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Abstract. Dynamic behaviour of isotropic rectangular plate resting on two-parameter foundation
is investigated. The governing partial differential equation is transformed to ordinary differential
equation due to Galerkin method of separation. The hybrid method of Laplace transform and
variation parameters method is used to analyze the ordinary differential equation. Introduction of
exact method helps in fast convergence of the results. Obtained analytical solutions are compared
with existing literature and confirmed as accurate. They are used to examine the effect of
controlling parameters on the plate natural frequencies. Due to obtained results it is obvious that,
the increase of both elastic foundation parameter and aspect ratio results in increasing the natural
frequency. The solution is found immediately by means of a few iterations.
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OueHka ruOpPUIHOr0 MeTOAA UCCJICI0BAHUSA
AMHAMUYECKOr0 NMOBeIeHUS U30TPOIHBIX
NPSAMOYTOJIbHBIX IJIACTHH,
ONUPALIUXCH HA IByXIIaPpAMETPUYECKOEe OCHOBAHHE
Caxun Canasy, '6emunniin Co6amoBo

Yuusepcumem Jlacoca
Hueepus, Axoxka

Annomayus. VccnenoBaHO AMHAMHUYECKOE IOBEIEHUE H30TPONHOM HPSMOYTOJBHON IIACTUHBI,
onMpalromieiicss Ha NIByXmHapameTpudeckoe ocHoBanme. OcHoBHoe nuddepeHInanbHOe ypaBHEHUE
B YAaCTHBIX IMPOHM3BOAHBIX IpeoOpasyercs B OOBIKHOBEHHOE AM(QepeHInaIbHoe ypaBHEHHE C
HCIIONIb30BaHNEM MeTozia pa3aeneHus [anepkuna. [t anann3a 00bIKHOBEHHOT0 U PEepeHINATIEHOTO
YPaBHEHHsI NPUMEHEH THOpPHIHBIA MeTox mpeoOpa3oBaHus Jlammaca m mapaMeTpoB BapHaIlUU.
BBenenne TOWYHOrO MeToma IOMOTraeT B OBICTPOM KOHBEPreHIMM pE3yJbTaToB. llomydeHHBIE
AHAJINTHUYECKHE PELICHUS CPaBHHUBAIOTCA C CYIIECTBYIOIIECH JHMTEPaTypoill M IMOATBEPKIAIOTCA C
Xopomed TOYHOCTBIO. MX HCIONB3yIOT IUIsl M3y4eHUsS BIMSHUS YNPABISIOMNX MapaMEeTPOB Ha
COOCTBEHHBIE YacCTOTHI IUIACTHHBI. M3 MomydeHHBIX PE3yJIbTaTOB BHUIHO, YTO POCT IapamMeTpoOB
YIPyTOT0 OCHOBAHHUS ¥ COOTHOIIIEHHS CTOPOH YBEIHYNBAET COOCTBEHHYIO YacTOTY. PerieHne HaxomsiT
OBICTPO C HECKOIBKMUMH UTEPALIUIMHU.

Kniouesvie cnosa: nuHaMudecKuii aHa M3, COOCTBEHHAS YaCTOTa, OTKJIOHEeHUE, Bunkiep ullacTepHak,
MeToj napaMeTpoB Jlamnaca u Bapuanuu.

Iurtuposanue: CanaBy, C. OueHka TI'HMOPHJIHOTO METOAA WCCIEIOBAHMS THHAMHYECKOTO MOBENEHUS HM30TPOMHBIX
MPSIMOYTOJIBHBIX IIJIACTHH, OMHUPAIOIINXCS Ha JByXMnapameTpudyeckoe ocHoBanue / C. Canay, I. Cob6amoBo // XKypn. Cuo.
(denep. yu-ta. Texuuka u rexsosnoruu, 2020. 13(2). C. 162-174. DOI: 10.17516/1999-494X-0213

1. Introduction

Recently the significant and wide application of thin rectangular plates in mechanical, civil, marine,
naval, nuclear and aeronautic engineering, have increased various research interests to the study of
dynamic analysis of thin rectangular plate. In the study of free vibration of rectangular plate of varying
thickness Sundara et al. [1] applied finite element method. In another work, Cheung and Kong [2]
used finite element method for analyzing dynamic response of rectangular plate of varying thickness.
However, research into plate resting on two-parameter elastic foundation has gained much attention
among researchers based on the various publications available due to the subject, importance and
application in various branches of engineering. Singh and Adhikari [3] adopted finite element method
in determining the dynamic response of functionally graded plate on two-parameter foundation. Finite
element method is applied to analyze the vibration of rectangular plates resting on elastic foundation by
Karasin [4]. In another study, Zenkour and Radwar [5] used hyperbolic shear deformation in studying
of functionally graded plate resting on Winkler and Pasternak foundation.

Based on previous studies on vibration, it is realized that sorting out vibration problem is
difficult to handle due to inherent non-trivial solution. Meanwhile, the most adequate method
of solution for nonlinear problem is numerical, but this one has restrictions and limitations. The

numerical method is not able to provide the closed form solutions. Exact analytical approximate
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method is also limited to handle linear problem. While semi — analytical method is able to correct
the limitation in both methods. However, to obtain closed form solution, Vgor and Eisen [6] adopted
semi-analytic Kantorovich method for determining free vibration response of varying thickness
rectangular plate. In a further study, Mustapha and Ajetumobi [7] utilized variation iteration
method for solving some problems in vibration. Also, Attarnejad et al. [8] applied differential
transform method for analyzing Timoshenko beam on two-parameter foundation. Variation of
parameter method (VPM) [9-12] is a very reliable method of getting closed form solution without
the restriction of small parameters in Homotopy perturbation method, conversion of governing
equation to recursive relation in differential transform and calculating the langrage multiplier in
variation of iteration method. By means of a few iterations the solution has been found. Combining
Laplace transform and Variation of parameter methods means that, the effectiveness of the method
increases further because of the combination of exact method for linear part of the equation and
VPM for the other part of the governing equation.

After detail study of the literature review, the authors found out that no attention has been drawn
to application of hybrid VPM to investigate the dynamic analysis of isotropic rectangular plates resting
on Winkler and Pasternak foundations. Therefore, the present study focuses on the application of hybrid
VPM dynamic investigation of isotropic thin rectangular plate resting on two-parameter nonlinear

foundation. Obtained results are used for parametric investigations.

2. Problem formulation and mathematical analysis

Rectangular plate of uniform thickness and uniform density is considered. The plate is resting on
combine linear Winkler and nonlinear Pasternak foundation under different edge conditions as shown
in Fig. 1.

The following assumptions are made for the development of the governing equation [13]:

1) Plate is a member whose middle surface lies in plane.

2) Thickness of plate is smaller compared to the other dimensions.

3) Plate is of constant thickness.

4) Thickness is normal to the mid-surface plane.

The governing equation for thin isotropic rectangular plate as reported by [14] is;

4 4 4 2
D(@ w(x, ¥, t) 2 0 w(x, y,t) N 0 w(x,y,t)\ + ph 0 w(x,y,t)

pe0 8x28y2 6y4 o + kww(x,y, t) + kpw3 (x,y, t) =0, (1

ERW
12(1—1/2)

the Poisson’s ratio, Plate is resting on k,,, k, Winkler foundation and Pasternak foundation respectively

where D is the flexural rigidity , E is the modulus of elasticity, /4 is the plate thickness, v is

and p is the density. Offering a further general solution, the following dimensionless variables are
defined:
w

w=—x=2y=
w a

@

S <

ax

For free vibration, the solution of Eq. (1) can be presented in Kantorovich type approximation
w(x,y,t) = w(x,y) e, ?3)
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Rectangular
plate
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Fig. 1. Plate resting on two-parameter foundation

a“kw a‘k w;ax
e, = T @

4
Also, Q* = a—pha)z,kw =
D D
o'w o'w o'w
(63) | 92 8 (x9) 50 87 (x,)
oX oX° oY oY
Assuming the two opposite edges of Fig. 1, Y =0 and Y = 1 to be simply supported, deflection

- QZW(x, y) + kWW(x, y) + ka3 (x,y) =0. ®)

function can be represented as follows
W =W (X)sin(mzY). (©)

Substituting the derivative of Eq. (6) into governing differential Eq. (5) gives:

d4W(X) 2,2 2 de(X) 2 44 4 3
W—2ﬂmﬂ 7—(9 —ku—ﬂmﬂ')W(X)-i-ka (X):O (7)
2.1. Boundary Conditions
Three boundary conditions combinations are considered at X = 0 and X = /. For brevity sake,
notations are adopted in identifying the edge conditions: Simply supported and Clamped edge (SC),
Simply supported and Simply Supported edge (SS) and Simply supported and Free edge conditions

(SF).

aw
Clamped edge: W = — = 0. 8
ped edg e ®)
Simply Supported edge: W:dZW—v(man)W=o ©9)
Y o ax? '
d'w 2 242 a’w y 2,2\ AW
Free edge. Y’ —v(m A )W:O, F—Q—V)(m A )E:O (10)

3. Method of solution: laplace transform and variation parameter method

3.1. Basic ideal of Laplace transform
If f(¢) is a function of a variable £. .Z {F(t)}and is defined by the integral:

©

Z{F@)}=f(s)=[e " F(t)dr. (11)

0

Some of the properties used in this study include:

o Z{1} =§(s>0), (12)
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. z{tn}:s’j_jl(m)), (13)

« Z{F"@0)) =5"f(s)-s""F(0)~s"F'(0)~-+-F"(0), (14)

where F"(f) represents the n—th derivative of F(f) and .Z {F (l)} = f(s). If Laplace transform of F(?) is
f(s), then the inverse Laplace transform of f(s) is expressed by F(t)=.Z" { I (s)} , where .Z ' is called
inverse Laplace operator.

The inverse Laplace of Egs. (12) and (13) are:

o1=7" (% (15)
S

ol = z'[ ”'Ij (16)
S

3.2. Basic ideal variation of parameter method

To demonstrate the principle of variation parameter method (VPM), this nonlinear differential

term is considered,

m

d"w

m

+R(x)+ N(x) = f(x). (17)
With this initial condition,
w®(0) = w, (18)
where w = w(x), R represent the linear operator, N is the nonlinear operator, f{x)represent the non-

m

homogenous term, is the highest order derivative.

xm
Lw(x) + Rw(x) + Nw(x) =g, (19

L denotes highest linear operator, R the remaining linear operators aside the highest linear, N is the

nonlinear operator.

¢
W, (X) = w, (1) + [ A6, &) (ROw, )+ N(w, )& = (£))dE, (20)

2 3 n—1

W (x) = w(0) + xw'(0) + —w"(0) + = w"(0) + ——— wn" " (0), @1
2! 3| n—1l

. . . m _1 i1 i-1__m-1
A is a general Wronskian technique A = Z()#

~ (i—1D)!(m—i)!

represent the solution of the linear operator. m in the Wronskian represent the order of the derivative.

and n represents nth approximation, w,(x)

Having obtained the initial iteration w,(x) and the Wronskian, subsequent iterations is performed using
Eq. (20).
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3.3. Basic Concept and the Procedure
of Laplace Variation Parameter Method

This approach helps in the rate of convergence, once the linear part of the operator is solved using

exact method of the solution. Laplace transform of governing equation is taking as;

4
W, (0) = w,(8) + [ 206, O)(L(w,)E+ R(w, )+ N(w,)é— f(9))dE,
AW, (0] = £[w,(9)]+ Z£[A0)] £[Lw)]+ £[R(w,)+ N(w,) — f(x)],

,01(5) = 10, (5) + A(5) 8”7, () 5™ (0) —.... = w"D(0) + £[ RG,)+ N(7,) — ()]}

Eq. (24) is make stationary with w,

2, <s>=%wxsn%im)(wwﬂ@))-

n n

Apply restricted variation ow, = 0

[6%,.., ()] =[6%, ()] + 5[ A(s) ][ s"%,() ]

The extremum condition of W, (s) need that, 6w, ,,(s)=0

0=[6%,()]+ 8] A(s) ][ s"7,(5) ],
A(s)= —im.
S

Subsequent iterations obtained through inverse Laplace transform of Eq. (24);

W, (6) = W, (1) = £ {—%{s’"v‘vﬂ () =" W(0) —...— w1 (0) + £[ R(W,) + N(7,) —7@)]}},
S
= £ H {s"w(0)+...+ w<”“)(0)}} + £ {imz[ze(w") +N(w,)— f(x)ﬂ,
S S
wy = £ H{s"”w(oyr ot w('"l)(O)}},
S
W, (1) = +.47 H%[R@,,) +N(i,) - ﬂx)]}
S

3.4. Application of LH-VPM on the system governing equation

Based on the basic rule of LH-VPM, the governing equation may be analyzed as:

d*W(x) d*W(x)

T 2 A T (@ —m*7* 2% =k, )W (x) =k, W (x) =0,
W s"Z[W ] =s""W(0) = 5" W (0) = 5" W "(0) =+ W"(0)
dx” :

,Z[LW(x,y)] + Z[RW(x,y)] + Z[NW(x, y)] = ,Z[f(x, y)],

— 167 —

22

23)

(24)

(25)

(26)

27)

(28)

(29)

(30)

G

(32)

(33)

(34)

(33)



Journal of Siberian Federal University. Engineering & Technologies 2020 13(2): 162-174

S4W_/n (S) - SBW(O) - SZW'(O) — sW"(O) _ Wm(o)

AP AL A o T80 (i s o]
S W (8) = "W (0) — s*W '(0) — s W "'(0) — W "'(0)

7=, )+ A(5) —f|i2m27l'2ﬂ,2 % +<Q2 7t - kw) W,(x)+k W, (x)} oD

Laplace Transform of Boundary condition

W(0)=W"(0)=0, (38)

/T(s) =——

N

Taking the inverse Laplace Transform let the unknown be a = W'(0) and = W'"'(0)
W (x)= A~ [ . J_[ { 1 {1{2 2,292 d;VEx) (Q —mirt At - )W(x)+ka” (x)ﬂ} 39)
st

W, (x) :%x(ﬂxz + 60:), (40)

W, (x)=-%" {%{z{zmzﬁz A ;#qu w7 A = )W, () + kP (x)ﬂ} (41)

W(x)=-£" {% L 2m*n* A?
s

+HQ —m' 7 Ak, )Wy (x) + k P, (x)m, 42)

1| | (-2t 2mt + @~k )(as® +8) k(e +p)

M =414 £ B Tl "
gl { (-miz'2t +Q24— k)(as’+) kp(mlzz+ /3)3} , (44)
s S s

w = %x(ﬂxz +6a)+

(~2594592007° B2 m*x* + Fk, x" —108972864007 a 2'm* +630a Sk, x* + 982800 Bk , x° )
E
436036000k, x* + 2594592000 Bx> — 2594592008k, x* +10897286400Qx — 10897286400k, J
1307674368000 '

Using the definition of VPM, the analytical series solution is obtained.

in (x)+ W, (x) 7, (x) +... 45)

=0

Table 1 provides parameters for validation of the hybrid method to confirm the accuracy

of the results. First equation of the simultaneous equation obtained through introduction of

parameters Table 1 to Eq. (45) to obtain values of the unknowns introduced into the boundary

condition.
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Table 1. Parameters for validation of the model

Pastern?. k Winkler foundation Poisson ratio Integer Aspect ratio
foundation

Kw Kp v m A

0 0 0.3 1 1

'//I(]n) (Q)Wo 'H//](;) (Q) w, =0.

(46)

V/g’) (Q)Wo ‘H//g) (Q)Wz =0.
The polynomials are represented as Wy, W15, W21 and Wy,. Eq. (46) can be written in matrix

form as:

i (@) vy (Q) | fw,] _ [0

(n) (n) ol @7)
Vo (Q) Y (Q) W,
The following Characteristic determinant is obtained applying the non-trivial condition

(0 (0
{"”l(;)( ) i { )}o. s
Y (Q) Yn (Q)

Solving Eq. (48) gives the natural frequencies.
Solving the quadratic Eq. (48) gives the natural frequencies

Q= 11.89228774.

Substitute the values of natural frequency obtained into Eq. (47)

41777 24325
0
12701 28703 |j| _ ' 49)
196444 119607 | | S 0 0
7691 18175

Putting o = 1 and solving for

L= : 49
Bl |-3.881269291) @

Deflection solution of the governing equation gives;

x° (~44326904170x7 +479670396000) 1 ( 40241 )

x (50)
1307674368000 6 10368

w(x) =

4. Results and discussions
The solution of Laplace transform and Variation parameter method is presented here. Table 2
presents comparisons of fundamental natural frequency results of the present study with that of the
past works. It was observed from the Table 2 that, there are good agreements between the present study
and the past results, while Table 3 shows effect of plate resting on elastic foundation. Figs. 2 and 3,

show the fundamental modal shapes of the thin rectangular plate. Also, Figs. 4 and 5 show the variation
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Table 2. Showing validation of results

Edge Condition/ Simply-supported (SS Simply supported- Simply-supported-Free
Dimensionless ply-supp (5S) Clamped (SC) (SF)
Natural frequency Bambill et al [15 Present | Leissa [16 Present | Leissa [16 Present
Ql 19.7392 19.7434 23.6463 23.6486 11.7195 11.7606
0.3

035 —A— Fundamental Frequency T T T T L L L
" || —&— Fundamental Frequency

o
o I
Y} o

Mode Shape
)
=
Mode Shape
o
o

o

005F £

N
0.05 . . . . . . . . . 0.05 . . . . . . . . .
01 02 03 04 05 06 07 08 09 1 0O 01 02 03 04 05 06 07 08 09 1
radius radius
(@ (b)

Fig. 2. Fundamental mode shapes of Simply Supported Condition at both edges and Simply Supported with
Clamped edge

0.9

Fundamental Frequency

0.8
0.7+
0.6

0.5F

Mode Shape

0.4

0.3

0.2+

0.1

Q

. . . . . . . . .
0 0.1 0.2 03 04 05 06 07 08 09 1
radius

Fig. 3. Fundamental mode shapes of Simply Supported Condition at one edge and free at other edge

effects of foundation parameters and aspect ratio on natural frequency. It is observed that the natural
frequency increases with increases in foundation parameters and aspect ratio. Variation of Combine

effect of Winkler and Pasternak foundation also results into increases with natural frequency.

4.1. Effect of foundation Parameter on natural frequency

Figs. 4 and 5 illustrate the effects of foundation Parameter on natural frequency. It is clear from
the Figures that the foundation parameter influences on natural frequency, increasing values of the
foundation parameter has direct 1 effect on the natural frequency based on classical theory. Increasing

stiffness results in increase in natural frequency
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Table 3.Variation of Aspect ratio and foundation coefficient

Edge Natural 2=0.5 =15
Condition | frequency k=10 k=50 k=100 ky=10 k=50 k=100
SS Q1 12.7358 14.2198 15.8809 32.2317 32.8464 33.5989
SC Ql 17.6179 18.7187 20.0097 35.1935 35.7573 36.4497
SF Q1 5.1255 8.1407 10.7829 24.2175 25.0297 26.0093
225
18
215
17+ 21+
g gzo.s
§ 1o H
§ § 20
5157 §19.5—
) 141 19+
18.5
13
181
020 40 60 8 100 120 140 160 180 200 75 20 40 60 80 100 120 140 160 180 200
Elastic Winkler foundation parameter Elastic Winkler foundation parameter
@ (b)

Fig. 4. Variation of foundation parameter on SS-edge and SC edge condition

=== fundamental mode

Natural frequency
=5

. . . . . . . . I
0 20 40 60 80 100 120 140 160 180 200
Elastic Winkler foundation parameter

Fig. 5. Variation of foundation parameter on SF edge condition

4.2. Effect of variation of aspect ratio on natural frequency

According to Figs. 6 and 7 the aspect ratio influences on natural frequency. It is shown that, the
natural frequency increases with the increase in aspect ratio. This is because, the aspect ratio here
means variation in size of plate length divided by width. Increasing size of the plate increases the
stiffness of the plate resulting into the plate being stiffer. It results in increasing the natural frequency
of the plate.

5. Conclusion

In this study, the investigation of dynamic analysis of isotropic rectangular plates resting on

Winkler and Pasternak foundations using Laplace transform and variation parameters method is
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40 R 1 40 R |
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Fig. 6. Variation of Aspect ratio on SS and SC edge condition

100
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90+ 9
/
o
80t KA
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>
2 60t .I‘ g
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g 4
2 40} ¥ 4 4
2 Rd
Rd
30 7’ B
L
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20 "" 7
10 -
b 4
o
0 . . . .
0.5 1 1.5 2 25 3
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Fig. 7. Variation of Aspect ratio on SF edge condition

analyzed. The governing nonlinear partial differential equation is transformed to nonlinear ordinary
differential equation by means of Galerkin method of separation. The nonlinear ordinary differential
equations have been solved using Laplace transform and variation parameters. The accuracies of the
obtained analytical solutions were ascertained with the results obtained by some other methods as
presented in the past works. The obtained analytical solutions were used to examine the effects of
foundation parameter and aspect ratio. Based on the parametric studies, the following observations
were made:

1) Increases in elastic foundation parameter increases the natural frequency.

2) Increases in aspect ratio increases the natural frequency.

3) Increases in combine foundation parameters increases the natural frequency.

Abbreviations: Nomenclature

Length of the plate
Width of the plate
Clamped edge plate

Young’s modulus

mm QTR

Free edge support
— 172 —



Journal of Siberian Federal University. Engineering & Technologies 2020 13(2): 162-174

S: Simply supported edge
e Differential operator
w: Dynamic deflection

X: Space coordinate along the length of thin plate

Symbol

h: Plate thickness

p: Mass density

D: Modulus of elasticity
Q: Natural frequency
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