrass meadows. Since 
treatment in choice assays lack independence, a Friedman non-parametric test of ranks was run 
(Suarez-Jimenez et al., 2017). The loss of biomass data for four types of seagrass and 
macroalgae species offered in consumption rate assays in situ was analysed separately for each 
location to check if there was any significant difference in loss of biomass depending on the 
location. Friedman test was followed by a post hoc Wilcoxon signed-rank test to identify pairs of 
seagrass and macroalgae assays that differed significantly within each location. 
 

2.2.2 Mesocosm trials 

 

Experimental design 
 

Choice and no-choice experiments were planned to be conducted for S. fuscescens in the 
laboratory to study their dietary preferences and grazing rates under the current sea surface 
temperature conditions and those predicted in 100 years, based on: 

o the existing mean winter sea surface temperature in temperate waters of the western 
Australian coast (190C) (Pearce & Feng, 2007; Pearce & Feng, 2013; Smale & 
Wernberg, 2013); 

o the existing mean summer ocean surface temperature in temperate waters of the western 
Australian coast (220C) (Bureau of Meteorology, http://www.bom.gov.au); and 

o the mean summer SST predicted for the temperate region in 100 years (250C) (Lough, 
2008). 

Both experiments were based on using the herbivore S. fuscescens, which has been shown 
to consume seagrass and be suitable for aquaria experiments (Pillans et al., 2004). Also, the 
approach planned to use the two temperate seagrass species (P. australis and Z. nigricaulis), 
which are abundant in the temperate waters of the western coast of Australia (Kirkman & 
Walker, 1989; Kirkman, 1997; Carruthers et al., 2007), and two brown algal species (Sargassum 
sp. and E. radiata). 

Choice experiments were planned to generally follow those of Pillans et al. (2004) and 
Bryan (1975). Three fish were randomly chosen from the holding tanks and placed into each 
replicate aquarium for the treatment and temperature. The food (4 choices) attached to metal 
grids was then randomly placed in the treatment aquaria, and likewise, the paired control 
aquaria. The fish were left in the treatment aquaria for 48 hrs. It was assumed that the similar 
environmental conditions affected all replicates of both control and treatment. Biomass 
consumption was estimated as [(Hi x Cf/Ci) - Hf], where Hi and Hf were initial and final wet 
masses of tissue exposed to herbivores, and Ci and Cf were initial and final masses in control 
assays (Parker & Hay, 2005; Tomas et al., 2011). 

No-choice food experiments were initially planned to be conducted to compare the grazing 
rates of S. fuscescens on the four food types under the three temperatures. Compared to the 
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above choice experiment, it was planned to offer fish a single seagrass or macroalgal species, 
with macrophyte species and temperature forming the factors in the experiment (Bryan, 1975). 
 
Collection of food sources 
 

 Seagrass and seaweed species were collected from Woodman Point and Marmion Marine 
Park and maintained in flowing seawater tanks and used in feeding trials within 48 hrs of 
collection. Epiphytes were removed, where possible, to eliminate any confounding factors that 
could be introduced by variance in the type and abundance of epiphytes on the macrophytes. 
Seaweed and seagrass would be offered to fish under different temperatures simultaneously for 
feeding preference trials and separately  for grazing rates trials, paired with controls with the 
same food choice but no consumer to account for autogenic responses of food sources 
independent of the action of the consumers (Peterson & Renaud, 1989; Roa, 1992). 

Adult S. fuscescens were captured live from reef habitats and seagrass beds in Marmion 
Lagoon using hook and line, and corn for bait. Fish were handled firmly and carefully, taking 
care not to drop fish. Many fish were able to be classified as adults by visual estimate of length. 
Those classified as juveniles were released immediately into the water. To avoid any stress due 
to entanglement in the net, the net had a relatively small mesh size compared to the size of the 
target fish. Fish were retained in the water whilst in the net to minimise damage prior to handling 
them and placing them in transport containers. Barbless hooks as a form of capture were 
attempted, as they are considered to be one of the best forms of minimising damage to fish 
during collection (Dr. Roennfeldt, TAFE, personal communication). However, barbed hooks 
were mostly used, as they allowed to have a stronger hold on the fish and reduced the chance of 
losing it. To minimize the stress on the fish, they were taken immediately to an aerated holding 
tank (400 L) on board the vessel. Fish were then observed for changes in behaviour. Not more 
than two fish at a time were caught to avoid them waiting for too long before being placed into 
tanks on board.  

Fish were transported to the laboratory in an aerated plastic container (400 L, max 10 fish 
per collection) filled with sea water, supplied by bilge pump to allow constant change of 
oxygenated sea water in the tank (Fig. 2.12), and transferred to the aquarium facilities within 6 
hrs. It was initially planned to capture 250 fish in total (n = 45 fish for multiple choice 
experiments and n = 180 for no-choice experiments). However, these numbers were not 
achieved due to health issues experienced in the pilot study. In total, 22 fish were captured and 
used for the pilot study. The fish of the same size (TL > 20 cm) were used to obviate any feeding 
differences associated with size dominance (Capper et al., 2006). 
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Fig. 2.12. Transporting tank with an aerating system and S. fuscescens captured during the 

fishing field trip. 
 
Experimental procedures 

 
Once in the laboratory, fish were transferred to a flow-through holding (quarantine) tank 

filled with fresh sea water to acclimate them to tank conditions. Concrete blocks / pavers were 
used to form reef-like habitats in each tank (Fig. 2.13).The volume of each tank was 1000 L. 
New fish were isolated from the fish caught previously, to prevent introducing disease to already 
acclimated fish. During the acclimation period, fish were regularly observed for skin conditions, 
possible parasites, and behavioural issues. 

 

 
Fig. 2.13. Mesocosm facilities and holding tanks for feeding trials at Fremantle TAFE. Concrete 

blocks were used to create an artificial reef-like construction. 
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The choice experiment was conducted in 6 tanks simultaneously, with 3 adult S. fuscescens 
in each tank, and one control tank with control assays and no fish. For the feeding preference 
trials, 4 types of food sources – seagrass (P. australis, Z. nigricaulis) and macroalgae 
(Sargassum sp., E. radiata) species – were introduced simultaneously in each tank and left there 
for 48 hrs for fish to consume (Fig. 2.13). Seaweed and seagrass were attached to the metal grid 
and placed into each treatment and control aquarium simultaneously (Paul et al., 1990; Ojeda & 
Muñoz, 1999) (Fig. 2.14). At the end of the experiment, seagrass and seaweed material was 
removed with a fine mesh net, re-blotted dry and re-weighed (g) to determine the amount 
consumed for each macrophyte (Targett & Targett, 1990). Differences between initial and final 
wet weights of different types of seagrasses and macroalgae were used to calculate percent of 
material consumed over the 24 h period. The control replicates in which the seagrass and algal 
biomasses were placed in aquaria with no fish, and collected after the same length of time that 
the herbivory experiments, provided the ability to determine whether the algal species and the 
seagrasses lose weight differentially, and if they do, to account for this in the analysis of the 
herbivory experiments. The biomass loss determined for the control assays was subtracted from 
the loss of seagrass and macroalgae biomass in the experimental tanks. Mean values were 
calculated for adjusted biomass loss for each seagrass and macroalgae species across 6 tanks. 
The temperature was consistent across the tanks (19-200). 

 

  
Fig. 2.14. Seagrass shoots and macroalgae talli clustered together on metal grid to construct 

tethers and a set of food sources for the multiple-choice mesocosm experiment. 
 
Pilot trials 

 
Pilot trials were carried out at Fremantle TAFE facilities that have appropriate mesocosm 

and flow-through systems to undertake this study. The ‘system-acclimation’ period took from a 
few days to two weeks. Throughout this period, rabbitfish were supplied with small amounts of 
food every 1-2 days and monitored for feeding interest/behaviour and feeding-commencement. 
Commercial aquaculture marine pellets were used to feed fish, which were also supplemented 
with seagrass and macroalgae suspended in the tanks. Feeding commencement by the majority 
of fish was used to indicate that the fish were acclimated and ready for the trial. Only healthy 
fish were used in feeding experiments. 

The fish were purged for two days before the beginning of the pilot trial (Bryan, 1975; 
Goecker et al., 2005). In total, 19 fish were involved in the pilot trial. Fish were tested in groups 
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of three, as solitary fish were noticed to not eat until other fish were introduced into the tank 
(Bryan, 1975; Paul et al., 1990; Pillans et al., 2004; Capper et al., 2006). Only the choice trial 
was conducted at this stage. Video observations were conducted directly and with the use of 
GoPRO cameras during the first half of the day, between 09:00 am and 01:00 pm. GoPRO 
cameras were placed in the tank filming fish behaviour for 2 h consecutively in each tank.  

A no-choice grazing experiment, with four different food sources offered separately in 
different tanks, was not conducted due to the low effect of the multiple-choice trial and a lack of 
fish available for the experiment. 
 

Statistical analyses 
 

Statistical analyses were based on the seagrass and macroalgae biomass removed by fish 
from the tethered P. australis, Z. nigricaulis, E. radiata and Sargassum sp. replicates deployed 
in the testing tanks minus the biomass loss in the control replicates. Non-parametric Friedman’s 
test was applied to determine if there is a preference for grazing on different food sources 
offered to S. fuscescens in mesocosm multi-choice feeding trials. 

 

2.3 Permits and licences 

Ethic approval was obtained from the ECU Animal Ethics Committee for the observational 
study in the marine reserves, including field research, underwater visual censuses, filming and 
tethering experiments in situ (ECU AEC15072 “Tropicalisation of temperate seagrass 
meadows”), as well as the pilot grazing rates and dietary preference study on the tropical 
S.fuscescens in mesocosm facilities (ECU AEC18157 “Feeding preferences and grazing rates of 
tropical consumers in temperate seagrass meadows”). 

The relevant licenses were obtained from the Department of Parks and Wildlife, WA and 
Rottnest Island Authority to conduct the research at Marmion Marine Park and Rottnest Island 
Marine Reserve. The permits were obtained from the DPaW to collect seagrass and macroalgae 
for tethers and feeding trials from Marmion Marine Park (SWO18442, SWO19191, CE005471). 
Rottnest Island Research Permit (2016/279740) was obtained for the collection of shoots from 
seagrass species P. sinuosa and P. australis within seagrass meadows in Rottnest Island Marine 
Reserve and underwater video observation of fish. 

The relevant licence was obtained from the Department of Parks and Wildlife, WA (now 
Department of Biodiversity Conservation and Attractions) to take fauna for scientific purposes 
and, where authorised, keep it in captivity (Licence No. 08-001461-1). The permit from the 
Fisheries Department (now Department of Industries and Regional Development, Fisheries 
Division) allowed the collection of rabbitfish from the Marmion Marine Park (Exemption No. 
3013). The Licence to collect flora for scientific purposes within CALM lands (CE005673) was 
obtained from the Department of Biodiversity Conservation and Attractions, WA. 
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3. Results 

3.1 Level of grazing on temperate seagrass 

3.1.1 Fish bite rates 

 

Marmion Marine Park was the only region where fish bite marks were present on P. 
sinuosa shoots at all three sites and distances away from reef for both 2001 and 2016/17 (Fig. 
3.1). A significant year effect was found for the percentage of P. sinuosa shoots with fish bite 
marks between 2001 and 2016/17 (P < 0.0001), but there were two- and three-way interactions 
between year, site and distance (Table 3.1), indicating that the patterns across years, sites and 
distances were not consistent. 

 
Fig. 3.1. Mean (±SE) percentage of shoots with fish bite marks for P. sinuosa and P. australis at 

different distance from the rocky reef (0-15 m, 20-30 m, 40-60 m) at MMP and RIMR 
in 2001 vs 2016/17. N/S means that no seagrass was present and sampled at those sites. 
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To further assess the differences between years and distances from reef, 2-way ANOVA 
was performed for each site separately. A significant year effect was found at Whitford’s and 
Wreck Rock (P < 0.01 for both sites), but not at Boy in a Boat (P = 0.356) (Table 3.2). The 
percentage of shoots with bite marks differed significantly across distances from reef at 
Whitford’s and Boy in a Boat sites (P < 0.01), which was dependent on year (P = 0.0006 and P 
= 0.009 respectively). This is likely due to the consistently higher percentage of P. sinuosa 
shoots with fish bite marks near the reef in 2001, compared to far less consistent trends in 
2016/17. At Wreck Rock, no significant year difference was found for the percentage of P. 
sinuosa shoots with fish bite marks (P = 0.427), with no interaction between distance and year 
(P = 0.077). 

Turkey’s test showed that the percentage of P. sinuosa shoots with fish bite marks at 
Whitford’s and Wreck Rock changed significantly in 15 years for each distance from reef (P < 
0.001 for each combination). Turkey’s test showed that the distance factor was not consistent 
across sites (Table 3.2). At Whitford’s, all interactions between year-distance combinations were 
significantly different (P < 0.01), except for the 20-30 m vs 40-60 m distances from the reef in 
2001 (P = 1.0). At Boy in a Boat, in 2001, the percentage of P. sinuosa shoots with fish bite 
marks in the nearest to the reef zone differed significantly from the further from the reef 
distances (P < 0.01), and also from 20-30 m distance in 2016/17 (P = 0.0009). 

 
Table 3.1. Results of the three-way analyses of variance (ANOVA) assessing differences 

between three fixed factors: year, site within MMP, and three distances from reef 
for the percentage of P. sinuosa shoots with fish bite marks at MMP. Significant 
probabilities (highlighted in bold) were accepted at P < 0.01 as the data on the 
percentage of seagrass shoots with fish bite marks were not homogenous or normal 
after transformation. 

 
 DF Mean Square F Value P Value 

Site 2 3044.740 93.806 <0.0001 

Year 1 20533.500 632.625 <0.0001 

Distance from reef 2 1655.407 51.002 <0.0001 

Site x Year 2 4574 140.922 <0.0001 

Site x Distance from reef 4 312.490 9.627 <0.0001 

Year x Distance from reef 2 78 2.403 0.105 

Site x Year x Distance 4 254.75 7.848 0.0001 

Error 36 32.457 -- -- 

Corrected Total 53 -- -- -- 
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Table 3.2. Results of the two-way analyses of variance (ANOVA) assessing differences in the 
percentage of P. sinuosa shoots with fish bite marks between two time periods and 
three distances from reef at each site, within MMP. Significant probabilities (at P < 
0.01) are highlighted in bold. 

 
Site Source df Mean Square F Value P Value 

Whitford’s Rock Year 1 11453.915 432.725 <0.0001 

Distance 2 1468.502 55.479 <0.0001 

Year x Distance 2 385.278 14.555 0.0006 

Error 12 26.469 -- -- 

Total 17 -- -- -- 

Wreck Rock Year 1 18234.770 763.866 <0.0001 

Distance 2 21.765 0.911 0.427 

Year x Distance 2 75.935 3.181 0.077 

Error 12 23.871 -- -- 

Total 17 -- -- -- 

Boy in a Boat Year 1 22.646 0.921 0.356 

Distance 2 735.273 29.913 0.00002 

Year x Distance 2 171.404 6.973 0.009 

Error 12 24.579 -- -- 

Total 17 -- -- -- 

 
The number of fish bite marks per P. sinuosa shoot near the reef differed significantly 

across the years and sites at MMP (P < 0.0001) (Fig. 3.2, Table 3.3), where bite marks were 
recorded only nearest to the reef zone (0-15 m) in both years. However, there was an interaction 
between Year and Site. Turkey’s test revealed that bite marks per shoot increased between years 
at Whitford’s and Wreck Rock, but not at Boy in a Boat. At Whitford’s Rock, the average 
number of fish bite marks per shoot increased from 0.20 in 2001 to 1.51 in 2016/17, and at 
Wreck Rock from 0.15 to 1.08 (Fig. 3.2). The number of fish bite marks per P. sinuosa shoot 
was similar for Boy in a Boat across years (0.3 in 2001 vs 0.34 in 2016/17), with no significant 
difference observed (Turkey’s test, P = 0.679). 
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Fig. 3.2. Mean number (±SE) of fish bite marks per shoot on P. sinuosa and P. australis at 

different distances from reef (0-15, 20-30, 40-60 m) at MMP and RIMR in 2001 vs 
2016/17. N/S = not sampled as, in 2016, seagrass species were not available close to 
reef, and, in 2001, samples were taken only for the close to the reef transect, since the 
incidents of some herbivory were not found further from reef. 

 
Table 3.3. Two-factor analyses of variance (ANOVA) testing the differences in number of fish 

bite marks on P. sinuosa shoots at 0-15 m distance from reef at MMP in 2001 vs 
2016/17. Significant probabilities were accepted at P < 0.05 as the data on the 
number of fish bite marks were homogenous and normal after transformation. 

 
 DF Mean Square F Value P Value 

Year 1 2.637 1777.981 <0.0001 

Site 2 0.435 293.644 <0.0001 

Year x Site 2 0.640 431.734 <0.0001 

Error 12 0.001 -- -- 

Total 17 -- -- -- 

 
Bite marks on P. australis shoots were only consistently sampled across more than one site 

in both years within region at RIMR, and this was restricted to seagrass next to the reef (0-15 m) 
(Fig. 3.1, 3.2). The proportion of P. australis shoots with bite marks next to the reef (0-15 m) did 
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not differ between years (P = 0.211), but was highly variable across sites (P < 0.0001, Table 
3.4), ranging from 4 to 80% (Fig. 3.1). Similarly, number of fish bite marks on P. australis next 
to reef at RIMR did not differ between years (P = 0.224, Fig. 3.2, Table 3.5). However, the 
number of fish bite marks differed among sites (P < 0.0001), but this was dependent on years (P 
= 0.001). Turkey’s test revealed that the number of fish bite marks on P. australis shoots 
decreased slightly between years at Parker Point (0.50 in 2001 vs 0.28 in 2016) (P = 0.012) but 
did not change at Abraham Point (0.80 in 2001 vs 0.89 in 2016) (P = 0.159) (Fig. 3.2). 

 
Table 3.4. Results of the two-way ANOVA (Year x Site) assessing the differences in the 

variability of percentage of P. australis shoots with fish bite marks in the nearest to 
the reef distance at RIMR, in 2001 vs 2016/17. Values were significant with P < 
0.01. 

 
 DF Mean Square F Value P Value 

Year 1 48 1.846 0.211 

Site 1 1875 72.115 <0.0001 

Year x Site 1 108 4.153 0.075 

Error 8 26 -- -- 

Total 11 -- -- -- 

 
Table 3.5. Two-way analyses of variance (ANOVA, Year x Site) testing the variability in 

number of fish bite marks on P. australis in the next to reef zone across RIMR sites 
and both time periods. Values in bold were significant with P < 0.05. 

 

 DF Mean Square F Value P Value 

Year 1 0.007 1.734 0.224 

Site 1 0.576 142.690 <0.0001 

Year x Site 1 0.088 21.885 0.001 

Error 8 0.004 -- -- 

Total 11 -- -- -- 

 
In 2001, when both P. australis and P. sinuosa could only be sampled at MMP sites, the 

number of bites per shoot differed significantly between species (P = 0.024) but not between 
sites (P = 0.330) (Table 3.6, Fig. 3.2). The number of bites per shoot was greater in P. australis 
(1.20 – 1.95 fish bites per seagrass shoot) compared to P. sinuosa (0.20 – 0.30) (Fig. 3.2). 
Similarly, the percentage of seagrass leaves with fish bite marks sampled at MMP in 2001 
differed significantly between Posidonia species (P < 0.0001) but not between sites (P = 0.611) 
(Table 3.7, Fig, 3.1). In 2001, bite marks were generally higher on P. sinuosa shoots (14-31%) 
near reef (0-15 m) at MMP, compared to P. australis shoots (52-66 %) at the same location and 
distance from reef (Fig. 3.1). 

In 2016/17, both species could only be sampled at RIMR sites, where the number of bites 
did not differ significantly between species (P = 0.458) or sites (P = 0.381) (Table 3.6, Fig. 3.2). 
As for the percentage of seagrass leaves with fish bite marks at RIMR in 2016/17, bite marks 
were found on 36-51% of P. sinuosa shoots adjacent to the reef (0-15 m), compared to 21-51 % 
of P. australis shoots at the same location in 2016/17 (Fig 3.1). Two-way ANOVA showed the 



 
 

35 

 

significant difference between sites (P = 0.0006) but not species (P = 0.062) (Table 3.7, Fig. 
3.1). 

 
Table 3.6. Two-way ANOVA assessing the differences in the variability of number of bites per 

shoot in P. sinuosa vs P. australis at near-reef zone at three sites at MMP in 2001 
and at RIMR in 2016/17. Significant difference was accepted at P < 0.05. 

 

Year and region  DF Sum of Squares Mean Square F Value P Value 

2001, MMP Seagrass species 1 2.343 2.343 39.062 0.024 

Sites 2 0.243 0.121 2.027 0.330 

Error 2 0.120 0.060 - - 

Total 5 2.707 - - - 

2016/17, RIMR Seagrass species 1 0.052 0.052 0.829 0.458 

Sites 2 0.204 0.102 1.619 0.381 

Error 2 0.126 0.063 - - 

Total 5 0.382 - - - 

 
Table 3.7. Two-way ANOVA assessing the differences in the percentage of fish bite marks per 

shoot in P. sinuosa vs P. australis at near-reef zone at three sites at MMP in 2001 
and at RIMR in 2016/17. Values in bold are significant with P < 0.01. 

 

Year and region  DF Sum of Squares Mean Square F Value P Value 

2001, MMP Seagrass species 1 6346.888 6346.888 111.147 <0.0001 

Site 2 58.111 29.055 0.508 0.611 

Error 14 799.444 57.103 -- -- 

Corrected Total 17 7204.444 -- -- -- 

2016/17, RIMR Seagrass species 1 216.750 216.75 4.297 0.062 

Site 2 1548.750 774.375 15.354 0.0006 

Error 11 554.750 50.431 -- -- 

Corrected Total 14 2212.400 -- -- -- 

 

3.1.2 Direct measures of herbivory and production 

 
Direct estimates of P. sinuosa consumption based on tethering experiments in the near-reef 

zone (0-15 m) showed that grazing of seagrass by fish was highly patchy across sites and years, 
with grazing on this seagrass absent at RIMR in both years and very low in MMP in 2016/17 
(Fig. 3.3). Because of a high incidence of zero values, statistical tests have not been performed to 
test for differences across years. In all sites at MMP, the mean consumption values ranged from 
0.03 – 0.19 cm2 shoot-1 day-1 in 2001 compared to 0 – 0.008 cm2 shoot-1 day-1 in 2016/17 (Fig. 
3.3). These grazing rates accounted for 0 – 41 % of the productivity of P. sinuosa across the 
years and sites (Fig. 3.3). In 2016/17, when tethers were observed via video, no fish was shown 
biting P. sinuosa tethers, even when some consumption was observed at MMP. However, 
Pelates octolineatus, Pelsartia humeralis, Odax cyanomelax, Siganus fuscescens and Kyphosus 
cornelii were observed in P. sinuosa meadows. 
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In 2016/17, when P. australis was offered in tethers at sites in RIMR, the level of 
consumption on this seagrass was very low (0 – 0.12 cm2 shoot-1 day-1), accounting for 0 – 14 % 
of the productivity of the seagrass species (Fig. 3.3). Video footage showed that S. fuscescens, 
Parma victoriae, K. cornelii, Rhabdosargus sarba were present around the tethers, but no fish 
was observed biting on seagrass. 

 
Fig. 3.3. Mean (± SE) consumption rates (cm2 shoot-1 day-1) and production (cm2 shoot-1 day-1) 

of the seagrasses P. sinuosa and P. australis in 2001 and 2016/17 in MMP and RIMR. 
N/D = no data available. Zero indicates no fresh fish bite marks found on tethers. 

 

3.1.3 Herbivore abundance 

 
The composition of herbivorous fish in seagrass meadows adjacent to reefs varied 

considerably between 2001 and 2016/17 (Table 3.8). Only two fish species encountered within 
the seagrass meadows at MMP and RIMR were common for both years: S. fuscescens and K. 
cornelii. Compared to 2001, the abundance of S. fuscescens is slightly higher at MMP in 
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2016/17 (Table 3.8). The abundances of K. cornelii were slightly lower in 2016/17 across both 
locations. P. octolineatus and S. fuscescens dominated the fish communities in seagrass 
meadows in 2016/17, and Girella zebra and Kyphosus sp. were the most abundant in 2001. P. 
octolineatus, Pelsartia humeralis, Meuschenia sp. and Rhabdosargus sarba were absent from 
UVC in 2001. In 2001, Parma sp. was common at MMP sites and absent from those sites in 
2016/17. At RIMR, Parma sp. was encountered in low abundance in both years. Odax 
acroptilus, Scorpis sp. and Girella zebra were only recorded in 2001. 

Out of the fish species being discussed in the thesis, only Siganus fuscescens was 
considered tropical. 

 
Table 3.8. The abundance (mean ±SE) of herbivorous fish species surveyed using underwater 

visual censuses at MMP and RIMR (ind. per 400 m2) in 2001 and 2016/17. In 2001, 
fish counts were not performed for Parker Point site. Zeros indicate no fish 
encountered. 

 

Fish family Fish 
species 

2001 2016/17 
MMP RIMR MMP RIMR 

Whitf WR Boy AP SB Whitf WR Boy PP AP SB 

Terapontidae Pelates 
octolineatus 

0 0 0 0 0 4.6 
(3.5) 

160 
(58.5) 

0 20.6 
(20.7) 

0 0 

Pelsartia 
humeralis 

0 0 0 0 0 0 41.1 
(37.2) 

0 0 0 0 

Monacanthidae Meuschenia 
sp. 

0 0 0 0 0 0 1.5 
(1.5) 

0 0 0 0.7 
(0.7) 

Siganidae Siganus 
fuscescens 

0 0.83 
(0.8) 

0 0 0 0 0 38.1 
(38.8) 

2.3 
(1.6) 

0 0 

Sparidae Rhabdosarg
us sarba 

0 0 0 0 0 0 0 0 1.1 
(1.1) 

0.7 
(0.7) 

0 

Kyphosidae Kyphosus 
cornelii 

0 4.7 
(2.9) 

0 0.6 
(0.4) 

3.5 
(3.0) 

0 0 0 0 1.5 
(0.7) 

0 

Kyphosus 
sydneyanus 

1.0 
(0.4) 

3.5 
(3.0) 

0 0 0 0 0 0 0 0 0 

Labridae Odax 
acroptilus 

2.5 
(0.8) 

1.3 
(0.4) 

1.3 
(0.2) 

0 0 0 0 0 0 0 0 

Odax 
cyanomelax 

1.08 
(0.6) 

0 0 0 0 0 0 0 0 0 0 

Pomacentridae Parma sp. 4.3 
(1.4) 

5.08 
(1.1) 

0.6 
(0.4) 

0.3 
(0.2) 

0.6 
(0.4) 

0 0 0 0 0 0 

Scorpididae Scorpis sp. 0 0.08 
(1.1) 

0 0 0 0 0 0 0 0 0 

Girellidae Girella 
zebra 

0 0 0 1.3 
(0.8) 

8.6 
(4.6) 

0 0 0 0 0 0 

 
Based on the MaxN for each herbivorous fish species from video footage of tethered 

seagrass shoots in 2016/17, S. fuscescens was observed at all sites (up to 9.3), except Abraham 
Point at RIMR (Table 3.9). Only one individual was recorded feeding within a P. sinuosa 
meadow, which was at Whitford’s Rock, where it appeared to be targeting Sargassum sp. or E. 
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radiata present in the meadow, and occasionally seagrass. P. octolineatus had the highest MaxN 
(53.4), but only occurred at two sites and was rarely observed feeding on seagrass. A school of 
ca 40 individuals of P. octolineatus was seen only once biting seagrass within the meadow (but 
not the tethered shoots). Odax cyanomelax was observed in seagrass meadows at only two sites 
(MMP: 0.2 and 1.6) while both Parma victoriae and P. occidentalis were present only at two 
sites in RIMR (MaxN = 0.5 to 1.0). Both Parma species were observed around the deployed 
tethers, but were never observed biting them. K. cornelii (MaxN = 0.2-1.0) and Rhabdosargus 
sarba (MaxN = 0.2-3.8) were encountered in low abundance at four sites, but mainly at those in 
MMP. Meuschenia sp. was only encountered in seagrass meadows at Whitford’s Rock (MaxN = 
0.2). 

 
Table 3.9. The MaxN abundance of herbivorous fish species (mean number of individuals ±SE) 

in 2016/17, taken from video footage of tethered seagrass. Zeros stand for no fish 
recorded. 

 

Fish family Fish species 2016/17 
MMP RIMR 

  Whitf WR Boy AP PP SB 

Siganidae Siganus fuscescens 3.5 (0.8) 1.0 (0.4) 9.3 (8.1) 0 2.8 (1.5) 6.3 (2.9) 

Monacanthidae Meuschenia sp. 0.2 (0.2) 0 0 0 0 0 

Terapontidae Pelates octolineatus 3.3 (5.7) 53.4 (11.0) 0 0 0 0 

Pelsartia humeralis 0 1.4 (0.6) 0 0 0 0 

Labridae Odax cyanomelax 0.2 (0.2) 1.6 (0.3) 0 0 0 0 

Kyphosidae Kyphosus cornelii 0 0.2 (0.2) 0 0.3 (0.2) 1.0 (0.3) 0.2 (0.4) 

Sparidae Rhabdosargus sarba 0.2 (0.2) 0 0 0.3 (0.3) 3.8 (5.9) 0.2 (0.4) 

Pomacentridae Parma victoriae 0 0 0 0.5 (0.5) 1.0 (0) 0 

Parma occidentalis 0 0 0 0 0.6 (0.2) 0 

 

3.2 Feeding preferences and grazing rates of tropical consumers in temperate 
seagrass meadows 

3.2.1 Mesocosm trials 

 
The level of loss of biomass was extremely low for all seagrass and macroalgae species. 

No significant difference in biomass loss was determined for Z. nigricaulis, P. australis, E. 

radiata and Sargassum sp. (Friedman: 2 = 1, df = 3, P = 0.801), which is related to the almost 

absent grazing on all food choices. No fish was observed feeding using direct observations and 
underwater video filming. Most likely, the direct exposure of the tethers to some conditions of 
the mesocosm facilities (e.g. aeration system and water movements) facilitated deconstruction of 
tethers. Thus, in control tank, some minor losses (P. australis – up to 0.3 %, Z. nigricaulis – 1.2 
%, E. radiata – 0 %, Sargassum sp. – 0.4 %), similar to those in the experiment tanks, occurred 
from decomposition of the tethers (this material was included biomass at the end of the trial). 
The losses in control tank were removed from the treatment. 
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Fig. 3.4. The relative loss of biomass of P. australis, Z. nigricaulis, E. radiata, Sargassum sp. 

(mean, % ± SE) in aquarium-based feeding trials, to determine feeding preferences 
and grazing rates of S. fuscescens. 

 
Based on video footage, no fish was observed feeding on or displaying any interest towards 

the tethered seagrass or macroalgae deployed. Fish were mostly observed hiding under the 
concrete blocks, demonstrating no active swimming or social behaviour (Fig. 3.5). Individual 
fish were observed to leave their shelters, but they demonstrated extremely cautious behaviour 
and no feeding interest towards the deployed tethers. 

 

A  B  

C  D  
 

Fig. 3.5. S. fuscescens hiding in their shelters (A, B) for the whole duration of the direct 
observation or filming (most likely, for the whole duration of the feeding experiment), 
and individual fish (C, D) leaving their hides and staying motionless among deployed 
seagrass and macroalgae tethers. 
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3.2.2 Consumption rate experiments in situ 

 
The comparison of the relative loss of biomass (%) per tethered seagrass (P. australis, Z. 

nigricaulis) and macroalgae (Sargassum sp., E. radiata) species in three inshore locations at 
Marmion Marine Park in December 2017 revealed some patterns in grazing rates and dietary 
preferences of herbivorous fish species within temperate seagrass meadows (Fig. 3.6). The loss 
of biomass across tethered seagrass and macroalgae assays (accounting for autogenic changes) 

differed significantly at all locations: Wanneroo (Friedman: 2 = 20.16, df = 3, P = 0.0001), 

Wreck Rock (Friedman: 2 = 13.08, df =3, P = 0.004), and Whitford’s Rock (Friedman: 2 = 

14.52, df = 3, P = 0.002). The Wilcoxon signed-rank test for pair comparison was applied then 
to identify the pairs of seagrass and macroalgae assays that differed significantly within each 
location. Compared to Sargassum sp. (Fig, 3.6), biomass loss at Wanneroo and Whitford’s Rock 
was significantly higher for E. radiata (Wilcoxon: P = 0.006 for both locations), Z. nigricaulis 
(P = 0.006 for both locations) and P. australis (P = 0.008 and 0.014, relatively). The loss in 
biomass did not differ significantly among E. radiata, Z. nigricaulis and P. australis (Friedman: 

2 = 5.2, df = 2, P = 0.074). At Wreck Rock, biomass loss was significantly higher for E. 

radiata than Sargassum sp. (P = 0.008), P. australis (P = 0.006) and Z. nigricaulis (P = 0.025). 
 

 
Fig. 3.6. Mean biomass loss (%) (±SE) per each seagrass (P. australis, Z. nigricaulis) and 

macroalgae (E. radiata, Sargassum sp.) species in inshore seagrass meadows at MMP 
(December 2017). 

 
While biomass loss of P. australis did not differ from any other food source, the presence 

of separate fresh bite marks (a total of 2.08 cm2 of the leaf area consumed) on P. australis leaves 
(Fig. 3.7) indicated direct grazing by herbivorous fishes. The counting of fish bite marks for Z. 
nigricaulis was hampered due to the quantity of thin unevenly long leaves (Fig. 3.8). For E. 
radiata, fresh fish bite marks were found on 20-60 % of deployed kelp thalli (0.16 – 7.16 cm2 
lost per thallus (Fig. 3.9). The irregular shape of Sargassum sp. thalli made it difficult to identify 
and count possible bite marks. However, some clearly identifiable fish bite marks were 
registered on macroalgae thalli retrieved after deployment (Fig. 3.10). 
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Fig. 3.7. P. australis leaf retrieved after deployment at MMP, Whitford’s Rock location. 
 

  
Fig. 3.8. Example of Z. nigricaulis shoots clustered together to construct tethers, showing the 

low possibility to identify and count possible fish bite marks. 
 

  

  
     

Fig. 3.9. Example of fish bite marks on E. radiata thalli retrieved after deployment at MMP. 
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Fig. 3.10. Sargassum sp. thallus retrieved after the deployment and separate leaves of Sargassum 

sp. with some identifiable fish bite marks. 
 
Based on the video footage, no fish was observed feeding on the tethers in the feeding 

preference trials. Video revealed the presence of mostly carnivorous fish species (Halichoeres 

brownfieldi, Upeneichthys vlamingii, Parupeneus spilirus, Notolabrus parilus, Sillaginodes 
punctatus, Coris auricularis, Enoplosus armatus) that populate seagrass meadows and feed 
within seagrass targeting invertebrates or smaller fish (Fig. 3.11). Herbivorous-omnivorous fish 
species (S. fuscescens, P. octolineatus, Pelsartia humeralis) were less abundant in the area of 
research (Fig. 3.12). Fish rarely approached the tethers embedded or deployed at the edge of the 
seagrass meadows, expressing no obvious interest towards the tethered plants. 

 

  

  
Fig. 3.11. Some fish species observed in seagrass meadows at MMP (photos retrieved from the 

video footage). 
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Fig. 3.12. S. fuscescens in seagrass meadows at MMP (photos retrieved from the video footage). 
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4. Discussion 

4.1 Shifts in grazing on seagrass leaves in temperate seagrass meadows 

Grazing patterns in 2001 and 2016/17 were inconsistent, varying between seagrass species 
and locations. Based on the number of bites on seagrass leaves, rates of consumption increased 
for P. sinuosa while no similar pattern was found for P. australis. This was in contrast to greater 
consumption of P. australis compared to P. sinuosa in 2001. The higher P. sinuosa consumption 
in 2016/17 is likely explained by the changed herbivorous fish species composition. A number 
of species known to feed on seagrass, including P. octolineatus and S. fuscescens (Paul et al., 
1990; Fox & Bellwood, 2008; Al-Marzouqi et al., 2009; Fox et al., 2009; Lee et al., 2016) were 
more abundant during the sampling period in 2016/17 than 15 years earlier. Of those species, 
only the rabbitfish S. fuscescens is tropical. While this species was observed in low numbers in 
2001, it appears that it has formed a self-sustaining population in the temperate region of Perth 
and even more southward after the 2011 heat wave event (Hyndes et al., 2016). In the study area, 
S. fuscescens was usually observed in small groups (with a maximum of 10 fish per school). A 
large school of S. fuscescens (ca 100 individuals) was filmed once, and this occurred in a no-take 
zone (Boy in a Boat) at Marmion Marine Park (Fig. 4.1). The fish were observed targeting 
brown (predominantly Sargassum sp.) and red macroalgae that are abundant in the area. Similar 
feeding behaviour of Siganus was never observed within the vast seagrass meadows where 
macroalgae was less abundant. The in situ video observation provided clear evidence of S. 
fuscescens consuming Sargassum sp. and red algae in the seagrass meadow next to rocky reef. 
Despite a total of 68 hours of video footage captured across the sampling periods, no footage 
showed Siganus biting seagrass. Thus, this tropical herbivore may not have contributed 
markedly to any increase in seagrass consumption, because they prefer macroalgae over seagrass 
(Paul et al., 1990; Pillans et al., 2004; Fox et al., 2009; Bennett et al., 2015), and this study was 
conducted near reefs where macroalgae were abundant. 

The temperate limestone reefs in near-shore waters around Perth are characterised by 
productive and diverse macroalgal assemblages, including brown and red algae (Huisman & 
Walker, 1990; Wernberg et al., 2003; Kendrick et al., 2004; Smale et al., 2010). Research 
indicates that across the tropical to temperate gradient along the western coast of Australia, S. 
fuscescens consumes greater quantities of macroalgae, in particular red algae followed by brown 
algae (Avenant, 2018). This supports the findings of Pillans et al. (2004), who showed that red 
algae constitute the preferred food source for S. fuscescens, even though rabbitfish consume 
some seagrass and brown macroalgae. However, differences in the dietary composition of 
rabbitfish appear to correlate directly with the particular habitat and food availability in the 
habitat they occupy (Mantyka-Pringle & Bellwood, 2007; Fox & Bellwood, 2008; Hoey et al., 
2013). Thus, larger proportions of macroalgae were consumed by S. fuscescens close to reefs, 
where the preferred algal food resources were available to them. Alternatively, the proportion of 
seagrass consumed increases in areas away from reef, apparently due to the reduced availability 
of macroalgae in seagrass meadows (Avenant, 2018). Similarly, the results of in situ experiments 
conducted in MMP in 2017 suggest that seagrass was fed on in equal amounts as kelp, although 
the herbivore associated with that consumption is unknown. The fact that S. fuscescens does 
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consume seagrass in temperate waters (Avenant, 2018) suggests that they will shift towards 
seagrass-based diet once macroalgae become less abundant or unavailable. 

 

  

  
Fig. 4.1. A numerous school of S. fuscescens (ca. 100 individuals) filmed in a sanctuary site 

(Boy in a Boat, MMP) (photos retrieved from the video footage). 
 

Feeding preferences of herbivorous fish are highly influenced by nutritional characteristics 
and caloric content of macrophytes, in particular the C:N ratio that may determine leaf 
palatability and the attractiveness of the plant as a food source (Heck et al., 2000; Cebrian et al., 
2009; Prado & Heck, 2011; Jiménez-Ramos et al., 2017). This relationship between seagrass or 
macroalgal properties and feeding behaviour, however, can vary among fish species, as well as 
through space and time (Nowicki et al., 2018). As Pillans et al. (2004) demonstrated, the food 
preferences of S. fuscescens were not necessarily related to food quality. Instead, the selection of 
macrophytes by S. fuscescens was based on the rates of food assimilation, rather than on the 
absolute nutritional status of the algae. Thus, the values for both preference and assimilation 
efficiency of red algae in Pillans’ et al. (2004) study were higher than Zostera sp. and brown 
algae. The results of the consumption rates for the in situ experiments, conducted in 2017 at 
MMP, align with Pillans’ et al. (2004) results for Zostera sp. vs brown algae preference. In 
agreement with that study, consumption of Z. nigricaulis at MMP was generally higher than 
Sargassum sp., suggesting a lower preference for these brown algae. Deeper insights into the 
effects of nutrient concentration and secondary metabolites could add some insight into 
explaining the feeding choices of S. fuscescens in temperate regions. In addition to the structural 
and chemical properties of macrophytes, the presence or absence of epiphytes on seagrass and 
macroalgal tissue could contribute to the explanation of the herbivory patterns I observed and 
clarify the results on consumption rates and feeding choices of fish (Marco-Mendez et al., 2017). 

In relation to Z. nigricaulis consumption, an important aspect to be noted here concerns the 
specific environmental conditions (e.g. wave activity, current) and structural characteristics of Z. 
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nigricaulis (thin fragile leaves) that could contribute to deconstruction of the initially deployed 
material and its loss due to non-consumption related factors. No underwater video footage or 
direct observations was conducted to confirm that the biomass loss resulted exclusively from the 
herbivory on tethers, and not from an exposure to physical factors and pressure from the 
surrounding conditions of the local marine environment. However, clear grazing marks were 
observed on P. australis leaves, indicating that herbivorous fishes were actively feeding in on 
seagrass tethers. 

In contrast to Vergés et al. (2014b) and Wernberg et al. (2013, 2016), who found the 
poleward expansion of tropical rabbitfishes to have a major impact on highly productive kelp 
forests in both Western Australia and the Mediterranean, our research suggests that 
tropicalisation of temperate seagrass meadows has not had much effect on seagrass consumption 
yet. Following the rate of migration, the associated herbivory from these tropical species on 
seagrass increases slowly. The fact that little seagrass was consumed by herbivorous species in 
the temperate region supports the idea that no detrimental effect will be caused to seagrass 
communities in the nearest future, as tropical species establish their populations in the temperate 
waters. However, once algal abundance is greatly reduced and/or rabbitfish abundance increases 
greatly, seagrass consumption rates in temperate waters along the western Australian coast will 
likely come to resemble that in tropical Australia. 

High but variable abundances of S. fuscescens observed in 2016/17 suggest that this 
species has increased in abundance over the 15 years between studies, but these values are “snap 
shots” in two time periods. Siganus recruits were observed after the 2011 heat wave event and 
have since established self-sustainable populations (Lenanton et al., 2017), but there has not 
been ongoing monitoring of this or other tropical species in the region. It is possible that the 
population density has declined with the cooling of water temperatures during the 2016/17 
sampling (Cahill et al., 2019), and therefore densities of these herbivores were not at levels as 
high as those observed after the heat wave event. Because sea temperatures and the frequency of 
heat wave events are expected to rise (Pearce & Feng, 2013; Hobday et al., 2016), this will likely 
increase the pressure that the communities of tropical herbivores, including S. fuscescens, exert 
on temperate seagrass ecosystems (Hyndes et al., 2016). Most likely, the risk for seagrass 
assemblages will increase once tropical herbivorous species increase their density and 
consumption of temperate seagrasses. This impact will depend on the variety of abiotic and 
biotic factors, including the existing fish assemblages in the area, the abundance of tropical 
species, the availability of food, and the feeding preferences that invading species develop in 
response to the changed environmental conditions. 

 

4.2 Challenges encountered and suggestions for the future experiment design 

Several issues arose during the study related to in situ observations of feeding and aquaria-
based feeding preference experiments. The application of the in situ tethering can provide some 
valuable data when combined with underwater video observation, allowing the identification of 
fish communities and, hopefully, grazers targeting the tethered plant material. This approach has 
been used for numerous published studies on grazing on seagrasses and macroalgae (Mantyka & 
Bellwood, 2007; Bennett & Bellwood, 2011; Burkepile & Hay, 2011; Lefevre & Bellwood, 
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2011; Vergés et al., 2012; Michael et al., 2013). However, those studies have often occurred in 
the tropics where herbivorous fishes can be highly abundant (Meekan & Choat, 1997; Floeter et 
al., 2004; Bennett & Bellwood, 2011; Vergés et al., 2014b; Baskett & Schemske, 2018), or in 
regions like the Mediterranean Sea where the herbivore Sarpa salpa is highly abundant (Vergés 
et al., 2009; Prado et al., 2010; Steele et al., 2014). The lack of any video support for grazers 
biting tethers limits conclusions regarding tropicalisation when abundances of tropical species 
may not yet be high or may be very patchy in temperate regions. For future experiment designs, 
it is suggested to consider broad underwater video filming in the near-reef seagrass and 
macroalgal communities, where S. fuscescens are present. This video observation will help to 
determine the fish feeding behaviour and their preferences towards food sources naturally 
available to them in the temperate region. 

Regarding in situ preference experiments, our research demonstrated low efficacy of the 
tethering technique to quantify the impact of seagrass herbivory in situ. The limitations could 
relate to the food choices offered to fish as well as local biotic and abiotic conditions. The 
positioning of seagrass and macroalgae tethers embedded in seagrass meadows or placed within 
the bare sand at the edge of the existing seagrass meadow could influence the experiment (Fig. 
2.7, 2.11). The choice of food offered to the fish in form of tethers, did not differ from the food 
naturally available and usually abundant in the surrounding habitat, and therefore, the probability 
of fish targeting the tethers would be small. Herbivory pressure within seagrass meadows is 
known to vary depending on the exact location of the targeted shoots and their proximity to the 
edge of the meadow, with edge-positioned shoots experiencing the greater pressure compared to 
the centre-positioned specimens (Statton et al., 2015). Most likely, positioning the tethers outside 
of the meadow would make the food choices more “appealing” to grazers when examining 
herbivory in a particular seagrass meadow. 

The largest issue encountered in this study related to using live fish for the feeding 
preference experiments in mesocosms, despite this S. fuscescens being used in a similar way in 
Queensland (Pillans et al., 2004). The large number of deaths and the limited grazing on natural 
food sources in the current study suggest that the population in the Perth region is susceptible to 
adverse handling and husbandry effects. A number of remedial measures should be applied, 
including the design for catching fish, the fish handling procedure, and their acclimation to the 
artificial tank conditions. To maximise the survival rate of the fish captured from the ocean for 
this particular research project, the fishing and handling procedure were altered on every 
collection to adapt to the ongoing observations in the response of fish to capture handling in the 
field or in the mesocosm facilities. Thus, the fish transporter was equipped by the oxygen tank to 
continuously oxygenate the seawater while capturing and transporting fish. The period of time 
fish are in the transport container from the time they are caught to when they are transferred to 
the flow-through mesocosm system should not exceed 6 hours (B. Roennfeldt, personal 
communication). 

The rod and the line was found to be the best method of capture, provided the fish were 
being treated properly before and during transportation. The fishing gear and the experience of 
the angler determine where the hook embeds the fish (hopefully around the mouth, which causes 
less injuries for the captured fish). An enviro-net was used to remove the captured fish from the 
ocean water. When de-hooking the fish, they were left in the enviro-net and no wet cloth or 
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material touched the skin of fish as it removes the protective slime layer and increases the 
chance for fish to catch an infection. Additionally, the persistent use of barbless hooks could 
possibly increase the capture success of fish, reducing the possibility of tearing the mouth tissue 
when de-hooking the fish (see “Materials and Methods” section). In some cases, stomach bloat 
was observed in fish the day after capture. Two fish from this group did not survive, most 
probably resulting from the pollard that was used to attract fish in the ocean and bread used for 
bait, which is likely to have caused the stomach bloat. Capture methods and bait were modified 
by using kernels of corn, which were successfully used as bait for the remaining collection 
events. After being caught, fish were kept in the dark to reduce their stress. 

Despite all these precautions, at the beginning of the acclimation process, some fish were 
noticed carrying what appeared to be a severe fungus (plus perhaps bacteria) (B. Roennfeldt, 
personal communication), which had been able to target the skin and fins of the fishes (Fig. 4.2). 
The fish affected by this transmittable disease (9 specimens in total) were isolated from the 
healthy fish and attempts to rescue these fish were undertaken. Most likely, the skin damage 
resulted from the capture regime that enabled the infection that was later transmitted between 
fish before or during transportation to the acclimation tank. The affected rabbitfish were not used 
for the feeding trials, and after few days in quarantine tank, they were euthanized using the 
prescribed overdose (170mg/L) of Aqui-S, following pre-sedation (Aqui-S 15mg/L) in their 
experimental tanks. No diagnostic analyses were performed to specify the disease. 

 

  
Fig. 4.2. An individual S. fuscescens in the tank in mesocosm facilities. The fish is affected by 

some fungus or bacterial infection that targeted skin and fins of the fish. 
  
As revealed after the feeding trials, one of the fish had an infestation of parasitic copepods 

which led to its demise (B. Roennfeldt, personal communication). These infestations appeared to 
be contagious and created risk to the other stock. Following the treatment and removal of the 
unhealthy fish from the area, the system was washed thoroughly in freshwater and then sterilised 
using oxalic acid and bleach to remove parasitic copepods from the culture system and facility. 
Informed by this experience, future attempts of using live S. fuscescens for aquarium-based 
experiments, should dip wild-caught / collected fish and dietary items to remove parasites, 
before bringing them into any culture system. If this rabbitfish population is carrying various 
diseases naturally, and they are at the limit of their natural thermal range, then it will be very 
easy to trigger disease development. 

In addition to the described health issues, some aspects of social behaviour and biology of 
S. fuscescens should be further explored and considered when planning and setting the similar 
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feeding experiments in the future. S. fuscescens in the tanks showed a range of behaviour that is 
likely to have impacted the experiment. For example, evident bullying behaviour was noticed in 
a couple of tanks, when dominating males or females did not share hides (artificial reef 
constructions) with the other fish or kept chasing some other fish, leaving them with injuries and 
contributing to the risk of infection transmission. These aspects could influence the success of 
acclimation when keeping fish in tanks and the success of the feeding experiments when placing 
a certain number of fish together for one replicate. 

The ability to capture a sufficient number of rabbitfish from local temperate waters proved 
to be a challenge (n = 225, as planned initially) in a short period of time. Rabbitfish were present 
around the temperate algal reef in the study region in small schools (7-10 fish). The use of the 
standard fishing gear with hook and line and the necessity to promptly transport the captured fish 
to the mesocosm facilities, excluded the possibility to catch more than 10 individual fish per one 
catching event. 

In terms of the acclimation period, two weeks were proven to be enough for rabbitfish to 
acclimate for the mesocosm environment. The fish captured in November 2017 adapted and 
started feeding on aquaculture pellets after around 10-14 days. The fish caught later (January 
2018), when the ocean water was warmer, started to feed almost on the day after they were 
captured. While these observations are limited to two times, it is plausible that this tropical 
species is less susceptible to handling at warmer temperatures, and therefore, water temperature 
seems to be a valid factor to consider when designing similar experiments in the future. 

Surprisingly, fish in captivity demonstrated a clear interest towards the aquaculture plant-
based pellets, but no interest to the natural food sources. Throughout the acclimation period, fish 
were fed using pellets supplemented with seagrass and macroalgae suspended in the tanks (see 
“Materials and methods” section), but they were purged for two days before the experiment 
started. No pellets were offered to fish to supplement their menu of seagrass and macroalgae 
during the feeding trial. However, when pellets were offered to fish after the tethers were 
removed from the testing tanks, they displayed fierce competitive behaviour for the pellets. 
Their lack of interest towards the deployed tethers contradicts an initial assumption about the 
attractivity of tethered seagrass and macroalgae species as a food source to herbivorous-
omnivorous S. fuscescens within an artificial mesocosm environment. It is unlikely that this 
behaviour can be explained by the dependence on pellets that might have being developed in 
response to the feeding on pellets during the period of acclimation. For the majority of these fish, 
the acclimation period lasted for 6-10 days, which is unlikely to be sufficient for the 
development and consolidation of a sustainable feeding habit. 

A variety of aspects regarding fish biology and behavioural ecology, as well as the 
catching and handling regime and mesocosm environment, should be thoroughly evaluated and 
considered when planning the procedure for the feeding preference experiments with a particular 
fish species. While used successfully in feeding trials elsewhere, there were numerous issues 
using this species in temperate Western Australia. The experiments conducted with live S. 
fuscescens here should be considered as a pilot study that provides valuable knowledge and 
draws attention to the important aspects to consider for the future research in this area. 
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5. Conclusions 

Based on the current study, there is no clear evidence that the tropicalisation of S. 
fuscescens into temperate waters of Western Australia has altered temperate seagrass complexes 
yet. The results from the comparison between the current grazing rates on Posidonia sp. and 
those obtained in the same locations 15 years ago provided an important novel insight into the 
current pressure on temperate seagrass ecosystems via tropicalisation. Acknowledging the 
preference of the tropical S. fuscescens in regards of macroalgae in near-shore temperate waters, 
this research suggests their increasing contribution to the consumption of seagrass, but current 
consumption rates are relatively low. This observation supports the idea that the further 
expansion of the tropical herbivorous fish species and their establishment in the temperate reef-
associated communities will result in their increased pressure on temperate seagrass meadows. 
Thus, our research demonstrated an increase in consumption of P. sinuosa in 2016/17 compared 
to 2001. 

The increasing population size and associated herbivory from this tropical species on 
seagrass is likely to be gradual. While this tropical species was shown to have high levels of 
recruitment after the 2011 heat wave event (Lenanton et al., 2017), its ability to sustain high 
population size is likely to have been hindered by the colder conditions observed in the study 
region during the study period (Cahill et al., 2019). This is likely to have impacted the level of 
grazing by this species during the study period. However, predicted increasing sea temperatures 
over the coming decades are likely to enhance the species’ population to grow and therefore 
increase consumption on seagrass. Hyndes et al. (2016) predicted that the increase in abundances 
of tropical species such as S. fuscescens will ultimately lead those temperate seagrass systems 
shifting from detrital-base to grazing-base systems. 

The sampling program initiated in 2001 and repeated in 2016/17 provides base-line data 
and the opportunity to monitor and track the shift in abundances of tropical herbivores and 
resultant increases in grazing rates to test the above predictions. Furthermore, lesson learned 
from the capture, handling and husbandry of S. fuscescens in feeding trials in the current study 
will hopefully provide greater success for feeding preference experiments in the future. 
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