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Abstract

Land use regression (LUR) or regression kriging have been widely used to es-

timate spatial distribution of air pollutants especially in health studies. The

quality of observations is crucial to these methods because they are completely

dependent on observations. When monitoring data contain biases or uncertain-

ties, estimated map will not be reliable. In this study, we apply the spatial

outlier detection method, which is widely used in soil science, to observations of

PM2.5 and NO2 obtained from the regulatory monitoring network in Japan. The

spatial distributions of annual means are modelled both by LUR and regression

kriging using the data sets with and without the detected outliers respectively

and the obtained results are compared to examine the effect of spatial outliers.

Spatial outliers remarkably deteriorate the prediction accuracy except for that

of LUR model for NO2. This discrepancy of the effect might be due to the dif-

ference in the characteristics of PM2.5 and NO2. The difference in the number of

observations makes a limited contribution to it. Although further investigation

at different spatial scales is required, our study demonstrated that the spatial

outlier detection method is an effective procedure for air pollutant data and

should be applied to it when observation based prediction methods are used to
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generate concentration maps.

Keywords: land use regression, variogram, kriging, PM2.5, NO2

1. Introduction1

An accurate estimate of spatial distribution of air pollutants is the essential2

piece of information to evaluate the risks to human health and/or the air quality3

policy quantitatively. To obtain the distribution, the chemical transport model4

(CTM) has been extensively used in the field of air quality study (e.g., Em-5

mons et al., 2010; Chatani et al., 2014; Shimadera et al., 2016). CTM simulates6

physical and chemical processes including emission, advection, transformation7

and depositions, and reproduces the temporal and spatial variation of air pollu-8

tant concentrations by complicated and demanding computation. On the other9

hand, empirical methods are widely used in health studies (e.g., Briggs et al.,10

2000; Ross et al., 2007; Wu et al., 2014). This approach is often called land use11

regression (LUR) and develops regression model for observed data and predictor12

variables that may influence the air pollutant concentrations such as land use,13

traffic related variables, and/or meteorological parameters. The concentrations14

at the locations with no observations are predicted by the obtained regression15

model. In some studies, residuals of a regression model are interpolated by the16

kriging method and summed up to the predictions by the regression model (e.g.,17

Beelen et al., 2009; Pearce et al., 2009; Sampson et al., 2013; Araki et al., 2015).18

This method is called regression kriging or universal kriging. These approaches19

based on measurements are not computationally demanding compared to CTM20

especially for long-term statistics such as annual mean. On the contrary, the21

quality of observations is crucial to these methods because they are completely22

dependent on observations, which may contain biases and uncertainties.23

Spatial outliers can be defined as an observation that is unusual compared24

to their neighbours (Lark et al., 2012). In soil science, spatial outliers have been25

widely discussed in previous studies (e.g., Lark, 2000; Zhao et al., 2007; Sun26

et al., 2012), because such observations could lead to exaggerated estimates of27
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mapping uncertainty (Sun et al., 2012). In the air quality data, measurements28

might be spatially outlying due to influences of nearby emission sources, specific29

terrain of the surrounding area and/or biased monitoring devices due to mechan-30

ical or electrical malfunction. These observations represent the concentrations in31

limited spatial extent, or almost no extent, compared to non-outliers. Although32

the quality of observations from monitoring network is usually controlled by33

its respective protocol and erroneous values are eliminated consequently, some34

spatial outliers might still remain in the data set because they are difficult to35

identify by such usual procedure. Regression model obtained with observations36

including spatial outliers may generate an air pollutant map significantly af-37

fected by outliers, which could result in biased health effect estimates.38

One might argue that spatial outliers could be modelled properly by re-39

gression models with appropriate predictor variables. However, it is difficult to40

achieve because of the following reasons. Firstly, proper modelling of spatial41

variations of air pollutants at much finer spatial scale than the resolution of42

covariates could never be achieved. Secondly, observations in a data set should43

represent the concentrations in the similar spatial extent, or cannot be treated44

equivalently. Thirdly, biased observations can never be modelled using predictor45

variables. Therefore, spatial outliers should be properly treated before analy-46

ses. However, they have not been paid close attention to when observation-based47

method is applied to estimate spatial distribution of air pollutants.48

In this study, we apply the spatial outlier detection method that is used in49

soil science to the regulatory monitoring network data of PM2.5 and NO2 in50

Japan. The spatial distributions of these pollutants are modelled by LUR and51

regression kriging respectively using the data sets inclusive and exclusive of the52

detected outliers respectively and the obtained results are compared. The aim53

of this study is to examine the effect of spatial outliers on the estimation of air54

pollutant concentrations using regression methods and gain some insight into55

how to deal with observations that may include spatial outliers.56
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2. Methodology57

2.1. Study area and air quality data58

The study area includes the main islands of Japan (129.1-145.8◦E, 31.0-59

45.5◦N) but remote or small islands are excluded. Air quality observations are60

obtained from the database of the regulatory monitoring network in Japan. The61

monitoring stations are categorized into two types: road side stations and gen-62

eral environment stations. The former are located at crossroads or road sides to63

monitor air pollutants from automobile traffic, and the latter are located where64

they are not directly affected by specific emission sources. Only the general envi-65

ronment station data are utilized because of the difficulty in modelling the small66

scale spatial variation near the road sides with our potential predictor variables67

with spatial resolution of 500 m at the finest. The estimated maps with the data68

exclusive of spatial outliers could thus be interpreted as background or baseline69

concentration maps. The daily mean concentrations of PM2.5 and NO2 for the70

Japanese fiscal year 2013 (i.e., from April 2013 to March 2014) are used for the71

analysis. The number of the general environment stations under operation for72

PM2.5 and NO2 are 649 and 1295 respectively in the year 2013. The remarkable73

difference in number of stations is mainly due to the fact that the national air74

quality standard for PM2.5 in Japan was set in the year 2009 and development75

of the monitoring network started after that, which is more than 30 years after76

the development of the NO2 network. The difference in number of observations77

is evaluated discussed in terms of the effect of spatial outliers.78

The annual mean concentrations of PM2.5 remain approximately at the same79

level and those of NO2 marginally decrease in recent years in Japan. Therefore,80

the annual means of PM2.5 and NO2 are generally considered as stationary in81

these few years, and the results obtained in this study are not specific to the82

year to be studied.83

2.2. Data set84

The data sets used to construct grid data of predictor variables are pre-85

sented in Table 1 and described in detail below. The selection of datasets is86
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made principally in consideration of the key factors in the spatial distribution87

of air pollutants including emission, advection, transformation and deposition.88

The accessibility and usability are also considered. If necessary, we spatially ag-89

gregate or resample the original data to conform with a prediction grid and/or90

calculate the annual means for the fiscal year 2013 from the data with finer91

temporal resolution (e.g., monthly).92

For the determination of the resolution of the prediction grid, we calculate93

the distance to the nearest monitoring station for each station in the air quality94

data because the prediction grid with much finer resolution than the distances95

to the closest stations is not appropriate for a reliable estimation. The median96

of the nearest distance for PM2.5 and NO2 are 7.2 and 4.1 km respectively. In97

consideration of these distances, we construct a 4 × 4 km resolution prediction98

grid on the land area in the study area. The predictor variables are also prepared99

as a 4 × 4 km resolution grid data.100

As for the emission sources, build-up and agricultural area ratio in a grid101

cell are calculated from land use data obtained from Global Map Japan version102

1.2.1 downloaded from Geospatial Information Authority of Japan (GSI). The103

population data is obtained from the National Census of the year 2010 through104

the Statistics Bureau of Japan.105

Transport is one of the emission sources of NOx (NO + NO2) as well as106

PM2.5, and the distance to a road is provided as a predictor variable. The107

road network data is obtained from Global Map Japan version 2 downloaded108

from GSI. In this data, road types are classified into three categories: highway,109

primary and secondary. The distance to a road is calculated for each grid cell110

centroid for each of these three categories. Likewise, road length is obtained111

from the National Land Numeric Information Data downloaded through the112

Japanese Ministry of Land, Infrastructure, Transportation and Tourism. This113

road length data is classified into 10 categories depending on the road width.114

We reclassify them into three new categories: road A (road width ≥ 19.5 m),115

road B (13 ≤ road width < 19.5 m) and road C (5.5 m ≤ road width < 13 m).116

Only road B and C are provided as predictor variables because most grid cells117
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in the study area have no value of road A.118

When typical land and sea breezes dominated, polluted air parcels are trans-119

ported from industrial or urban areas in coastal regions to inland areas and120

O3 concentrations increase via a photochemical reaction during transporta-121

tion (Kannari and Ohara, 2010). A portion of PM2.5 is also formed via a122

photochemical reaction. Therefore, we use distance to coastline as a predictor123

variable for PM2.5. This distance is calculated for each grid cell centroid as the124

nearest straight-line distance to coastline, which is obtained from Global Map125

Japan version 2.126

The relationship between the ground-level concentrations of PM2.5 and satel-127

lite based aerosol optical depth (AOD) has been widely investigated and used128

to estimate the spatial distribution of PM2.5 (e.g., Wang and Christopher, 2003;129

van Donkelaar et al., 2010). AOD is also utilized as a predictor variable for LUR130

models (e.g., Kloog et al., 2011; Mao et al., 2012; Xie et al., 2015). We obtain131

daily AOD (500 nm) from Japan Aerospace Exploration Agency (JAXA) Satel-132

lite Measurements for Environmental Studies (JASMES) products courtesy of133

JAXA/Tokai University.134

As for the meteorological parameters, we utilize daily mean observations135

of precipitation, temperature and wind speed from Automated Meteorologi-136

cal Data Acquisition System (AMeDAS) maintained by Japan Meteorological137

Agency. The monitoring stations of AMeDAS are densely and homogeneously138

distributed. The number of stations monitoring precipitation, temperature and139

wind speed in the study area are 1235, 843 and 871 respectively. The mean dis-140

tance to the nearest neighbouring station is approximately 16 km with the range141

from 1 to 42 km for the three parameters. We interpolate the measurements142

of each of the parameters by ordinary kriging to obtain 4×4 km resolution grid143

data.144

Aikawa et al. (2010) observed negative correlation between longitude and145

particulate sulfate in Japan, which is one of the constituents of PM2.5, and re-146

produced this longitudinal gradient by chemical transport model. Shimadera147

et al. (2016) also showed the longitudinal gradient both in the observed and148
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simulated concentrations of PM2.5. In both studies, the influence of long range149

transport from the Asian continent was suggested. Therefore, longitude is pro-150

vided as a potential predictor variable for PM2.5.151

2.3. Spatial outlier detection152

We use the spatial outlier detection method proposed by Lark (2000, 2002)153

to identify spatial outliers.154

Firstly, the data are checked if transformation is necessary. We follow the155

method proposed by Rawlins et al. (2005); octile skewness (OC) (Brys et al.,156

2004) is calculated and if it is smaller than -0.2 or larger than 0.2, then natural157

logarithm transformation is applied. Octile skewness is a measure of asymmetry158

that is insensitive to outlying values (Rawlins et al., 2005), obtained by159

OC =
(Q0.875 −Q0.5) − (Q0.5 −Q0.125)

Q0.875 −Q0.125
, (1)

where Qq is q-quantile of the data. Next, variogram is estimated using Math-160

eron’s estimator (Matheron, 1962),161

2γ̂M (h) =
1

N(h)

N(h)∑
i=1

{
z(xi) − z(xi + h)

}2
, (2)

where z(xi) is an observed value at location xi, i = 1, 2, ..., N(h), h is a separa-162

tion vectors. We set the cut-off distance to 80 km consisting of 15 lags (meaning163

that each lag width is approximately 5 km) with the intention to detect spatial164

outliers at a similar spatial scale as our prediction grid size of 4 km. Spherical165

and exponential models are fitted to the estimated variogram by weighted least166

squares, and one model is selected based on the residual mean square from the167

fitting (Lark, 2000). Leave-one-out cross validation is then carried out with the168

selected model. In this method, one measurement point is removed and then169

the concentration at that point is predicted by using the rest of the points. This170

procedure is repeated for all measurement points. The statistic θ(x) is defined171

as172

θ(xi) =

{
z(xi) − Ẑ(xi)

}2
σ2(xi)

, (3)
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where Ẑ(xi) is the kriged estimate and σ2(xi) is an associated kriging vari-173

ance (Lark, 2000). If the variogram is correct, θ(x) will be distributed as χ2
174

with one degree of freedom and the median of θ(x) is 0.455 (Lark, 2000). The175

upper and lower confidence limit for the median of θ(x) is calculated using176

variance,177

σ2
θ̃

=
1

8nf(x̃)2
, (4)

where f(x̃) is a probability function of θ(x) with a sample of 2n+ 1 data (Lark,178

2000). If the median of θ(x) is inside a 95% confidence interval, the Math-179

eron’s estimator is used during the following steps. Otherwise, it is significantly180

influenced by spatial outliers and robust estimators are used instead.181

We use three robust estimators (Lark, 2000, 2002; Rawlins et al., 2005): The182

first is Cressie and Hawkins’ estimator (Cressie and Hawkins, 1980),183

γ̂CH(h) =

{
1

N(h)

N(h)∑
i=1

∣∣∣z(xi) − z(xi + h)
∣∣∣ 12}4

0.457 +
0.494

N(h)
+

0.045

N2(h)

. (5)

The second is Dowd’s estimator (Dowd, 1984),184

2γ̂D(h) = 2.198

{
median

(∣∣∣z(xi) − z(xi + h)
∣∣∣)}2

, (6)

where 2.198 is a scale estimator, and the third is Genton’s estimator (Genton,185

1998),186

2γ̂G(h) =

(
2.219

{∣∣∣yi(h) − yj(h)
∣∣∣; i < j

}
(H2 )

)2

, (7)

where 2.219 is a scale estimator, yi(h) = z(xi)−z(xi+h), i = 1, 2, ..., N(h) and187

H is integer part (n/2) + 1.188

Model fitting and selection is carried out for each estimator in the same189

way for the Matheron’s described above. The median of θ(x) is obtained for190

each estimator by leave-one-out cross validation. The robust estimator with a191

median value of θ(x) closest to 0.455 is selected.192

Rawlins et al. (2005) classified an observation as a spatial outlier (large) if193
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the standardized kriging error,194

SKE =
Ẑ(xi) − z(xi)

σ(xi)
, (8)

is less than −1.96, that is, if it falls below the lower 95% confidence limit.195

Because air quality data may contain both large and small outliers, we identify196

an observation as a spatial outlier if θ(xi) i.e., squared SKE, is larger than 3.84.197

2.4. Application of spatial outlier detection method198

We apply the spatial outlier detection method to every daily mean value199

throughout a year and exclude the identified spatially outlying daily means200

from the data set. The annual means are calculated from these outlier removed201

daily values for each of the monitoring stations and the number of effective202

daily values for each station is counted as well. The annual means with the203

data coverage of more than 250 days a year remain in the data set, but others204

are discarded to ensure the temporal representativeness. The remaining annual205

values are in turn processed by the spatial outlier detection method again and206

the identified outliers are removed. This is required because these annual means207

are not automatically assured to be exclusive of spatial outliers especially when208

a certain number of daily values are removed. The procedure described thus far209

has an advantage of correcting annual means in addition to removing outlying210

values, which would not be possible when the spatial outlier detection method211

is applied only to annual means. In addition, annual means are also calculated212

from the daily means including the detected outliers. In this case, the threshold213

value of the data coverage of more than 250 days a year is also applied. The214

data excluding spatial outliers as well as the raw annual mean data, which215

may include spatial outliers, are provided for the analyses to evaluate the effect216

of spatial outliers. The two data sets, one including spatial outliers and the217

other excluding them, are hereinafter referred to as the inclusive data and the218

exclusive data respectively.219
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2.5. LUR modelling and regression kriging220

We build LUR models in a similar way as Araki et al. (2015). Candidates for221

predictor variables of linear regression models for each pollutant are presented222

in Table 2 with the pre-specified direction of effect according to the physical or223

chemical relationship between the pollutants and the predictor variables (Beelen224

et al., 2009). A linear regression model is developed using backward stepwise225

procedure to select the significant variables (Hengl, 2007). The selected vari-226

ables that have coefficients that conformed to the pre-specified direction of effect227

are retained in the final linear regression model, but others are discarded (Bee-228

len et al., 2009). The residuals of the LUR model are interpolated by ordinary229

kriging. Empirical variogram of the residuals is obtained by Matheron’s estima-230

tor with a cut-off distance of 80 km consisting of 15 lags in consideration of the231

resolution of our prediction grid size of 4 km. Spherical and exponential models232

are fitted to the estimated variogram by weighted least squares, and one model233

is selected based on the residual mean square from the fitting (Lark, 2000).234

The concentrations of pollutants are transformed to a natural logarithmic scale235

before analysis, and the predictions are back transformed after analysis. This236

procedure has the advantage that predicted concentrations are positive, which237

is found not to be the case when analyses are performed without transforma-238

tion (Beelen et al., 2009).239

2.6. Evaluation240

For evaluating the effect of spatial outliers, we carry out leave-one-out cross241

validation and compute root mean squared error (RMSE) and r2 between the242

predicted and measured values as indicators of the prediction accuracy. RMSE243

should be as small as possible. In the case of the exclusive data, the results244

at every point are used to calculate the indicators. In the case of the inclusive245

data, on the other hand, only the results at non-outlying points are used to246

compute the indicators. That is, the prediction accuracy at non-outlying points247

is assessed using non-outliers as well as spatial outliers, but accuracy at spatially248

outlying points are not considered. When the corresponding indicators differ249
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between the two cases, the difference can be interpreted as the effect of spatial250

outliers on the quality of prediction.251

The difference is statistically evaluated using standard F -test, that evaluates252

whether the two cases have the same variance, i.e. RMSE, assuming that the253

mean error (ME) are the same (Hengl et al., 2015). The ME of the two cases254

are evaluated by standard t-test if they are the same (Hengl et al., 2015).255

Data analysis is carried out using R statistical software 3.2.5 (R Core Team,256

2016) with the raster package (Hijmans, 2015) for the integration and construc-257

tion of the grid data of predictor variables and with the gstat package (Pebesma,258

2004) for the performance of kriging.259

3. Results260

3.1. Spatial outlier detection261

The results of the spatial outlier detection are presented in Table 3. The262

number of valid observations in the inclusive and exclusive data is 500 and 457263

respectively for PM2.5, and 1278 and 1155 respectively for NO2. Thus, the num-264

ber of spatial outliers in the inclusive data is 43 and 123 for PM2.5 and NO2265

respectively. The number of monitoring locations where annual mean observa-266

tions of PM2.5 and NO2 are simultaneously detected as spatial outlier is 5, and267

no clear correlation in the locations of outliers between PM2.5 and NO2 is rec-268

ognized. The ratio of spatial outliers are similar between the two pollutants: 8.6269

and 9.6% for PM2.5 and NO2 respectively. The distributions of the spatial out-270

liers and non-outliers for both pollutants are presented in Fig. 1. Although the271

ratio of the detected spatial outliers is higher in the lower and higher concentra-272

tions, they are generally distributed throughout the range of the concentrations273

for both pollutants. That is, some observations in midrange in the data are de-274

tected as spatial outliers. This can be realized because spatial relationship and275

dissimilarity of observations in neighbourhood areas are considered: absolute276

differences in concentrations between observations are evaluated based on their277

relative distances in kriging framework. This result demonstrates the advantage278
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of the method applied here over a statistical method where spatial positions are279

not considered.280

The comparison of the annual means between the inclusive and exclusive281

data are given in Fig. 2. RMSE denotes root squared mean error and MAE282

denotes mean absolute error. The differences between the inclusive and exclu-283

sive data are basically small for most of the values, but remarkable for some284

observations.285

3.2. PM2.5286

The retained predictor variables and their coefficients, and statistical indi-287

cators for PM2.5 for each of the two data sets are given in Table 4. Distance288

to highway is retained in the final regression models, but other traffic related289

variables such as distance to primary/secondary road and road length B/C are290

discarded. On the other hand, the meteorological variables such as precipi-291

tation, temperature and wind speed are all retained in the models. AOD is292

discarded during the backward stepwise procedure in spite of some successful293

applications in LUR modelling (e.g., Kloog et al., 2011; Mao et al., 2012; Xie294

et al., 2015). We calculate annual mean AOD by simply averaging daily values295

and missing values are omitted from the calculation. Consequently, an aver-296

aged value at a pixel with a lot of missing daily values may not appropriately297

represent the annual mean. Moreover, calibration might be necessary to better298

correlate with PM2.5 concentrations because the relationship between AOD and299

PM2.5 concentrations can vary over space and time (Kloog et al., 2012). The300

retained variables are the same for the both data sets, although no restriction is301

implemented to select the same variables. The coefficients of the variables are302

generally similar to the corresponding ones in the other data set.303

Empirical and fitted variograms of the residuals of LUR models for both data304

are given in Fig.3. The clearer spatial correlation is identified for the exclusive305

data set. The semivariance (γ̂(h)) at the corresponding distances is larger for306

the inclusive data than that for the exclusive data.307

The scatter plots of the predicted and observed concentrations obtained by308
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cross validation are presented in Fig. 4. The left and right panels are obtained309

with the inclusive and exclusive data respectively. The upper and lower panels310

are the results by LUR model and regression kriging respectively. The light and311

dark dots represent non-spatial outliers and spatial outliers respectively. RMSE312

and r2 between the predicted and observed values for non-outlying points are313

presented in each panel.314

Spatial outliers increase RMSE by 17% and decrease r2 by 0.07 for the315

predictions by LUR model, and increase RMSE by 40% and decrease r2 by316

0.15 for the predictions by regression kriging. The t-test results show that317

the differences in ME between the two cases are not statistically significant318

(p > 0.05) both for LUR model and regression kriging. The F -test results319

indicate that the differences in RMSE between the two cases are statistically320

significant at the 5% level both for LUR model and regression kriging. These321

results indicate that spatial outliers degrade the prediction quality of LUR as322

well as regression kriging. No remarkable over or under estimation is recognized323

for the results obtained with the exclusive data.324

The spatial distribution of PM2.5 is estimated by LUR and regression kriging325

respectively, for each of the data set. ME and absolute mean error (AME)326

between the estimation with inclusive and exclusive data are calculated for LUR327

and regression kgiging respectively. ME is 0.3 and AME is 0.4 µg m−3 for LUR,328

and ME is 0.1 and AME is 1.1 µg m−3 for regression kriging. These values329

are biases in the estimations brought by spatial outliers. Fig. 5 illustrates the330

spatial distribution of PM2.5 predicted by regression kriging with the inclusive331

and exclusive data respectively. The locations of the detected spatial outliers332

are given in these maps. These maps share features in common with those333

obtained by LUR (not shown here). The estimation map obtained using the334

exclusive data is more smoothed than that using the inclusive data due to the335

removal of spatial outliers.336
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3.3. NO2337

The retained predictor variables and their coefficients for NO2 for each of the338

two data sets are given in Table 5. The retained variables in the final model are339

the same for both data sets, although no constraint is imposed to select the same340

variables; all the potential predictor variables are retained except for distance341

to highway and road length C. The coefficients of the predictor variables are342

similar to the corresponding ones in the other cases.343

Empirical and fitted variograms of the residuals of LUR models for the two344

data sets are given in Fig. 6, where the spatial correlation is clearly identified.345

Semivariance at the corresponding distance is generally similar between the two346

data sets, but that for the exclusive data is smaller.347

The scatter plots of the predicted and observed concentrations of NO2 ob-348

tained by cross validation are given in Fig. 7. The left and right panels are349

obtained with the inclusive and exclusive data respectively. The upper and350

lower panels are the results using LUR model and regression kriging respec-351

tively. The light and dark dots represent non-spatial outliers and spatial outliers352

respectively. RMSE and r2 between the predicted and observed values only for353

non-outlying points are presented in each panel.354

Spatial outliers increase RMSE by 3% and decrease r2 by 0.01 for the pre-355

dictions using LUR model, and increase RMSE by 19% and decrease r2 by 0.06356

for the predictions using regression kriging. The t-test results show that the dif-357

ferences in ME between the two cases are not statistically significant (p > 0.05)358

both for LUR model and regression kriging. The F -test results indicate the359

difference in RMSE between the two cases are statistically significant at the 5%360

level for regression kriging, but not for LUR model. These results indicate that361

the spatial outliers provide limited influence on the estimation by LUR model362

but rather degrade the quality of prediction of regression kriging. From the363

result obtained by regression kriging with the exclusive data, no over or under364

estimation is recognized.365

The spatial distribution of NO2 is estimated by LUR and regression kriging366

respectively, for each of the data set. ME and AME between the estimation367
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with inclusive and exclusive data are calculated for LUR and regression kriging368

respectively. ME is 0.1 and AME is 0.1 ppb for LUR, and ME is 0.2 and369

AME is 0.6 ppb for regression kriging. The spatial outliers cause these biases370

in the estimations. Fig. 8 illustrates the spatial distribution of NO2 predicted371

by regression kriging with the inclusive and exclusive data respectively. These372

maps also show the locations of the detected spatial outliers. These maps share373

features in common with those obtained by LUR (not shown here). There is374

little qualitative difference in the predicted maps.375

4. Discussion376

4.1. Difference between PM2.5 and NO2377

Although the spatial outliers influence the prediction quality both of PM2.5378

and NO2, there are some differences in the effects. First, spatial outliers degrade379

the prediction accuracy of LUR model for PM2.5, but not for NO2. Second, spa-380

tial outliers considerably increase semivariance at the corresponding distance for381

PM2.5, but marginally for NO2. Third, spatial outliers deteriorate the prediction382

quality of regression kriging for PM2.5 more than that for NO2.383

Some of the spatially outlying observations of PM2.5 are outlying in the384

regression model as well (upper right panel of Fig 4). These outlying values385

worsen the statistical indicators of the LUR model. On the contrary, the spatial386

outliers of NO2 are not necessarily outliers in the regression model (upper right387

panel of Fig 7). Hence, spatial outliers do not affect the resulting LUR model388

and, consequently, the statistical indicators of LUR models are almost identical389

between the inclusive and exclusive data as shown in Fig 7. Also, the difference390

in the estimation maps is minor. Similar LUR models of NO2 result in similar391

residuals, and the variograms of the residuals are generally alike. On the other392

hand, the better LUR model of PM2.5 with the exclusive data result in the more393

distinct spatial dependency in the residuals of the regression model. This leads394

to larger difference in the quality of prediction of regression kriging for PM2.5395

than that for NO2.396
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There are differences in characteristics between PM2.5 and NO2. NO2 is a397

single substance, while PM2.5 consists of various substances such as elemental398

carbon, organic carbon, sulfate, nitrate, and metal compounds. Because of this399

feature, positive and negative artifacts have been reported (e.g., Chow et al.,400

2010; Liu et al., 2014). Therefore, observations of PM2.5 could be more biased401

than those of NO2.402

The feature of the spatial distribution of the two pollutants is somewhat403

different because of their inherent characteristics. High concentration areas for404

PM2.5 are widely distributed (Fig. 5). On the other hand, those for NO2 are405

focused in urban areas such as metropolitan Tokyo and along major highways406

(Fig. 8) generally reflecting the distribution of emission sources, and the spatial407

variability at a local scale is larger than that of PM2.5. Hence, the spatial408

resolution of 4 km could be better suited for PM2.5 than for NO2 and the effect409

of spatial outlier for NO2 might be different with a finer spatial resolution. These410

differences in characteristics between PM2.5 and NO2 might contribute to the411

discrepancies in the effects of the spatial outliers on the prediction quality of412

LUR model and regression kriging.413

Regarding the temporal trend in a year, both PM2.5 and NO2 show gen-414

eral tendency of higher concentrations in winter possibly due to frequent stable415

conditions. The concentrations of PM2.5 increase via a photochemical reaction416

during summer, which is not the case for NO2. Also, the contribution of long417

range transport from the Asian continent to PM2.5 concentrations in Japan418

is substantial particularly in winter and spring, which is attributed in part to419

higher concentrations of PM2.5 in these seasons (Shimadera et al., 2016). On the420

other hand, the contribution to NO2 is negligible throughout a year (Shimadera421

et al., 2016). Thus, the temporal trend of PM2.5 is not consistent with that422

of NO2. However, we use annual means and the dissimilarity of the temporal423

variability in a year between PM2.5 and NO2 might be averaged out and have424

limited influence on the effect of outliers studied.425
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4.2. Number of observations426

The other remarkable difference between PM2.5 and NO2 is the number of427

valid observations in the study area; 500 for PM2.5, while 1278 for NO2. In order428

to examine whether the number of observations differentiate the effect of spatial429

outliers on the quality of prediction, we extract the NO2 monitoring stations430

where PM2.5 is monitored simultaneously from the inclusive and exclusive data,431

and obtain the statistical indicators by leave-one-out cross validation for each432

of the two data sets.433

The number of NO2 observations in the subset are 478 and 402 for the434

inclusive and exclusive data respectively. These numbers are smaller than the435

corresponding ones of PM2.5. This is because some of the stations monitor436

only PM2.5. The results are given in Table 6. The retained variables in the437

final models are slightly different from those obtained by each of the full NO2438

data sets. Spatial outliers increase RMSE by 7% and decrease r2 by 0.02 for439

the predictions by LUR model, and increase RMSE by 32% and decrease r2440

by 0.08 for the predictions by regression kriging. The marginal influence of441

spatial outliers on the indicators of LUR model and moderate effect on those442

of regression kriging are also observed with the full data set as described in443

4.1. Therefore, the number of observations has limited influence on the effect444

of spatial outliers and the discrepancies in the effects between PM2.5 and NO2445

is not explained by the difference in the number of observations.446

4.3. Further requirements447

We applied the spatial outlier detection method to a large number of ob-448

servations and successfully detected spatial outliers. A sufficient number of449

observations are necessary for the application of this method because it is based450

on variogram analysis. With insufficient number of observations, variogram451

would not appropriately capture the spatial dependency in the domain of inter-452

est, which could lead to a false detection of spatial outlier. There is no threshold453

or guideline for the necessary number of observations to estimate proper vari-454

ogram; it generally depends on each specific case. Therefore, it should be applied455

17



carefully to a smaller number of observations, which is often the case with epi-456

demiological studies for evaluating the individual exposure level at an urban or457

intra-urban scale. Meanwhile, spatial outliers could be more influential for data458

with a smaller number of observations and they should be excluded to gain an459

overall mapping accuracy as long as appropriate detection is possible. Thus,460

further investigation and evaluation of the application to a smaller network at461

smaller spatial scale is required. Also, examination with a finer prediction grid462

might be required.463

Spatial outliers have little influence on the quality of NO2 prediction by464

LUR model. However, this does not necessarily suggest that removing spatial465

outliers is unneeded in this case. The LUR predictions of NO2 correlate less466

with observations than those of PM2.5 as given in Fig 4 and Fig 7. Therefore,467

the effect of spatial outliers needs to be further evaluated using better LUR468

model obtained with additional or alternative covariates.469

As already noted, the estimated map using the data excluding spatial outliers470

can be interpreted as background or baseline concentration map. Observations471

at ”hot spots” are probably excluded by the spatial outlier detection method.472

Observations might be spatially outlying due to influences of nearby emissions,473

local terrain, meteorology and/or biased monitors due to mechanical or electrical474

malfunction. When a monitor is biased, observations obtained by the monitor475

should be removed because it does not correctly measure concentrations. In the476

other cases mentioned above, concentrations are correctly measured but rep-477

resent smaller spatial extent compared to non-outliers, thus cannot be treated478

equally as non-outliers. The estimation with the data including outliers could479

degrade the LUR model quality and, consequently, exaggerate the entire esti-480

mation uncertainty. Although removing such outliers could result in over/under481

estimation around the locations of the removed points, this procedure can re-482

duce the overall mapping uncertainty and improve the total estimation accuracy.483

Therefore, excluding spatial outliers is a reasonable approach. This does not484

mean that those observations are unimportant, but they may contain important485

information and can be useful in a different context.486
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The locations of the detected spatial outliers are inspected, but a potential487

reason such as a near-by emission source, local topology or meteorology is not488

clear. The possible reasons should further be investigated, which could be of489

benefit for a better design of a monitoring network.490

5. Conclusion491

We applied the spatial outlier detection method to the observations of PM2.5492

and NO2 obtained from the regulatory monitoring network in Japan, and spatial493

outliers were identified. Some observations in midrange are detected as outliers494

because dissimilarity of observations in neighbourhood is evaluated in kriging495

framework. The effect of spatial outliers was assessed by comparison of the496

prediction performance of LUR and regression kriging on the data inclusive and497

exclusive of spatial outliers respectively. Spatial outliers deteriorate the quality498

of prediction except for LUR model of NO2. Although further investigation is499

required, our study demonstrated that the spatial outlier detection method is an500

effective procedure for air pollutant data when certain spatial representativeness501

is required and that it should be applied when observation based prediction502

methods are used to generate concentration maps. The observations exclusive503

of spatial outliers are also of benefit for validation of CTMs, where simulated504

concentrations are mean values in each grid cell and observations are required505

for the equivalent spatial representativeness.506
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Appendix507

Data sources.

Air quality data http://www.nies.go.jp/igreen/

Global Map Japan http://www.gsi.go.jp/kankyochiri/gm_japan_e.html

Population http://e-stat.go.jp/SG2/eStatGIS/page/download.html

Road length http://nlftp.mlit.go.jp/ksj-e/gml/datalist/KsjTmplt-N04.html

AOD http://kuroshio.eorc.jaxa.jp/JASMES/index.html

Meteorological data http://www.data.jma.go.jp/gmd/risk/obsdl/index.php
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Matheron, G., 1962. Traité de géostatistique appliquée, Tome 1. Editions Tech-597

nip. p. 333.598

Pearce, J.L., Rathbun, S.L., Aguilar-Villalobos, M., Naeher, L.P., 2009. Charac-599

terizing the spatiotemporal variability of PM2.5 in Cusco, Peru using kriging600

with external drift. Atmospheric Environment 43, 2060–2069. doi:10.1016/601

j.atmosenv.2008.10.060.602

Pebesma, E.J., 2004. Multivariable geostatistics in s: the gstat package. Com-603

puters and Geosciences 30, 683–691.604

R Core Team, 2016. R: A Language and Environment for Statistical Computing.605

R Foundation for Statistical Computing. Vienna, Austria. URL: https://606

www.R-project.org/.607

23

http://dx.doi.org/10.1046/j.1365-2389.2000.00280.x
http://dx.doi.org/10.1046/j.1365-2389.2000.00280.x
http://dx.doi.org/10.1046/j.1365-2389.2000.00280.x
http://dx.doi.org/10.1016/S0016-7061(01)00123-9
http://dx.doi.org/10.1016/S0016-7061(01)00123-9
http://dx.doi.org/10.1016/S0016-7061(01)00123-9
http://dx.doi.org/10.1016/j.sedgeo.2012.07.009
http://dx.doi.org/10.1016/j.atmosenv.2013.11.075
http://dx.doi.org/10.1007/s11356-011-0546-9
http://dx.doi.org/10.1007/s11356-011-0546-9
http://dx.doi.org/10.1007/s11356-011-0546-9
http://dx.doi.org/10.1016/j.atmosenv.2008.10.060
http://dx.doi.org/10.1016/j.atmosenv.2008.10.060
http://dx.doi.org/10.1016/j.atmosenv.2008.10.060
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/


Rawlins, B., Lark, R., O’Donnell, K., a.M. Tye, Lister, T., 2005. The as-608

sessment of point and diffuse metal pollution of soils from an urban geo-609

chemical survey of Sheffield, England. Soil Use and Management , 353–610

362doi:10.1079/SUM2005335.611

Ross, Z., Jerrett, M., Ito, K., Tempalski, B., Thurston, G.D., 2007. A land use612

regression for predicting fine particulate matter concentrations in the New613

York City region. Atmospheric Environment 41, 2255–2269. doi:10.1016/j.614

atmosenv.2006.11.012.615

Sampson, P.D., Richards, M., Szpiro, A.A., Bergen, S., Sheppard, L., Lar-616

son, T.V., Kaufman, J.D., 2013. A regionalized national universal kriging617

model using Partial Least Squares regression for estimating annual PM2.5618

concentrations in epidemiology. Atmospheric Environment 75, 383–392.619

doi:10.1016/j.atmosenv.2013.04.015, arXiv:NIHMS150003.620

Shimadera, H., Kojima, T., Kondo, A., 2016. Evaluation of Air Quality Model621

Performance for Simulating Long-Range Transport and Local Pollution of622

PM2.5 in Japan. Advances in Meteorology 2016. doi:10.1155/2016/5694251.623

Sun, X.L., Zhao, Y.G., Wu, Y.J., Zhao, M.S., Wang, H.L., Zhang, G.L., 2012.624

Spatio-temporal change of soil organic matter content of Jiangsu Province,625

China, based on digital soil maps. Soil Use and Management 28, 318–328.626

doi:10.1111/j.1475-2743.2012.00421.x.627

Wang, J., Christopher, S., 2003. Intercomparison between satellite-derived628

aerosol optical thickness and PM 2.5 mass: Implications for air quality stud-629

ies. Geophysical Research Letters 30, 2095. doi:10.1029/2003GL018174.630

Wu, J., Li, J., Peng, J., Li, W., Xu, G., Dong, C., 2014. Applying land use631

regression model to estimate spatial variation of PM2.5 in Beijing, China.632

Environmental Science and Pollution Research 3, 7045–7061. doi:10.1007/633

s11356-014-3893-5.634

24

http://dx.doi.org/10.1079/SUM2005335
http://dx.doi.org/10.1016/j.atmosenv.2006.11.012
http://dx.doi.org/10.1016/j.atmosenv.2006.11.012
http://dx.doi.org/10.1016/j.atmosenv.2006.11.012
http://dx.doi.org/10.1016/j.atmosenv.2013.04.015
http://arxiv.org/abs/NIHMS150003
http://dx.doi.org/10.1155/2016/5694251
http://dx.doi.org/10.1111/j.1475-2743.2012.00421.x
http://dx.doi.org/10.1029/2003GL018174
http://dx.doi.org/10.1007/s11356-014-3893-5
http://dx.doi.org/10.1007/s11356-014-3893-5
http://dx.doi.org/10.1007/s11356-014-3893-5


Xie, Y., Wang, Y., Zhang, K., Dong, W., Lv, B., Bai, Y., 2015. Daily Estima-635

tion of Ground-Level PM2.5 Concentrations over Beijing Using 3 km Resolu-636

tion MODIS AOD. Environmental Science and Technology 49, 12280–12288.637

doi:10.1021/acs.est.5b01413.638

Zhao, Y., Xu, X., Huang, B., Sun, W., Shao, X., Shi, X., Ruan, X.,639

2007. Using robust kriging and sequential Gaussian simulation to delin-640

eate the copper- and lead-contaminated areas of a rapidly industrialized641

city in Yangtze River Delta, China. Environmental Geology 52, 1423–1433.642

doi:10.1007/s00254-007-0667-0.643

25

http://dx.doi.org/10.1021/acs.est.5b01413
http://dx.doi.org/10.1007/s00254-007-0667-0


Figure captions644

Fig. 1 The distributions of spatial outliers and non-outliers in the645

annual means for 1) PM2.5 and 2) NO2.646

Fig. 2 The comparison of the annual means of the inclusive and647

exclusive data for PM2.5 and NO2. The concentrations, RMSE648

and MAE are in unit of µg m−3 for PM2.5 and ppb for NO2.649

RMSE donates root mean squared error. MAE donates mean650

absolute error.651

Fig. 3 Empirical (dot) and fitted (line) Variograms of the residuals652

of LUR model of PM2.5 estimated by Matheron’s estimator for653

the 1) inclusive and 2) exclusive data.654

Fig. 4 Scatter plot of the observed and predicted concentrations of655

PM2.5 for each data set and for each estimation method obtained656

by cross validation results. RMSE represents root mean squared657

error in unit of µg m−3. The light and dark dots represent non-658

spatial outliers and spatial outliers respectively. r2 and RMSE659

are calculated by the results at non-outlying points.660

Fig. 5 The prediction map of PM2.5 obtained by regression kriging661

with the inclusive and exclusive data. Unit is µg m−3. The662

symbols on the maps show the locations of the detected spatial663

outliers.664

Fig. 6 Empirical (dot) and fitted (line) Variograms of the residuals665

of LUR model of NO2 estimated by Matheron’s estimator for the666

1) inclusive and 2) exclusive data.667
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Fig. 7 Scatter plot of the observed and predicted concentrations of668

NO2 for each data set and for each estimation method obtained669

by cross validation results. RMSE represents root mean squared670

error in unit of ppb. The light and dark dots represent non-671

spatial outliers and spatial outliers respectively. r2 and RMSE672

are calculated by the results at non-outlying points.673

Fig. 8 The prediction map of NO2 obtained by regression kriging674

with the inclusive and exclusive data. Unit is ppm. The symbols675

on the maps show the locations of the detected spatial outliers.676
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Figure 1: The distributions of spatial outliers and non-outliers in the annual means for 1)

PM2.5 and 2) NO2.

Figure 2: The comparison of the annual means of the inclusive and exclusive data for PM2.5

and NO2. The concentrations, RMSE and MAE are in unit of µg m−3 for PM2.5 and ppb for

NO2. RMSE donates root mean squared error. MAE donates mean absolute error.
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Figure 3: Empirical (dot) and fitted (line) Variograms of the residuals of LUR model of PM2.5

estimated by Matheron’s estimator for the 1) inclusive and 2) exclusive data.

Figure 4: Scatter plot of the observed and predicted concentrations of PM2.5 for each data set

and for each estimation method obtained by cross validation results. RMSE represents root

mean squared error in unit of µg m−3. The light and dark dots represent non-spatial outliers

and spatial outliers respectively. r2 and RMSE are calculated by the results at non-outlying

points.
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Figure 5: The prediction map of PM2.5 obtained by regression kriging with the inclusive and

exclusive data. Unit is µg m−3. The symbols on the maps show the locations of the detected

spatial outliers.

Figure 6: Empirical (dot) and fitted (line) Variograms of the residuals of LUR model of NO2

estimated by Matheron’s estimator for the 1) inclusive and 2) exclusive data.
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Figure 7: Scatter plot of the observed and predicted concentrations of NO2 for each data set

and for each estimation method obtained by cross validation results. RMSE represents root

mean squared error in unit of ppb. The light and dark dots represent non-spatial outliers

and spatial outliers respectively. r2 and RMSE are calculated by the results at non-outlying

points.
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Figure 8: The prediction map of NO2 obtained by regression kriging with the inclusive and

exclusive data. Unit is ppm. The symbols on the maps show the locations of the detected

spatial outliers.
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Table 1: Summary of the data used in this study

Description Source Field Spatial scale Time periode

Monitored air quality data Ministry of Environment PM2.5, NO2 point 2013

Global Map Japan Geographical Information Land use 1 km 2006(ver.1.1)

Authority of Japan Road lines Vector 2011(ver.2)

Coast lines Vector 2011(ver.2)

National Census Statistics Bureau of Japan Population 500 m 2010

National Land Numerical Ministry of Land, Infrastructure, Road length 1 km 2010

Information Transportation and Tourism

JASMES Products JAXA/Tokai University AOD 1 km 2013

Amedas Japan Meteorological Agency Precipitation point 2013

Temperature

Wind speed

Table 2: Predictor variables and predefined directions of effect.

Predictor variables Unit
Air pollutants

PM2.5 NO2

Built-up area ratio2 unitless + +

Agriculture area ratio2 unitless +

Population person + +

Distance to highway km − −

Distance to primary road km − −

Distance to secondary road km − −

Road length B m/km2 + +

Road length C m/km2 + +

Distance to coastline km +/−

AOD unitless +

Precipitation mm/hr − −

Temperature ◦C +

Wind speed m/sec − −

Longitude degree +

1 +:positive direction, -:negative direction

2 ratio of land use type
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Table 3: The number of observations in the inclusive and exclusive data set, and the spatial

outliers for PM2.5 and NO2.

Pollutant Inclusive Exclusive Spatial outliers Outlier ratio (%)

PM2.5 500 457 43 8.6

NO2 1278 1155 123 9.6

Table 4: Obtained LUR models for PM2.5.

Data set

Variabes Inclusive data Exclusive data

Intercept 5.6 5.6

Bulid-up area ratio 1.0× 10−1 5.6× 10−2

Agriculture area ratio 1.2× 10−1 7.6× 10−2

Population 3.3× 10−6 6.0× 10−6

Distance to highway -3.3× 10−3 -2.7× 10−3

Distance to coastline -1.6× 10−3 -7.5× 10−4

Precipitation -7.6× 10−5 -5.6× 10−5

Temperature 3.6× 10−2 3.8× 10−2

Wind speed -6.0× 10−2 -5.4× 10−2

Longitude -2.4× 10−2 -2.4× 10−2

Table 5: Obtained LUR models for NO2.

Data set

Variabes Inclusive data Exclusive data

Intercept 2.7 2.7

Bulid-up area ratio 4.3× 10−1 3.5× 10−1

Population 3.8× 10−5 4.5× 10−5

Distance to highway -2.4× 10−2 -2.3× 10−2

Distance to secondary road -2.2× 10−2 -2.5× 10−2

Road Length B 7.1× 10−5 6.5× 10−5

Precipitation -3.0× 10−4 -2.9× 10−4

Wind speed -7.6× 10−2 -5.6× 10−2
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Table 6: The LUR model and validation results using NO2 observations which are collocated

with PM2.5 monitors. RMSE represents root mean sqared error. RMSE and r2 are obtained

by leave-one-out cross validation.

Data set

variables Inclusive data Exclusive data

Intercept 2.7 2.7

Bulid-up area ratio 3.1× 10−1 2.5× 10−1

Population 4.2× 10−5 4.6× 10−5

Distance to highway -2.8× 10−2 -2.9× 10−2

Road Length B 6.9× 10−5 6.7× 10−5

Precipitation -3.3× 10−4 -3.6× 10−4

RMSE of LUR model 2.9 2.7

r2 of LUR model 0.65 0.67

RMSE of regression kriring 2.5 1.9

r2 of regression kriging 0.75 0.83

n 478 402
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