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ABSTRACT

The aim of this study was to assess the impact of fractional dose and the number of arcs on interplay effects when
volumetric modulated arc therapy (VMAT) is used to treat lung tumors with large respiratory motions. A three
(fractional dose of 4, 7.5 or 12.5 Gy) by two (number of arcs, one or two) VMAT plan was created for 10 lung cancer
cases. The median 3D tumor motion was 17.9 mm (range: 8.2-27.2 mm). Ten phase-specific subplans were generated
by calculating the dose on each respiratory phase computed tomography (CT) scan using temporally assigned VMAT
arcs. We performed temporal assignment of VMAT arcs using respiratory information obtained from infrared markers
placed on the abdomens of the patients during CT simulations. Each phase-specific dose distribution was deformed
onto exhale phase CT scans using contour-based deformable image registration, and a 4D plan was created by dose
accumulation. The gross tumor volume dose of each 4D plan (4D GTV dose) was compared with the internal target
volume dose of the original plan (3D ITV dose). The near-minimum 4D GTV dose (Dggy) was higher than the near-
minimum 3D internal target volume (ITV) dose, whereas the near-maximum 4D GTV dose (Dj9) was lower than
the near-maximum 3D ITV dose. However, the difference was negligible, and thus the 4D GTV dose corresponded
well with the 3D ITV dose, regardless of the fractional dose and number of arcs. Therefore, interplay effects were
negligible in VMAT-based stereotactic body radiation therapy for lung tumors with large respiratory motions.

Keywords: VMAT-based SBRT; interplay effect; DIR; lung

INTRODUCTION
Stereotactic body radiation therapy (SBRT) can achieve a high local
control rate with only rare severe toxicity [1] and is now the stan-
dard treatment for inoperable early-stage non-small cell lung cancer
[2]. SBRT is a sophisticated irradiation technique in which high-dose
radiation is administered accurately in a small number of fractions via
a precise patient set-up. The SBRT dose is generally prescribed to the
planning target volume (PTV) periphery with a 60-90% isodose to
the center of the tumor [3]. In SBRT planning, the internal target

volume (ITV) dose is adjusted to be intentionally much higher than
the prescription dose because several dose parameters including the
prescription dose, PTV mean dose [4] and dose to tumor center [5]
are important for achieving sufficient local control.

For the SBRT delivery technique, volumetric modulated arc
therapy (VMAT) has been gaining popularity because of its shorter
delivery time and better conformity [6]. When utilizing intensity-
modulated radiotherapy (IMRT) or VMAT for thoracic tumors, a
major concern s interplay effects between multi-leaf collimator (MLC)
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Fig. 1. Schematic illustration showing the creation of the 4D plan. A 3D plan was created and the arc was separated into 10
respiratory phases with the assumption that the arc rotation starts at 0%. Ten phase-specific subplans were created by calculating

the dose from the assigned MU on each phase CT scan. Then, each phase-specific subplan was deformed onto the 50% phase CT
with the aid of contour-based deformable image registration and dose summation was carried out to create the 4D plan.

motion and a moving tumor that might lead to underdosing the tumor.
Respiratory motion-management techniques, such as abdominal
compression, respiratory gating, breath-hold and real-time tumor
tracking, should be used when treating tumors with large motion [7,
8]. However, if these techniques are not available or are ineffective at
reducing the treatment volume, a motion-enveloping method is the
only option; interplay effects are thus a matter of concern.

Two methods can be used to explore the impacts of interplay effects
on lung IMRT or VMAT: these include experimental phantom studies
[9-12] and 4D dose-calculation studies featuring deformable image
registration (DIR) [13-15]. These studies have suggested that the
interplay effects are negligible under certain conditions. Whether ITV
dose metrics truly reflect gross tumor volume (GTV) dose metrics is of
clinical interest. We adopted a 4D dose-calculation method rather than
an experimental phantom method because, with the former method,
it is easier to accumulate doses to a tumor, which can significantly
deform during respiration [ 16]. Although the use of a 3D gel dosimetry
phantom would yield accurate dose-volume data for non-rigid targets,
such work is rather costly and labor intensive [17].

In this study, we evaluated DIR accuracy and then calculated the
magnitude of the interplay effects during VMAT-SBRT of lung tumors
exhibiting large motions in various clinically realistic situations. Dose
fractionation and the number of VMAT arcs are at the planner’s
discretion in clinical practice; we focused on these factors in this
study. A 3 x 2 (fractional dose of 4, 7.5 or 12.5 Gy x 1 or 2 arcs)
VMAT plan was created using the type-C algorithm (fast Monte
Carlo dose calculation) which is superior to type-B algorithms
(superposition/convolution dose algorithms) for assessing lung
dosimetry [18].

MATERIALS AND METHODS

Case selection
We queried our prospectively maintained SBRT database to find lung
cancer cases in whom large respiratory motions necessitated motion
management, such as real-time tumor-tracking or respiratory gating.
Ten peripherally located lung cancer cases with high-quality 4D-
computed tomography (CT) images amenable to DIR were included.
The study was approved by our institutional review board (approval
no. R1446).

CT simulation and target definition

All4D-CT images were obtained using a 16-slice scanner (Light-Speed
RT16; GE Healthcare, Little Chalfont, UK) while respiration was mon-
itored with a real-time position management (RPM) system (Varian
Medical Systems, Palo Alto, CA, USA) on the patient’s abdomen. The
acquisition parameters of the 4D-CT scan were as follows: tube voltage
120 kV, tube current 100 mA, slice thickness 2.5 mm, field-of-view
500 mm, and matrix size 512 X 512. Ten respiratory-phase CT (end-
inhale phase corresponds to 0%), average-intensity projection (AIP)
and maximum-intensity projection (MIP) images were generated. The
GTYV was delineated on each respiratory-phase image. The ITV was
the summation of the GT'Vs in all respiratory phases. To avoid under-
estimation of ITV, we used MIP images as a reference. The PTV was
created by adding S mm to the ITV.

3D plan creation
Doses were calculated using AIP images. The treatment-planning sys-
tem was Eclipse (ver. 13.7.29; Varian Medical Systems) and the dose-
calculation algorithm was AcurosXB (ver. 13.7.14; Varian Medical
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Sagittal

Coronal

Fig. 2. Arepresentative gross tumor volume (GTV) contour at 50% of the phase and the GTV contour deformed onto 50% of the
phase. The original GTV of the 50% phase (exhalation) is shown in red. The original GTV of the 0% phase (inhalation) is shown in
orange and the deformation onto the 50% phase CT is shown in cyan. The dice similarity coefficient and mean distance to

agreement were 0.94 and 0.44 mm, respectively.

Table 1. Case characteristics (1 = 10)

Case no. 1 2 3 4 S 6 7 8 9 10
Tumor location L R L L R R R L R L
3D tumor motion, mm 8.2 272 18.8 8.7 21.7 11.3 21.7 17.4 14.6 18.4
Breathing period, s 33 4.3 3.9 3.9 4.5 3.0 6.3 S.9 4.5 3.1
GTV on 10 phase CT
Mean, mL 7.9 5.2 5.7 5.7 42.8 7.2 6.9 12.7 6.0 4.1
Ccv 0.14 0.08 0.11 0.05 0.09 0.13 0.05 0.03 0.23 0.16
ITV, mL 15.0 14.6 13.5 10.9 92.3 132 16.9 27.3 14.2 11.1
PTV,mL 38.6 41.4 38.7 32.0 169.9 35.6 44.6 61.7 37.6 29.4
One-arc plan
60 Gy/15fr
MU 743.9 918.4 816.2 960.4 784.1 941.9 1031.9 1020.4 856.5 961.7
Beam-on time, s 34.8 39.4 36.4 41.2 36.2 40.4 44.2 44.3 37.3 41.2
60 Gy/8fr
MU 1190.6 1659.2 1835.0 1827.2 1435.6 1729.8 1922.6 1859.7 1633.6 1665.8
Beam-on time, s S51.0 72.7 78.7 78.3 62.0 74.1 82.4 79.7 70.0 71.4
50 Gy/4fr
MU 2656.0 2694.7 2936.5 3019.1 2508.7 3037.2 3080.3 3395.8 2978.1 2655.5
Beam-on time, s 113.8 118.5 125.8 129.4 107.4 130.2 130.0 145.5 127.6 113.8
Two-arc plan
60 Gy/15fr
MU 716.1 78S.5 759.7 848.9 7772 901.1 913.7 1048.7 880.7 861.8
Beam-on time, s 69.7 69.7 69.7 69.7 69.7 69.7 69.7 69.7 69.7 69.7
60 Gy/8fr
MU 1341.0 1439.0 1616.9 1538.5 1390.8 1775.2 1679.3 1951.0 1648.2 1604.5
Beam-on time, s 69.7 69.7 70.2 69.7 69.7 76.7 72.0 83.6 71.4 70.1
50 Gy/4fr
MU 2413.6 2446.4 2647.4 2765.4 2432.7 2882.4 2809.6 3074.8 2616.7 2612.5
Beam-on time, s 103.4 104.8 113.5 118.7 104.8 123.6 120.4 132.2 112.1 112.0

L = Left, R =right.

Systems) with a grid size of 2.5 mm. VMAT plans were generated
using TrueBeam STx (Varian Medical Systems) with a 6-MV flattening
filter-free (FFF) photon beam (maximum dose rate, 1400 monitor
units [MU]/min). The central MLC width of the treatment machine
was 2.5 mm. The prescription dose was the dose to 95% of the PTV

(Dyss)- The planning objectives were as follows: (i) a maximum dose

in the range of 125-140% of the prescription dose and within the ITV;
(i) a Dygge; of the PTV >90% of the prescription dose; and (iii) the
ITV must receive at least the prescription dose.

Fractional doses of 4 Gy [19], 7.5 Gy [1] and 12.5 Gy [20] were
selected as these were utilized in hypofractionated radiotherapy or

SBRT in previous studies. We employed one or two arcs. Partial
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Table 2. DVH metrics of ITV dose in 3D plan (normalized by prescription dose)

Case no. 1 2 3 4 S 6 7 8 9 10
One-arc plan
60 Gy/15fr
Dy, % 134.6 133.7 128.9 132.6 132.9 132.1 138.2 1324 125.7 134.1
Diyeany % 123.2 124.9 120.4 123.9 1209 121.8 127.8 120.5 119.0 124.5
Doggy, % 108.1 112.2 106.1 109.8 104.3 111.3 114.5 106.4 112.8 116.2
60 Gy/8fr
Dio, % 132.7 134.3 137.2 133.0 132.7 132.6 137.0 133.1 131.1 131.3
Diyeany % 121.5 124.9 126.4 123.8 120.2 123.0 125.8 120.8 121.8 123.1
D 9995, % 110.0 112.8 114.0 107.8 105.0 110.8 113.5 106.4 114.9 115.1
50 Gy/4fr
Diy, % 134.8 128.9 132.9 133.7 133.9 131.6 130.9 132.5 127.8 130.9
Diyeany % 122.8 120.3 124.4 123.5 120.8 122.4 121.3 121.0 121.1 121.4
Dggg, % 108.7 105.6 112.1 107.4 104.3 110.2 108.8 107.2 113.0 113.2
Two-arc plan
60 Gy/15fr
Dy, % 133.3 132.4 126.6 136.6 130.7 132.8 131.6 136.8 133.7 129.2
Dineany % 121.7 125.0 120.3 126.2 119.3 123.5 122.3 125.3 125.4 121.0
Dogge, % 107.3 115.6 111.8 114.2 106.5 112.5 111.0 112.8 116.1 113.6
60 Gy/8fr
Dy, % 132.2 136.1 137.7 135.5 130.8 136.3 133.8 135.3 133.7 132.0
Dineany % 120.9 126.9 128.7 126.5 119.4 126.7 123.9 125.0 124.8 123.1
Doges, % 109.9 1153 116.5 115.4 106.2 114.1 112.1 1107 115.8 115.6
50 Gy/4fr
Dy, % 129.7 130.2 130.8 127.6 130.4 134.3 129.7 130.4 128.1 126.9
Dineany % 119.4 119.3 123.4 120.6 118.9 123.2 121.7 121.1 119.9 119.4
Dyog, % 107.7 108.7 114.9 113.0 104.5 112.0 112.8 110.6 112.8 112.7

coplanar arcs of 210° were used to avoid beam entry from the
contralateral lung. The collimator angle was set at 30 or 330°.

4D planning

Phase-specific subplan creation

Ten phase-specific subplans were made from each plan using the
same methods applied for 4D dose calculation by Sasaki etal.
[21]. In brief, the original digital imaging and communications in
medicine-radiation therapy (DICOM-RT) plan file was first obtained.
In this DICOM-RT file, each arc contained 114 control points
(CPs) representing the beam parameters, including gantry angles,
MLC positions, dose rates and MU per gantry rotation. Using this
information, we calculated the time from beam delivery onset to each
CP. According to the respiratory information on RPM, we temporally
assigned VMAT arcs to 10 respiratory phases. We made the assumption
that the beam rotation started at 0% (Fig. 1). We made this assumption
because the beam starting phase does not have a significant influence
on the 4D dose in VMAT plans, either in the setting of SBRT or in
conventionally fractionated radiotherapy [13-15, 21]. This procedure
was carried out using C++ language. Then, the treatment plans with
split arcs were imported back into the treatment planning system
(Eclipse) in DICOM format, and dose calculation was conducted
based on the assigned-phase CT scan.

Dose deformation of the phase-specific subplan using
contour-based deformable image registration

Phase-specific subplans were deformed to 50% phase CT scans using
MIM software version 6.8.3 (MIM Software Inc., Cleveland, OH,
USA) with contour-based DIR. The GTV of each phase of CT was
delineated manually by a single board-certified radiation oncologist
and was used for DIR because our main interest was to estimate
the dose to the GTV. The 50% phase CT scan was selected as the
reference image because the exhale phase is the most stable and free
from artifacts.

As DIR quality is critically important in terms of dose deformation,
the accuracy of DIR was confirmed both via visual inspection and
quantitatively, and the uncertainty levels were scored as suggested in
the American Association of Physicists in Medicine (AAPM) Report
132 [22]. Onvisual inspection, a score of 0-4 was assigned for registra-
tion accuracy, where 0 represented perfect registration and 4 unusable
registration. The dice similarity coefficient (DSC) and mean distance
to agreement (MDA) were the quantitative methods employed. The
DSC is defined as twice the overlapping volume of the GTV at 50%
of the phase and the GTV of the remaining phase after deformation of
the 50% phase CT data divided by the total volume of both contours.
The MDA is the average distance between the GTV at 50% of the phase
and the deformed GTV of the remaining phase. We considered that a
DSC >0.8 and MDA <2 mm reflected contour uncertainty [21].
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Fig. 3. Box and whisker plot of the dice similarity coefficient (DSC) (a) and mean distance to agreement (MDA) (b) between the
GTV at 50% of the CT phase and the other GTV phase (after deformation onto the 50% phase CT data). The box length is the
interquartile range with bisecting lines showing the median values. The small circles and asterisks represent outliers.

4D plan creation via dose summation of deformed
phase-specific subplans and comparison of the 4D GTV and
3D ITV doses

Each 4D plan was created by calculating the summed dose of the 10
deformed phase-specific subplans (Figs 1 and 2). The dose to the GTV
in the 4D plan (the 4D GTV dose) was compared with the dose to the
ITV in the 3D plan (the 3D ITV dose). The dose—volume histogram
(DVH) metrics evaluated were Dogg;, the mean dose (Dyeqn ) and D .
Dyggy, and Do served as surrogates of the near-minimum and near-
maximum doses since point-minimum and point-maximum doses are
more susceptible to uncertainty in terms of the DIR, target delineation
and dose calculation. For simplicity, we defined Ry as follows:

R, = D, of 4D GTV dose/D, of 3D ITV dose. (1)

Rx and Dx should be italic (R and D, not subscript x) in the
equation R, in three different fractional doses was compared using

repeated measures analysis of variance. R, was compared between
one and two arcs using the same fractional dose set with paired
t-tests. Comparisons were two-sided and P < 0.05 was deemed
significant.

Then, we assessed the impact of the number of respirations using
Spearman’s rank correlation. The number of respirations was calculated
by dividing the beam-on time by the average breathing period of each
patient. First, we assessed the association between the number of respi-
rations and the coefficient of variation (CV) of the MU value assigned
to each subplan, which was calculated as follows:

CV =o0/M, ()

where ¢ and M are the standard deviation and mean value of the MU
value assigned to the10 phase-specific subplans, respectively.

Then, we analysed the association of the number of respirations
with R,.
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Fig. 4. Box and whisker plots of Rogs; (a), Rmean (b) and Ry (c) are shown. The box length is the interquartile range with

bisecting lines showing the median values. The small circles represent outliers. The P-values were obtained using the paired-t test.
R, =Dy of 4D GTV dose/Dy of 3D ITV dose.

RESULTS

Case characteristics
Table 1 shows the case characteristics. The median 3D tumor motion  speed, was 69.7 s (range: 69.7-69.7 s), 70.2 s (range: 69.7-83.6 s) and
was 17.9 mm (range: 8.2-27.2 mm) and the median PTV volume was ~ 112.8 s (range: 103.4-132.2 s) for fractional doses of 4 7.5 and 12.5 Gy,

38.7 cc (range: 29.4-169.9 cc). In the two-arc plan, the median beam-
on time, which was estimated from the beam CPs and gantry rotation
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respectively. In the one-arc plan, the respective median beam-on-time
was 39.9 s (range: 34.8-44.3 5), 73.4 s (range: 51.0-82.4's) and 126.7 s
(range: 107.4-145.5 s). In Table 2, the DVH metrics of ITV are shown
for each plan.

Assessment of DIR accuracy
A representative comparison of GTV contours is shown in Fig. 2. The
DSC and MDA for each case are shown in Fig. 3. Both the DSC and
MDA met our criteria (DSC > 0.8 and MDA < 2 mm). The DIR
accuracy was 1 in all DIRs, according to the AAPM Report 132 [22].
Thus, local alignment around the GTV was good.

4D GTV dose vs 3D ITV dose
Impact of fractional dose

The Rogy, Rimean and Ryy, data are shown in Fig. 4. Rogss, Rinean and
R were not statistically different among the three different fractional
doses in either the one-arc plan (P = 0.81, 0.11 and 0.66, respectively)
or the two-arc plan (P = 0.57,0.97 and 0.38, respectively).

Impact of arc number (one arc vs two arcs)

At a fractional dose of 7.5 Gy, Rogy was statistically higher for the two-
arc than the one-arc plan (P < 0.05), but the difference was small
(median value: 1.05S vs 1.043). With a fractional dose of 4 Gy, the
Rinean Was statistically higher in the two-arc plan than in the one-arc
plan (P < 0.05), but this difference was also minimal (median, 1.015
vs 1.005). Other DVH metrics were not statistically different between
the one- and two-arc plans, as shown in Fig. 4.

Association of the number of respirations with the CV
of the MU

The median number of breaths during the beam-on time was 18.6
(range: 7.0-43.4). The circles in Fig. S(a) refer to 60 plans (three
different fractional doses delivered via one or two arcs to 10 patients)
and are coded depending on the CV of the MU value assigned to
each phase and the number of breaths. A larger number of respirations
was associated with a lower CV of the MU (r = —0.541, P < 0.001).
There was a significant correlation between Rye,n and the number of
respirations (r=0.318, P=0.013) [Fig. 5(a)]. Rogy and R, showed no
significant correlation with the number of respirations, as illustrated in

Fig. Sband d.

DISCUSSION
We showed that the DVH metrics of the 4D GTV dose corresponded
well with those of the 3D ITV dose regardless of the fractional dose or
number of arcs, even in cases with large respiratory motion.

The cases included in this study had much larger tumor motion
(median 3D motion. 17.9 mm) than reported in previous studies [13,
14]. In thoracic regions showing large motion, DIR accuracy can be
compromised by unusual case characteristics or DIR maneuvers [23-
25]. To overcome this problem, we used contour-based DIR, and
thereby obtained DIR images for which both the DSC and MDA values
were well within the levels of contour uncertainty, as shown in Fig. 2.

As for fractional dose, whether interplay effects are negligible
in IMRT or VMAT plans with small fractional doses is a matter
of controversy [9, 13]. Plan complexity could be instructive in this
respect, as shown by Court et al. [26]. They evaluated interplay effects
with a conventionally fractionated radiotherapy plan (2 Gy/fraction
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Fig. 5. Correlations between the number of breaths and the coefficient of variation (CV) of the monitor units (MU) assigned to
each phase (a). A larger number of respirations is associated with a lower CV of the MU (r = —0.541, P < 0.001). The correlation
between the number of breaths and Ry is shown in (b—d). We found no significant correlation between the number of breaths and
the Rggy; (a) or Ryo (c) ratio. A correlation was evident between the number of breaths and the Ryyean ratio (b), but the strength of
the correlation was weak (r = 0.318, P = 0.013). R, = D, of 4D GTV dose/D, of 3D ITV dose.
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Fig. 5. continued.

(fr)) delivered by various treatment techniques (step-and-shoot IMRT,
dynamic IMRT and RapidArc) and found that interplay is significant
only in clinically unrealistic complex plans. Thus, the reason that we
did not observe large interplay effects even with a small fractional dose
(4 Gy/fraction) could be that the cases included in our study had
peripherally located tumors that were not in close proximity to the
bronchial tree or large vessels and the complexity of the 3D treatment
plans was generally low.

Regarding the number of arcs, both the current and previous 4D
dose-estimation studies suggest that the volumetric dose to 4D GTV
is almost same as that to 3D ITV. In this study, although Rggy for
a fractional dose of 7.5 Gy, and Ry for a fractional dose of 4 Gy,
showed a statistical difference between the 1- and 2-arc plans, the
magnitude of the difference was quite small. However, the small vol-
umetric difference between the 3D and 4D plans does not rule out
a point dose difference. For example, in their phantom study, Ong
et al. showed that the maximum dose deviation in the PTV between 1-
and 2-arc plans was 5-10%, but the deviation became smaller for the
2-arc plan [11]. Considering that phantom and 4D dose calculation
studies complement each other, from a conservative point of view, it
might be better to adopt double-arc delivery because the delivery time
with a double-arc plan is still short and within the clinically acceptable
range.

Along motion period has been reported to trigger a large interplay
effect [27]. We hypothesized that a small number of respirations during
beam-on time might lead to uneven assignment of MU to each plan and
thus create a large difference between the 4D GTV and 3D ITV doses.
As expected, variations of MU among plans were larger when there
was a small number of breaths during irradiation. However, the number
of respirations did not greatly influence the final dose. We observed a
statistical correlation between the D,,,, ratio and number of breaths,
but the strength of the correlation was only modest (r = 0.318).

Our study had several limitations. First, although we confirmed
the accuracy of DIR using the best available method, voxel-by-voxel
matching within the GTV is not guaranteed. Second, while our study
revealed that the tumor dose is almost the same as the planned dose
to ITV, this does not mean that a respiratory motion-management

technique is unnecessary. This is because the dose to organs at risk
is known to be a predictor of toxicity such as radiation pneumonitis
[28] and chest wall toxicity [29]. Third, in cases with large motion, the
breathing motion during treatment can be different from that during
CT simulation [30], so caution is needed when interpreting our results
in the context of clinical practice. Fourth, although beyond the scope of
this study, other treatment parameters might also affect 4D dosimetry.
Such parameters could also interact, so it may be difficult to assess their
individual impacts. In this study, we created clinically realistic, rather
than complex, plans, and found that the 4D GTV and 3D ITV doses
were similar in such plans, regardless of the fractional dose and number
ofarcs. It should be noted that the number of samples was small because
the creation of 4D plans is labor-intensive. Nevertheless, we can still
conclude that there is no meaningful difference, if any, between the 3D
ITV and 4D GTV doses.

In summary, we showed that the accuracy of DIR was sufficiently
high to allow us to evaluate 4D doses calculated using a type-C algo-
rithm; the 4D GTV doses were comparable with the 3D ITV doses for
10 lung cancer cases exhibiting large respiratory motions, regardless of
the fractional dose and number of arcs. Interplay effects were negligible
in VMAT-based SBRT for peripherally located lung tumors with large
respiratory motion.
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