
The analysis of food samples for 
the presence of Genetically 
Modified Organisms  

User Manual 

JRC F7 – Knowledge for Health and 

Consumer Safety 

EUR 30145 EN 



This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science 

and knowledge service. It aims to provide evidence-based scientific support to the European policymaking 

process. The scientific output expressed does not imply a policy position of the European Commission. Neither 

the European Commission nor any person acting on behalf of the Commission is responsible for the use that 

might be made of this publication. For information on the methodology and quality underlying the data used in 

this publication for which the source is neither Eurostat nor other Commission services, users should contact 

the referenced source. The designations employed and the presentation of material on the maps do not imply 

the expression of any opinion whatsoever on the part of the European Union concerning the legal status of any 

country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. 

Contact information  

Name:   Maddalena Querci  

Address: Joint Research Centre 

 Via E. Fermi, 2749 

 I-21027 Ispra (VA), Italy 

Email:  maddalena.querci@ec.europa.eu 

Tel.: +39 0332 789308

EU Science Hub 

https://ec.europa.eu/jrc 

JRC120237 

EUR 30145 EN 

PDF ISBN 978-92-76-17349-6 ISSN 1831-9424 doi: 10.2760/5277 

Luxembourg: Publications Office of the European Union, 2020 

© European Union, 2020  

The reuse policy of the European Commission is implemented by the Commission Decision 2011/833/EU of 12 

December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Except otherwise noted, 

the reuse of this document is authorised under the Creative Commons Attribution 4.0 International (CC BY 4.0) 

licence (https://creativecommons.org/licenses/by/4.0/). This means that reuse is allowed provided appropriate 

credit is given and any changes are indicated. For any use or reproduction of photos or other material that is 

not owned by the EU, permission must be sought directly from the copyright holders. 

All content © European Union, 2020  

How to cite this report: Querci M., Kagkli D.M., Gatto F., Foti N., Maretti M., Mazzara M., The analysis of food 

samples for the presence of Genetically Modified Organisms – User Manual, EUR 30145 EN, Publications Office 

of the European Union, Luxembourg, 2020, ISBN 978-92-76-17349-6, doi: 10.2760/5277, JRC120237 

mailto:maddalena.querci@ec.europa.eu
https://ec.europa.eu/jrc
https://creativecommons.org/licenses/by/4.0/


 

1 

 

Contents 

Foreword .............................................................................................................. 4 

Acknowledgements and contributions ....................................................................... 6 

Abstract ............................................................................................................... 7 

Session 1 ............................................................................................................. 8 

Overview, General Introduction on Genetically Modified Organisms (GMOs), EU 

Legislation ........................................................................................................ 8 

Introduction .................................................................................................. 9 

Genetic modification in plants........................................................................ 10 

EU legislation, ............................................................................................. 12 

The EURL GMFF ........................................................................................... 16 

The European Food Safety Authority (EFSA). ................................................... 17 

References .................................................................................................. 21 

Session 2 ............................................................................................................ 22 

Manual Presentation, Working Methods and Course Introduction ........................... 22 

How to detect GMOs .................................................................................... 23 

Inherent advantages and limitations of DNA-based and protein-based approaches23 

The DNA-based approach ............................................................................. 23 

The protein-based approach .......................................................................... 25 

References .................................................................................................. 30 

Session 3 ........................................................................................................... 31 

Samples Used during the Course ....................................................................... 31 

Introduction ................................................................................................ 32 

Certified Reference Materials ......................................................................... 32 

References .................................................................................................. 38 

Session 4 ........................................................................................................... 39 

Extraction and Purification of DNA ..................................................................... 39 

Introduction ................................................................................................ 40 

Inhibition .................................................................................................... 40 

Extraction methods ...................................................................................... 42 

Purification methods .................................................................................... 42 

CTAB extraction and purification method ........................................................ 44 

Quality of extracted DNA .............................................................................. 46 

Quantification of DNA by spectrophotometry ................................................... 47 

Principles of spectrophotometric determination of DNA ..................................... 47 

Determination of the concentration of nucleic acids .......................................... 49 

Quantification of DNA by fluorometry ............................................................. 50 



 

2 

 

Experimental ............................................................................................... 51 

References .................................................................................................. 55 

Additional suggested readings ....................................................................... 55 

Session 5 ........................................................................................................... 57 

Agarose Gel Electrophoresis .............................................................................. 57 

Introduction ................................................................................................ 58 

Physical principles of agarose gel electrophoresis ............................................. 58 

Components of agarose gel electrophoresis ..................................................... 61 

Experimental ............................................................................................... 63 

References .................................................................................................. 66 

Session 6 ........................................................................................................... 67 

The Polymerase Chain Reaction (PCR) ................................................................ 67 

Introduction ................................................................................................ 68 

Components, structure and replication of DNA ................................................. 68 

Principles of PCR .......................................................................................... 73 

Instrumentation and components for the PCR ................................................. 77 

Design of primers for PCR ............................................................................. 81 

Specialised PCR ........................................................................................... 84 

PCR in practice ............................................................................................ 86 

References .................................................................................................. 93 

Additional Suggested Reading ....................................................................... 94 

Session 7 ........................................................................................................... 96 

Characteristics of Roundup Ready®Soybean, MON810 Maize, and Bt-11 Maize ........ 96 

Characteristics of Roundup Ready® soybean .................................................... 97 

Characteristics of maize MON810 ................................................................. 102 

Characteristics of maize Bt-11 ..................................................................... 105 

Session 8 ......................................................................................................... 110 

Characteristics of the Conventional and Real-time PCR Systems for Qualitative Analysis

 110 

Smart screening and matrix approach .......................................................... 111 

Characteristics of the qualitative PCR systems described in the manual ............ 112 

Taxon specific PCR ..................................................................................... 112 

Screening method: Detection of the CaMV 35S promoter and nos terminator .... 113 

Construct specific PCR ................................................................................ 116 

References ................................................................................................ 118 

Session 9 ......................................................................................................... 119 

Detection of MON810 Maize, Bt11 Maize and Roundup Ready® Soybean by 

Conventional PCR .......................................................................................... 119 

Taxon specific PCR: soybean-lectin .............................................................. 122 



 

3 

 

Taxon specific PCR: maize-invertase ............................................................ 126 

Screening method for the detection of Genetically Modified Plants ................... 129 

Specific detection of Roundup Ready® soybean, MON810 maize and Bt11 by 

conventional PCR ....................................................................................... 135 

Detection of Roundup Ready® soybean ........................................................ 135 

Detection of maize Bt11 ............................................................................. 138 

Detection of maize MON810 ........................................................................ 141 

Session 10 ........................................................................................................ 145 

Real-time PCR and Quantitative Analysis of GMOs .............................................. 145 

Introduction .............................................................................................. 146 

PCR methods for quantification .................................................................... 147 

Real-time PCR ........................................................................................... 148 

Real-time PCR principles ............................................................................. 148 

Quantification with real-time PCR ................................................................ 154 

Digital PCR ................................................................................................ 160 

References ................................................................................................ 163 

Session 11 ........................................................................................................ 166 

Real-time PCR Protocols for Qualitative and Quantitative Analysis ........................ 166 

Experimental ............................................................................................. 167 

Introduction .............................................................................................. 167 

Real-time PCR for quantitative analysis ........................................................ 167 

Real-time PCR for qualitative analysis .......................................................... 167 

Multiplex element specific method for the detection of P35S and t-nos by real-time 

PCR 168 

References ................................................................................................ 180 

Session 12 ........................................................................................................ 181 

The Protein-based Approach ........................................................................... 181 

Introduction .............................................................................................. 182 

The ELISA technique .................................................................................. 184 

Lateral flow strips ...................................................................................... 187 

References ................................................................................................ 190 

Additional Suggested Reading ..................................................................... 191 

Annexes ........................................................................................................... 192 

Annex 1. Abbreviations .................................................................................. 192 

Annex 2. List of Figures .................................................................................. 193 

Annex 3. List of Tables ................................................................................... 195 

 



  

                                                                                                                        4 

 

Foreword 

The Joint Research Centre of the European Commission is the Knowledge and Science 

service, which supports EU policies providing independent scientific evidence along the 

whole policy cycle. One of the main tasks of the JRC is to create, manage and make sense 

of knowledge as well as develop innovative tools and make them available to policy makers.  

Over the years, the Joint Research Centre has acquired significant level of knowledge in 

relation to Genetic Modified Organism (GMO) detection and quantification, and has 

designed adapted or validated methods for their detection and quantification1. Its capacity 

building in the field also led to the creation and support of different Networks for GMO 

testing across the globe facilitating trade.  

To achieve this, since 20002, several training courses and workshops have been organised 

by the JRC and in some cases jointly with the World Health Organisation (WHO). The 

purpose was to assist staff of control laboratories to become accustomed with molecular 

biology techniques, and to help them adapt their facilities and work programmes to include 

analyses that comply with worldwide regulatory acts in the field of biotechnology.  

The Manual was first prepared in 2000, to support the courses and to provide background, 

theoretical and practical information to the participants. The former Molecular Biology & 

Genomics Unit staff developed it, describing some of the techniques used in their premises:  

The following areas were covered throughout the courses: 

 DNA extraction from raw and processed materials 

 Screening of foodstuffs for the presence of GMOs by conventional Polymerase Chain 

Reaction (PCR)  

 Quantification of GMOs by real-time PCR  

 Quantification of GMOs by the Enzyme-Linked ImmunoSorbent Assay 

This current version of the Manual prepared in 2020, tries to integrate and update 

information presented in previous published versions (2004, 2010). As already mentioned 

in the forewords of the previous versions, the Manual does not aim at substituting scientific 

literature. Instead, it provides background information, and technical details, as well as 

the updated regulatory framework of the European Union. Whenever retained necessary 

additional reading is suggested.  

To facilitate diffusion and consultation, this publication is also available online at:  

https://gmo-crl.jrc.ec.europa.eu/capacitybuilding/documentation.htm  

                                           
1 http://gmo-crl.jrc.ec.europa.eu/StatusOfDossiers.aspx  
2 http://gmo-crl.jrc.ec.europa.eu/capacitybuilding/training.htm   

https://gmo-crl.jrc.ec.europa.eu/capacitybuilding/documentation.htm
http://gmo-crl.jrc.ec.europa.eu/StatusOfDossiers.aspx
http://gmo-crl.jrc.ec.europa.eu/capacitybuilding/training.htm
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Abstract 

The User Manual - background information and didactical guide for the participants 

attending the training courses on ‘The analysis of Food Samples for the Presence of 

Genetically Modified Organisms’ organised by the Joint Research Centre - provides the 

theoretical and detailed practical information on the methodologies and protocols for GMO 

detection used during the training. Structured in 12 Sessions, it covers a wide variety of 

techniques for the detection, identification, characterisation, and quantification of GMOs.  
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Introduction 

Apart from the range of genetically modified crop lines deployed across parts of the globe's 

agricultural regions, all currently grown crop cultivars are the products of intensive 

domestication from their original wild state through continuous selection and controlled 

breeding to be more productive, pest resistant, or to produce a better or different quality 

of product than previous ancestral lines. Such changes, which have been going on since 

the first domestication of plants for human exploitation, involve the exchange or 

recombination of desired traits, or genes, through continuous crossing over time within 

species or between closely related, sexually compatible species groups. In recent decades 

the production of crosses both between plants that are cross compatible in nature, and 

between plants that are considered as naturally cross sterile became possible. Examples 

of techniques used in those cases are embryo-rescue techniques, in vitro/in vivo embryo 

cultivation, ovary and ovule cultures, in vitro pollination and in vitro fertilisation. In 

addition, mutational changes could be obtained, for instance, by irradiation of seeds. 

There is a number of disadvantages to traditional hybridisation and selection procedures. 

One major disadvantage is that breeders often wish to introduce single selected traits 

rather than transferring and recombining entire genomes. Also, the selection and sorting 

of genetically stable varieties is a slow process. 

These drawbacks seem to be alleviated by the application of recombinant DNA and 

transformation technologies. The term genetically modified organisms (GMOs) has been 

introduced to describe organisms whose genetic material has been modified in a way, 

which does not occur in nature under natural conditions of crossbreeding or natural 

recombination. The GMO itself must be a biological unit that is able to multiply or transmit 

genetic material. Applied to crops, the term refers to plants in which a gene or genes from 

different species have been stably introduced into a host genome using techniques of 

genetic transfer and where in most cases such introduced genes produce a gene product 

(a protein). The process of introducing genes into unrelated species and getting them to 

function is known as “genetic transformation”. 

The analysis of notifications for experimental releases in the EU shows the following most 

frequently tested traits: herbicide tolerance, male sterility/fertility restoration, Bt-derived 

insect resistance, virus resistance, fungal resistance and alteration of starch biosynthesis 

(for further details see https://gmoinfo.jrc.ec.europa.eu/).  

https://gmoinfo.jrc.ec.europa.eu/
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Genetic modification in plants 

Although there are many variations on the plant transformation theme, there are few main 

methods for genetic modification in plants. The earliest of the technologies, developed in 

the 1980s, uses a bacterial species (Agrobacterium tumefaciens) to deliver the gene of 

interest into the host plant. 

Agrobacterium, a microorganism that causes plant disease, has been known since the turn 

of the 20th century. In nature, A. tumefaciens has the exceptional ability to transfer a 

particular DNA segment (T-DNA) of its tumour-inducing (Ti) plasmid into the nucleus of 

infected cells where it is then stably integrated into the host genome and transcribed, 

causing the crown gall disease. The T-DNA fragment is flanked by 25-bp direct repeats, 

which act as a cis element signal for the transfer apparatus. 

Scientists take advantage of the fact that any foreign DNA placed between these T-DNA 

borders can be transferred to plant cells to develop Agrobacterium strains in which disease-

causing genes have been replaced with specifically chosen DNA. 

Since this discovery, considerable progress in understanding the Agrobacterium-mediated 

gene transfer process to plant cells has been achieved. However, A. tumefaciens naturally 

infects only dicotyledonous plants and many economically important plants, including 

cereals (which are monocotyledonous), have remained largely inaccessible for genetic 

manipulation. For these cases, alternative direct transformation methods have been 

developed, such as polyethyleneglycol-mediated transfer, microinjection, protoplast, and 

intact cell electroporation and gene gun (biolistic) technology. 

However, Agrobacterium-mediated transformation has various advantages over direct 

transformation methods, as it reduces the copy number of the transgene, potentially 

leading to fewer problems with transgene co-suppression and instability. 

In both cases, the cells (both those infected by Agrobacterium and shot by the "biolistic" 

gun) are regenerated into whole plants, which then carry the new gene, or genes, of 

interest. These plants are tested, intensively reproduced, and ultimately provide the seed 

for a new generation of genetically modified plant lines.  

In addition to the ones mentioned above, other methods are currently being applied to 

obtain new plant varieties containing the desired characteristics generally called new 

breeding techniques (Lusser et al., 2012). These new plant-breeding techniques have been 

reviewed and described in various documents, among which the Scientific Advice 

Mechanism of the European Commission (Scientific Advice Mechanism, 2017). Site-

directed nuclease (SDN) techniques trigger different repair outcomes, and their use can 

lead to changes ranging from point mutations to large insertions and deletions. The 
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European Food Safety Authority in its scientific opinion3 describes the mechanism of SDN 

as follows: 

 In SDN-1 applications, only the SDNs are introduced generating site-specific 

mutations by non-homologous end-joining. 

 In SDN-2 applications, homologous repair DNA (donor DNA) is introduced together 

with the SDN complex to create specific nucleotide sequence changes by 

homologous recombination. The SDN-2 technique can result in minor or more 

substantial changes to the nucleotide sequences of the target gene.  

 In the SDN-3 technique a large stretch of donor DNA (up to several kilobases) is 

introduced together with the SDN complex to target DNA insertion into a predefined 

genomic locus. The predefined locus may or may not have extensive similarity to 

the DNA to be inserted.  

In the case of point mutations, the detection methods widely used in the field of GMO 

detection, are not able to distinguish these products from the conventional counterparts 

(Lusser et al., 2011). The main challenge is to demonstrate that a point mutation has been 

a product of gene editing technology rather than a random mutation occurring in nature. 

Similar challenges and concerns have been addressed by the European Network of GMO 

Laboratories (ENGL) in a recent document4. Currently at EU level discussions are ongoing 

on whether the products of new breeding techniques should be included in the existing 

legislation5. As both the methodologies and the regulatory framework are not yet 

determined, the new breeding techniques will not be addressed in this manual. 

                                           
3 EFSA Panel on Genetically modified organisms (GMO). Scientific opinion addressing the safety assessment of 

plants developed using Zinc Finger Nuclease 3 and other Site-Directed Nucleases with similar function. EFSA 
Journal 2012;10(10):2943. [31 pp.] doi:10.2903/j.efsa.2012.2943. Available online: 
https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2012.2943 

4 http://gmo-crl.jrc.ec.europa.eu/doc/JRC116289-GE-report-ENGL.pdf   
5 European Court of Justice, C-528/16 - Judgement of 25 July 2018. 

http://curia.europa.eu/juris/document/document.jsf?docid=204387&mode=req&pageIndex=1&dir=&occ=first
&part=1&text=&doclang=EN&cid=515140    

 
 

https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2012.2943
http://gmo-crl.jrc.ec.europa.eu/doc/JRC116289-GE-report-ENGL.pdf
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EU legislation6,7 

The use of genetically modified organisms - their release into the environment, cultivation, 

importation and particularly, their utilisation as food or food ingredients - is regulated in 

the European Union by a set of strict procedures. The first community legal instruments 

(Council Directive 90/220/EEC and Council Directive 90/219/EEC) were produced in 1990 

with the specific scope to protect human and animal health and the environment. 

Regarding the release into the environment, the principal community legal instrument, 

considered as the horizontal legal frame governing biotechnology in the EU, is Directive 

2001/18/EC8 on the deliberate release into the environment of genetically modified 

organisms. Directive 2001/18/EC repeals Council Directive 90/220/EEC and strengthens 

previously existing rules on the release of GMOs into the environment, inter alia introducing 

principles for environmental risk assessment, mandatory post-market (environmental) 

monitoring, mandatory supply of information to the public, mandatory labelling and 

traceability at all stages of placing on the market, and establishes a molecular register9. 

The consent for the release into the environment of GMOs is granted for a maximum period 

of ten years, starting from the date on which the authorization is issued, and can be 

renewed following the procedure laid down in Article 17 of Directive 2001/18/EC. After the 

placing on the market of a GMO as or in a product, the notifier shall ensure that post-

market monitoring and reporting is carried out according to the conditions specified in the 

consent10.  

Directive 2001/18/EC (amended by Directive 2008/27/EC11) is implemented in each 

Member State by national laws. The Directive deals with both small-scale field trials 

(voluntary releases carried out for experimental purposes, dealt with in part B of the 

Directive) and the marketing provisions of GMOs (dealt with in part C). 

Directive 2001/18/EC has been also amended by Directive (EU) 2015/41212 to grant the 

right to Member States to restrict or prohibit the cultivation of genetically modified 

organisms (GMOs) in their territory.  

A series of vertical legal instruments deal more specifically with the approval and safe use 

of GMOs intended for human and animal consumption:  

                                           
6 See a non-exhaustive list of the most relevant EU Regulations/Directives pertaining GMOs in Table 1. 
7 Status on 24.08.2017 
8 Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 
9 A sister directive, Directive 2009/41/EC of the European Parliament and of the Council, repealing Council 

Directive 98/81/EC of 26 October 1998 deals with the contained use and risk assessment of genetically modified 
micro-organisms. 

10The updated information and status of the application dossiers can be found at 
http://gmoinfo.jrc.ec.europa.eu/gmc_browse.aspx 

11 Directive 2008/27/EC of the European Parliament and of the Council of 11 March 2008 
12 Directive (EU) 2015/412 of the European Parliament and of the Council of 11 March 2015 

http://gmoinfo.jrc.ec.europa.eu/gmc_browse.aspx
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Regulation (EC) No.1829/2003 introduces for the first time, specific rules on GM feed, 

strengthens the rules for safety assessment of GMOs and enshrines labelling requirements 

for GM food and feed. As a main feature, this Regulation introduces one single authorisation 

procedure covering both food and feed use, meaning that operators may file a single 

application for the GMO and all its uses if they wish, where a single risk assessment is 

performed and a single authorisation is granted for the GMO and all its uses. 

Under Regulation (EC) No. 1829/2003 the applicant shall submit a full dossier, including a 

detection method for the genetically modified event in question. The dossier, and in 

particular, the environmental and food safety risk assessment parts, are evaluated by the 

European Food Safety Authority (EFSA), established by Regulation (EC) No. 

178/200213. The detection methods provided by the applicant are evaluated and 

validated by the European Union Reference Laboratory for GM food and feed (EURL14 

GMFF), as established by Regulation (EC) No. 1829/2003.  

Similarly to the provisions of Directive 2001/18/EC for the release of GMOs into the 

environment, the authorisation for GM food and feed can last a maximum of 10 years and 

can, afterwards, be renewed following the procedure laid down in Article 11 and Article 23 

of the Regulation. The full and updated list of authorised GM food and feed can be consulted 

through the EU register web page15 . 

A ‘sister’ Directive governs the contained use of genetically modified micro-organisms 

(Council Directive 98/81/EC of 26 October 1998 amending Council Directive 

90/219/EEC on the contained use of genetically modified micro-organisms).  

In addition to the Directives mentioned above, a series of vertical legal instruments have 

been elaborated and implemented over the years, dealing more specifically with the 

approval and safe use of GMOs intended for human consumption. The placing on the 

market within the Community of novel foods or novel food ingredients was, until recently, 

regulated by a vertical piece of legislation: Regulation (EC) No 258/97. The specific 

issue of labelling of GM food has been addressed by several legal instruments. Labelling 

requirements were first mentioned in Regulation (EC) No 258/97 (Novel Foods 

Regulation), but specific GM maize and soybean lines were subsequently subjected to 

labelling by the introduction of Council Regulation (EC) No. 1139/98.  

Council Regulation (EC) 1139/98 provided a model for labelling based on the principle that 

a GM food or ingredient is no longer considered to be equivalent to an existing, non-GM 

one, if DNA or protein resulting from the genetic modification is detectable. Additives were 

                                           
13 Regulation (EC) No. 178/2002 of the European Parliament and of the Council of 28 January 2002 
14 Originally defined Community Reference Laboratory (CRL) 
15 The complete list of authorised GM food and feed can be found in the EU register at the page 

https://webgate.ec.europa.eu/dyna/gm_register/index_en.cfm 

https://webgate.ec.europa.eu/dyna/gm_register/index_en.cfm
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excluded from the labelling requirements until Commission Regulation (EC) 50/2000 

was introduced.  

Regulation 1139/98 was then amended by the so-called “threshold regulation” 

(Commission Regulation (EC) 49/2000 of 10 January 2000 amending Council 

Regulation (EC) No 1139/98) that tried to cope with the problem of unintended 

contamination and introduced the concept of threshold. 

This Regulation stipulated that foodstuffs shall not be subject to the additional specific 

labelling requirements where material, derived from the genetically modified organisms, 

was present in food ingredients in a proportion no higher than 1% of the food ingredients 

considered individually. 

In addition, in order to establish that the presence of this material was adventitious, 

operators had to supply evidence that appropriate steps to avoid using genetically modified 

organisms were taken. 

Several reasons, including the controversial opinion of different users associations in 

relation to GMOs, difficulty in interpretation and application of the legal instruments issued 

over time, the fact that no specific EU legislation on GM feed was in place, among others, 

highlighted the need for unified, updated and complete legal instruments on this issue. 

Finally, in October 2003, two Regulations were published that, amending or repealing 

previous legal instruments, provided a more complete and informative guidance on these 

matters. 

The EU recognizes the consumers’ right for information and labelling as a tool to make an 

informed choice. In Regulation (EC) 1829/2003, rules for safety assessment have been 

strengthened and expanded. This Regulation introduces, for the first time, specific rules on 

GM feed and enshrines labelling requirements for GM food and feed, so far only partially 

covered by Council Regulation (EC) 1139/98, and Commission Regulation (EC) 49/2000. 

As a main feature, this Regulation implements the “one key-one door” approach: one single 

authorisation covers both food and feed use, therefore filling the legal gap for feed products 

approval, whilst abandoning the simplified procedure based on the concept of “substantial 

equivalence”. 

Furthermore, Regulation (EC) No. 1829/2003 introduces a minimum labelling threshold for 

authorised GM food and feed, set at 0.9% of the total ingredients. Meaning that below this 

threshold, the GM does not have to be labelled, if its presence is adventitious or technically 

unavoidable. 

Regulation (EC) No. 1830/2003 reinforces the labelling rules on GMOs. Mandatory 

labelling in accordance with the 0.9% threshold is extended to all food and feed irrespective 
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of detectability. It also provides the definition of traceability as the ability to trace GMOs 

and products produced from GMOs at all stages of their placing on the market throughout 

their production and distribution chains. Under Regulation (EC) 1829/2003 (in force since 

18 April 2004) the applicant shall submit a full dossier, including a detection method of the 

particular genetically modified event in question. The dossier, and in particular, the 

environmental and food safety risk assessment parts, are evaluated by the European Food 

Safety Authority (Established by Regulation (EC) 178/2002 of the European Parliament and 

of the Council of 28 January 2002). The detection methods provided by the applicant are 

evaluated and validated by the Community Reference Laboratory (Established by 

Regulation (EC) 1829/2003). Methods are thus necessary, not only to detect the presence 

of a GMO in a food/feed matrix but also to identify the specific GMO and to quantify the 

amount of GMOs in different food and feed ingredients. 

Qualitative detection methods can be used as an initial screening of food/feed products, to 

investigate whether GMO specific compounds (DNA and/or proteins) are present. 

Qualitative analysis could, thus, be performed on products, sampled from retailers, from 

supplies stored in stockpiles, or from points further up the supply chain. 

If the qualitative analysis provides an indication of the presence of GMOs, the subsequent 

quantitative test must give a decisive answer concerning the labelling requirements. 

Regulation (EU) No. 619/201116, the so called "Low Level Presence" (LLP) Regulation, 

has been adopted in the EU for GM feed material. This Regulation refers to the GM material 

for which the authorisation procedure is pending for more than 3 months in the EU but has 

been authorized elsewhere in the world (asynchronous authorization), or of which the 

authorisation has expired. The Regulation foresees that samples containing less than 0.1% 

mass fraction of GM material are to be considered compliant with the EU legal framework, 

taking into account the margin of error (measurement uncertainty), ‘where the event-

specific quantitative methods of analysis submitted by the applicant have been validated 

by the EURL and provided that the certified reference material is available’.  

The growing use of GMOs worldwide led to the establishment of the Cartagena Protocol on 

Biosafety17 in 2000. Within this international agreement, the impact of GMOs on biosafety 

is taken into account. The Biosafety Clearing House18 (BCH) is the main available 

instrument to exchange information on GMOs import/export, national legislation and 

regulatory decisions (approval/prohibition). The European Union, being Party to this 

international agreement, has implemented the rules on transboundary movement of GMOs 

                                           
16 Commission Regulation (EU) No. 619/2011 of 24 June 2011 
17 https://bch.cbd.int/protocol  
18 https://bch.cbd.int/  

https://bch.cbd.int/protocol
https://bch.cbd.int/
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by means of Regulation (EC) No. 1946/200319, which deals with the requirements needed 

for export of GMOs to third countries and Directive 2001/18/EC as regards imports of GMOs 

into the EU. 

A comprehensive list of the most relevant pieces of legislation in the GMO detection field 

is presented in Table 1. More in-depth information on legislation on GMOs can be found in 

the publication "The EU Legislation on GMOs - An overview"20. 

 

The EURL GMFF  

An essential integral component of the EU legislative procedure is the EURL GMFF. In the 

context of Regulation (EC) No. 1829/2003, the Directorate General Joint Research Centre 

(JRC) of the European Commission has been appointed as the EURL GMFF and is assisted 

by the European Network of GMO Laboratories (ENGL)21. 

The EURL GMFF has the mandate to provide and distribute control samples to the National 

Reference Laboratories (NRLs), to evaluate the data provided by the applicant, validate 

the analytical methods for the detection and identification of the transformation event 

(ensuring that they are “fit for the purpose of regulatory compliance”) and to submit 

evaluation reports to EFSA. It should also provide scientific and technical advice in case of 

disputes. Under Regulation (EC) No. 882/200422, amended by Regulation (EU) 2017/62523, 

the duties of the EURLs include provision of analytical methods, organisation of 

comparative testing, training courses and capacity building activities. 

The EURL GMFF has the responsibility of the chairmanship and secretariat of the ENGL24; 

which enforces the network among GMO related laboratories and is composed of around 

100 control laboratories from all EU Member States and associated countries (i.e. 

Switzerland, Norway and Turkey). The main purpose of the ENGL is to act as a unique 

platform for experts that are involved in the sampling, detection, identification and 

quantification of GMOs - in seeds, grains, food, feed and environmental samples - and 

where technical items can be put forward and discussed. In the framework of the network 

activities, training courses are one of the main tools to achieve the objectives. 

 

                                           
19 Regulation (EC) No 1946/2003 of the European Parliament and of the Council of 15 July 2003 
20 D. Plan, G. Van den Eede, The EU Legislation on GMOs - An overview. EUR 24279 EN – 2010. ISBN 978-92-

79-15224-5. ISSN 1018-5593. doi:10.2788/71623, https://ec.europa.eu/jrc/en/publication/eur-scientific-and-
technical-research-reports/eu-legislation-gmos-overview  

21 http://gmo-crl.jrc.ec.europa.eu/  
22 Regulation (EC) No. 882/2004 of the European Parliament and of the Council of 29 April 2004 
23 Regulation (EU) 2017/625 of the European Parliament and of the Council of 15 March 2017  
24 http://gmo-crl.jrc.ec.europa.eu/ENGL/ENGL.html  

https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/eu-legislation-gmos-overview
https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/eu-legislation-gmos-overview
http://gmo-crl.jrc.ec.europa.eu/
http://gmo-crl.jrc.ec.europa.eu/ENGL/ENGL.html
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The European Food Safety Authority (EFSA). 

The European Food Safety Authority is an agency of the European Commission legally 

established by the General Food Law (Regulation 178/2002). Its task in the field of GMOs 

is to evaluate their safety before a market authorization decision is made. EFSA performs 

the risk assessment of the potential impact of GMOs on human health, animal health and 

the environment. The risk assessment is integral part of the decision making process for 

the authorization of the GMOs25.  

 

EFSA applies the principles of GMO risk assessment considering the following points (as 

described in its website26): 

 Molecular characterisation: assessment of the molecular structure of the newly 

created proteins, their functioning and their potential interactions. 

 Comparative analysis: comparison of the GM plant with its conventional 

counterpart. The aim is to detect differences in the plant’s observable appearance 

such as height and colour – phenotypic characteristics – and its agronomic 

characteristics such as yield. The analysis also compares the nutritional values of 

the GM plant and its conventional counterpart. 

 Evaluation of potential toxicity and allergenicity. 

 Evaluation of potential environmental impact. 

 

GMO authorisations for the EU market are valid for 10 years, after which EFSA re-assesses 

it.  

  

                                           
25 https://ec.europa.eu/food/sites/food/files/plant/docs/gmo_auth_decision-making-process.pdf 
26 http://www.efsa.europa.eu/en/topics/topic/gmo 

https://ec.europa.eu/food/sites/food/files/plant/docs/gmo_auth_decision-making-process.pdf
http://www.efsa.europa.eu/en/topics/topic/gmo
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Table 1. Key EU legislation relevant to GMO detection27,28 

 

                                           
27As from The EU Legislation on GMOs - An overview. https://ec.europa.eu/jrc/en/publication/eur-scientific-and- 

technical-research-reports/eu-legislation-gmos-overview;  
   See also https://ec.europa.eu/food/plant/gmo/legislation_en    
28 The full text of all legislations can be found in Eur-Lex, the Official Journal of the European Union, EU case law  

and other resources for EU law, at http://eur-lex.europa.eu/homepage.html?locale=en   

Number Topic Publication Key Provisions 

Directive 

2001/18/EC 

Deliberate 

release into the 

environment of 

GMOs 

OJ L 106 

17.04.2001 

Community procedure for authorisation 

of deliberate release (experimental or 

commercial) of GMOs into the 

environment 

Definition of a GMO 

Mandatory labelling of GMOs 

Registers for recording public 

information on GMOs 

Regulation (EC) 

No 178/2002 

Food safety OJ L 31 

01.02.2002 

General principles and requirements of 

food law, establishing the European 

Food Safety Authority and laying down 

procedures in matters of food safety 

Regulation (EC) 

No 1829/2003 

Genetically 

Modified Food 

and Feed 

OJ L 268 

18.10.2003 

Community procedure for authorisation 

of both GM food and GM feed (including 

one door-one key authorisation process, 

allowing approval of a GMO under 

Regulation (EC) No 1829/2003 both for 

food/feed uses and for cultivation) 

Mandatory labelling of GM food and 

feed, irrespective of detectability of DNA 

or protein resulting from the genetic 

modification 0,9% labelling threshold 

for the adventitious or technically 

unavoidable presence of GM material in 

food or feed 

Mandatory submission of detection 

methods and samples of GM food/feed, 

including validation by the Community 

Reference Laboratory (CRL) 

Regulation (EC) 

No 1830/2003 

Traceability and 

Labelling of 

GMOs and food 

feed produced 

from GMOs 

OJ L 268 

18.10.2003 

Operators must transmit the following 

information to the operator receiving 

the product: 

- an indication that the product contains 

GMOs 

- the unique identifier(s) assigned to 

those GMOs 

 

 

https://ec.europa.eu/jrc/en/publication/eur-scientific-and-%20technical-research-reports/eu-legislation-gmos-overview
https://ec.europa.eu/jrc/en/publication/eur-scientific-and-%20technical-research-reports/eu-legislation-gmos-overview
https://ec.europa.eu/food/plant/gmo/legislation_en
http://eur-lex.europa.eu/homepage.html?locale=en
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Regulation (EC) 

No 1946/2003

Transboundary 

Movement of 

GMOs  

OJ L 287 

05.11.2003 

Specific requirements for exports of 

GMOs from the EU to third countries in 

order to ensure compliance with the 

obligations in the Cartagena 

Protocol on Biosafety (including 

information to be provided to third 

countries and to the Biosafety 

Clearing House BCH) 

Regulation (EC) 

No 65/2004 

System for 

assignment of 

Unique 

Identifiers for 

GMOs 

OJ L 10 

16.01.2004 

Unique Identifiers should be assigned to 

GMOs according to the format defined in 

the Annex and should appear in the 

GMO authorisation 

Decision 

2004/204/EC 

Detailed 

arrangements 

for the registers 

recording 

information on 

GMOs 

OJ L 65 

03.03.2004 

Details about the information to be 

recorded in the GMO registers provided 

for in article 31 of Directive 2001/18/EC 

Regulation (EC) 

No 641/2004 

Detailed rules for 

Implementation 

of Regulation 

(EC) No 

1829/2003 on 

GM food feed 

OJ L 102 

07.04.2004 

Details regarding the contents of an 

application for GM food feed 

authorisation, in particular regarding 

method validation and reference 

material 

Recommendation 

2004/787/EC 

Technical 

guidance for 

sampling and 

detection of 

GMOs 

OJ L 348 

24.11.2004 

Technical guidance in particular about 

sampling protocols and analytical test 

protocols (incl. unit of measurement for 

percentage of DNA) 

Regulation (EC) 

No 882/2004 

Official controls 

performed to 

ensure 

compliance with 

feed and food 

law 

OJ L165 

30.04.2004 

(corrigendum 

in OJ L 191 

28.05.2004) 

Community harmonised framework on 

official controls performed to ensure 

compliance with feed and food law 

Designation and activities of Community 

Reference Laboratories and National 

Reference 

Laboratories (incl. on GMOs) 

Regulation (EC) 

No 1981/2006 

Detailed rules for 

Implementation 

of article 32 of 

Regulation (EC) 

No 1829/2003 on 

the CRL for 

GMOs 

OJ L 368 

23.12.2006 

Detailed rules concerning: 

- the contribution to the costs of the

tasks of the Community Reference

Laboratory and of the National

Reference Laboratories

- the establishment of National

Reference Laboratories assisting the

CRL for GMOs

Directive 

2008/27/EC 

Release into the 

environment of 

GMOs 

OJ L 81 

20.3.2008 

Deliberate release into the environment 

of genetically 
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modified organisms, as regards the 

implementing powers conferred on the 

Commission 

Regulation (EU) 

No 619/2011 

Analytical 

methods for 

GMOs 

OJ L 166 

25.6.2011 

Methods of sampling and analysis for 

the official control of feed as regards 

presence of genetically modified 

material for which an authorisation 

procedure is pending or the 

authorisation of which has expired 

Regulation (EU) 

No 503/2013 

Applications for 

authorisation of 

genetically 

modified food 

and feed in 

accordance with 

Regulation (EC) 

No 1829/2003 

OJ L157 

08.06.2013 

Replaces 641/2004 and tackles the 

same issues of 641/2004 with some 

additional information requested for the 

authorisation procedure 

Directive (EU) 

2015/412 

Restriction or 

prohibition of 

GMO cultivation 

in Member 

States  

OJ L 68 

13.3.2015 

Possibility for the Member States to 

restrict or prohibit the cultivation of 

genetically modified organisms (GMOs) 

in their territory 

Regulation (EU) 

No 2017/625 

Official controls 

for food and feed 

GMOs 

OJ L 9507 

04.2017 

Official controls and other official 

activities performed to ensure the 

application of food and feed law, rules 

on animal health and welfare, plant 

health and plant protection products 

Directive (EU) 

2018/350 

Environmental 

Risk assessment 

OJ L 67 

9.3.2018 

Amendment to Directive 2001/18/EC as 

regards environmental risk assessment 

(ERA) of GMOs 
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How to detect GMOs 

Transgenic plants are characterised by the insertion of a new gene (or a new set of genes) 

into their genomes. The new gene(s) are translated and the new protein(s) expressed. This 

gives the plant a new characteristic, such as resistance to certain insects or tolerance to 

herbicides. The basis of every type of GMO detection technology is to exploit the difference 

between the unmodified variety and the transgenic plant. This can be done by detecting 

the new transgenic DNA that has been inserted, or the new protein expressed, or (if the 

protein acts as an enzyme), by using chemical analysis to detect the product of the 

enzymatic reaction. 

Traditionally, the two approaches that have been mostly used for detecting genetic 

modification in crops such as soybeans, corn, cotton and others are ELISA (Enzyme-Linked 

ImmunoSorbent Assay), and PCR (Polymerase Chain Reaction). ELISA involves testing for 

the presence of specific proteins by exploiting the specificity of binding between expressed 

antigen and target antibody, while PCR is based on the detection of novel DNA sequences 

inserted into the plant genome. These methods detect the absence or presence of a GMO 

in the sample and can also give an indication of the quantity (percentage) in a tested 

sample. 

The first method validated in the EU was a PCR-based screening method able to detect 

most of the GMOs approved for commercialization at the time (Lipp et al., 1999). This 

method, developed by Pietsch et al. (1997), is based on the detection of the control 

sequences flanking the newly introduced gene, namely the 35S promoter and the nos 

terminator. The validation was coordinated by the Joint Research Centre (JRC) Food 

Products and Consumer Goods Unit of the former Institute for Health and Consumer 

Protection (IHCP), in collaboration with the former Institute for Reference Materials and 

Measurements (IRMM), which was responsible for the production of appropriate Certified 

Reference Materials (CRMs). Since then many other PCR-based methods have been 

developed and validated (http://gmo-crl.jrc.ec.europa.eu/gmomethods/). Research efforts 

were also directed at the development of protein-based methods and one of the first 

immunological approaches validated was a highly specific method for the detection of 

Roundup Ready® soybean using ELISA (Lipp et al., 2000).  

Inherent advantages and limitations of DNA-based and 

protein-based approaches 

 

The DNA-based approach 

Analytical methods based on PCR technology are increasingly used for the detection of DNA 

sequences associated with GMOs. PCR allows the selective amplification of specific 

http://gmo-crl.jrc.ec.europa.eu/gmomethods/
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segments of DNA occurring at low copy number in a complex mixture of other DNA 

sequences. In PCR, small complementary DNA pieces referred to as primers are used in 

pairs. The primer pair is designed to hybridise to complementary sequence recognition 

sites on opposite strands of the target DNA of interest. Through a series of repetitive 

differential thermal cycles, a DNA polymerase aids the replication and the exponential 

amplification of the sequence between the primer pair. Finally, these amplified pieces are 

subjected to standard gel electrophoresis so that their presence can be visualized based 

on their size determination. 

Numerous PCR-based methods, which can detect and quantify GMOs in agricultural food 

and feed crops, have been developed. Moreover, the determination of genetic identity 

allows for segregation and traceability (identity preservation) throughout the supply chain 

of genetically modified (GM) crops. A prerequisite for GMO detection comprises knowledge 

of the type of genetic modification, including the molecular make-up of the introduced gene 

and the regulatory elements (promoters and terminators) flanking it. For analysis 

purposes, a minimum amount of sample material containing intact DNA comprising the 

target gene is required. PCR is a laboratory-based technique, requiring trained staff and 

specialised equipment. 

Some of the key characteristics of PCR diagnostics are as follows: 

 Compared to protein approaches, it is more sensitive, capable of detecting one or 

a few copies of a gene or target sequence of interest within an entire organism’s 

genetic material, or genome. As a result of this high sensitivity, very low levels of 

contamination can result in false positives. Therefore, attention must be paid to 

prevent cross contamination. 

 It requires little reagent development time compared to immunological assays 

(primer synthesis versus antibody production). 

 All reagents needed are commercially available and can be easily obtained from a 

number of sources. However, some of these require a license for use in commercial 

diagnostic applications. 

 Sample analysis time requires approximately one day. 

 PCR is capable of discriminating between different types of genetic modification 

(also referred to as transgenic events) if properly developed. Diagnostic methods 

for identifying specific transgenic events require additional development time and 

validation efforts. 
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The protein-based approach 

The protein-based test method uses antibodies specific for the protein of interest. ELISA 

detects or measures the amount of protein of interest in a sample that may contain other 

numerous dissimilar proteins. ELISA uses one antibody to bind the specific protein, a 

second antibody to amplify the detection (optional), and an antibody-conjugated to an 

enzyme whose product generates a colour reaction that can be easily visualised and 

quantified based on comparison of a standard curve of the protein of interest. Trained 

personnel and specialised equipment are required for proper execution of the test. 

The Lateral Flow Tests (LFT) are variation of the ELISA format. Lateral flow strips have the 

advantage that the reaction takes place on one solid support, exploiting the protein solution 

flux through the absorbent strip. Results are obtained in a few minutes and the method, 

although not quantitative, is very economical.  

ELISA, LFT and of immunological methods: 

 Are Less sensitive than PCR methods;  

 Do not require the amplification of the target and, therefore are also less susceptible 

to ‘false positives’ caused by possible minor levels of contaminations; 

 Rely on the commercial development and production of antibodies and protein 

standards; 

 Even though protein-based methods are initially time-consuming and expensive 

during method development and the generation of antibodies and protein 

standards, they are characterised by a very low per sample cost once optimised for 

routine use;  

 Compared to PCR, the ELISA method is considered a rapid test; 

 Are trait-specific and cannot discriminate among different transgenic events 

containing the same transgene or expressing proteins with similar characteristics;  

 Cannot be used to detect GMOs in samples that have undergone processing, e.g. 

industrial treatment.  

Taken into account these considerations, immunological methods (both ELISAand LFT) and 

PCR should be regarded as complementary rather than exclusive to each other. See Table 

1 for a comparison of DNA-based and protein-based approaches. 
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Table 1. Summary and comparison of DNA-based and protein-based approaches. For 

further details, refer to Session 12. 

Analysis Test Target Advantages Disadvantages 

Protein-based 

LFT* Protein 

The test is rapid and can be 
performed on-site, very 
useful as an initial screen for 

seed and grain 

Low sensitivity (LOD* 
0.25% to 1%) 

Does not allow 
quantification 

Not suitable for processed 
samples 

GM* protein levels 
susceptible to variability 
in life cycle moments and 

parts of the plant 

ELISA Protein 
Less prone to false positives 
(LOD 0.01%-0.1%) 

Not suitable for processed 
samples 

GM protein levels 
susceptible to variability 
in life cycle and parts of 
the plant 

Must be performed in a 
laboratory 

DNA-based  PCR DNA 

High sensitivity (LOD 0.01) 

and specificity 

Must be performed in a 
laboratory and requires 

trained personnel and 
equipment.  

Time-consuming 

Capable of detecting all 
GMOs 

Allows quantification (real-
time PCR) 

Effective with a broad range 
of sample types 

Used worldwide in GMO 
testing laboratories 

*LFT= Lateral Flow Test; LOD= Limit of Detection; GM= Genetic modification 
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General considerations and presentation of the Manual 

Method validation is critical to both laboratories and control authorities. Ideally, each 

method should be confirmed for performance verification by a limited number of skilled 

laboratories to provide reproducible, accurate, and specific results. The JRC of the 

European Commission was the first to validate the ELISA and PCR methods for raw 

materials consisting of Roundup Ready® soybean and a PCR method for Maximizer maize 

(Bt-176) and to validate a PCR method for both Roundup Ready® soybean and Maximizer 

maize (Bt-176) in processed food fractions (Lipp et al., 1999, 2000 and 2001). Since 2004, 

various other methods for both qualitative and quantitative analysis have been developed 

and validated. For updated information on validated methods for GMO detection and 

quantification, please see http://gmo-crl.jrc.ec.europa.eu/gmomethods/.  

Sample preparation for both DNA-based and protein-based methods is critical for 

detection and/or quantification. It is important to know the limitations of each procedure 

depending on the qualitative or quantitative information required. Both the sample size 

and sampling procedures dramatically impact on the conclusions that may be drawn from 

any of these testing methods. 

The availability of suitable Certified Reference Materials is a fundamental requirement 

for each detection method. The samples used during the course are Certified Reference 

Materials produced at the former JRC IRMM29 (Trapmann et al., 2008 and Broothaerts et 

al., 2009). The characteristics and corresponding certificates are presented in Session 3. 

Another critical step is sample homogenisation. 

Figure 1 summarises the different steps performed during the course. Optimised DNA 

extraction is fundamental to ensure the presence and quality of extracted and PCR 

amplifiable DNA. This aspect is particularly important as most food commodities on the 

market made from soybeans or maize are highly processed. It is well known that DNA may 

degrade considerably during food processing, particularly by thermal treatment and in the 

presence of water. Thus, the amount of DNA fragments that are still sufficiently long 

enough, and still containing the intact target of interest to allow the detection of the 

presence of GMOs in processed food, might decrease the more the food is processed. In 

addition, a proper, suitable DNA extraction method should ensure the removal of inhibitory 

substances present in the sample. This topic will be covered in Session 4. Several methods 

for DNA extraction have been developed and many commercial companies have produced 

specialised – ready to use – kits. Performance and validity of the different available 

protocols will be discussed during the course. However, in order to avoid direct implications 

with commercial companies, it was decided to perform DNA extraction using the so-called 

                                           
29 Current name: JRC, Directorate for Health, Consumers & Reference Materials 

http://gmo-crl.jrc.ec.europa.eu/gmomethods/
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Cetyltrimethyl ammonium bromide (CTAB) method, a validated and versatile protocol that 

has demonstrated its suitability for a variety of different matrices. 

After DNA extraction, the samples (as well as PCR products) are analysed by agarose gel 

electrophoresis (Session 5). 

The principles, advantages, and drawbacks of the PCR will be presented in Session 6. 

As mentioned above, the efficient utilisation of modern techniques for GMO detection 

depends on the availability of accurate information. GMO detection requires at least a 

partial knowledge of the expected target gene sequence and type of genetic modification. 

The specific characteristics of transgenic lines MON810 maize, Bt-11 maize and Roundup 

Ready® soybean, are presented in Session 7. 

Different PCR approaches have been developed for the detection of approved GMOs. PCR 

specificity depends upon accurate choice of primers. PCR primers can be directed to 

different elements used in the transformation process. “Broad range” PCR detection 

systems, generally called “screening methods”, can be obtained by designing primers 

specific to the most common sequences of genetic elements used in transformation. These 

are generally the regulatory sequences (promoter and terminator). Genetically modified 

plants can also be divided into “categories” according to the structural gene introduced. An 

additional way to direct specificity of the reaction is to choose primers specific to DNA 

sequences located in different genetic elements (e.g. promoter-structural gene, structural 

gene-terminator). Finally, provided that the specific and complete sequence information is 

available, in order to produce really specific methods for a given genetically modified plant, 

“line specific” (transformation event specific) systems can be developed by selecting a 

“unique” sequence combination, present only in that specific transformed line. This is 

generallyobtained by designing primers hybridising in the DNA region spanning the 

integration site junction. The junction between inserted DNA (T-DNA) and host-DNA offers 

a unique nucleotide sequence providing an ideal target for a highly specific PCR test. The 

methods performed during the course are summarised in Figure 1 and described in detail 

in Session 8. The experimental part of the methods and protocols can be found in Session 

9. 

As indicated above, the need of quantifying the events of GMO present in a sample led to 

the development of many PCR-based protocols, which allow not only a qualitative answer 

(presence/absence), but also a more or less precise (depending on the method chosen) 

indication of the relative quantity of GMO present in a given sample. The most common 

DNA-based approach is real-time PCR (Session 10). Real-time PCR is performed using 

specific and sophisticated instrumentation, currently available from different commercial 

companies. The protocols that will be followed during the course can be found in Session 

11. 



Manual Presentation, Working Methods and Course Introduction  

 

Session 2                                                                                                              29 

Finally, Session 12 gives a general introduction to the protein-based approach for the 

detection of genetically modified organisms. In particular, the ELISA and the LFT 

techniques will be explained. 

 

 

 

Figure 1. Flowchart of methods. 
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Introduction 

Sample preparation and homogenization are crucial steps for Genetically Modified 

Organisms (GMO) detection. More exhaustive information can be found in the European 

Network of GMO Laboratories (ENGL) technical report on "Guidelines for sample 

preparation procedures in GMO analysis" (https://ec.europa.eu/jrc/en/publication/eur-

scientific-and-technical-research-reports/guidelines-sample-preparation-procedures-gmo-

analysis). The aim of this technical report is to provide guidelines for a correct sample 

preparation in GMO analysis of food, feed, seed, plants and propagating material samples. 

It sets ad-hoc standard operating procedures for sample preparation including, for 

instance, the evaluation of possible cross-contamination and the safety of the operator. 

The document also details the correct procedure for handling a sample upon its arrival to 

the laboratory to obtain homogenous and representative test portions and how to avoid 

cross-contamination. 

Sampling is an important step in GMO analysis and it is covered by the EU legislation. 

Particularly Regulation (EC) No. 152/2009 and its amendment, Regulation (EU) No. 

691/2013, deals with sampling and analysis of feed. Regulation (EU) No. 619/2011 

deals with sampling and analysis of GMOs for which the authorization has expired or is 

ongoing; Recommendation 2004/787/EC endorses the use of DNA copy number (c-

value) for GMO quantitation and highlights the importance of using Certified Reference 

Materials (CRMs) for GMO testing laboratories. Harmonized rules for the sampling of food 

for GMO detection have not yet been established due to the variety of available products 

containing GM material on the market.  

 

Certified Reference Materials  

One of the main challenges in GMO detection and quantification is the availability of CRMs. 

The majority of CRMs intended for the detection and quantification of GMOs are powders 

produced from seeds or vegetables. These matrix materials are mixtures of non-GMO 

material with GMO material that have been gravimetrically certified for their mass fraction 

(expressed in g/kg) for a specific GMO event. The available concentrations differ for 

individual GM events (and the set of CRMs) and range from nominal 0 g/kg up to 1000 

g/kg. The two major developers and producers of reference materials in the world are the 

American Oil Chemists' Society (AOCS, http://www.aocs.org/index.cfm) and the Joint 

Research Centre of the European Commission (JRC) 

(https://ec.europa.eu/jrc/en/reference-materials/catalogue). 

 

  

https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/guidelines-sample-preparation-procedures-gmo-analysis)
https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/guidelines-sample-preparation-procedures-gmo-analysis)
https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/guidelines-sample-preparation-procedures-gmo-analysis)
http://www.aocs.org/index.cfm
https://ec.europa.eu/jrc/en/reference-materials/catalogue
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How to choose samples and CRMs 

During GMO detection and quantification, it is important to use samples that are 

representative of the market and the different situations that may be encountered in a 

GMO testing laboratory. The more the product is processed the lower the quality and 

quantity of DNA can be (Gryson, 2009). In GMO testing, CRMs are used either for 

qualitative purposes (e.g. positive controls) or for the calibration and quality control of 

GMO quantification measurements based on quantitative real-time Polymerase Chain 

Reaction (qPCR). More information on the correct use of CRMs can be found at 

https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-

reports/training-manual-gmo-quantification-proper-calibration-and-estimation-

measurement-uncertainty. 

 

Samples used during the course 

All samples mentioned in this manual are only given as examples for didactical purposes. 

During the course, we will use different methods to detect the presence of MON810 maize, 

and Roundup Ready® soybean in different matrices. For this purpose, we will use mixtures 

of non-GM and GM maize (MON810) and non-GM and GM soybean (Roundup Ready® 

soybean), at different concentrations (Table 1, 2). Two types of materials will be used: 

 Raw materials 

 Processed materials 

 

Raw materials 

For the scope of this training, series of CRMs and a mixture of CRMs at different 

concentrations (mixed flour) were will be used as testing samples as described below. 

CRMs series. Raw plant materials used during the course are CRMs ERM-BF410K 

(Roundup Ready® soybean) and ERM-BF413K30 (MON810 maize). ERM-BF410K and ERM-

BF413K consist of two sets of CRMs of dried soybean and maize powder, respectively, with 

different GM mass fractions (Roundup Ready® soybean: 0 g/Kg, 1 g/Kg, 10 g/Kg and 100 

g/Kg corresponding respectively to 0, 0.1, 1 and 10% GM nominal value; MON810 maize: 

0 g/Kg, 4.9 g/Kg, 19.8 g/Kg and 99 g/Kg corresponding respectively to 0, 0.5 and 2% GM 

nominal value).  

                                           

30 It should be noted that CRMs might be produced in different batches therefore the reference code will change 
accordingly. An example is CRM series IRMM-413 (reference material for MON810) reported in the former 
version of this manual, which, in the current version, has been substituted by CRM series ERM-BF413K. For 
updated information on available CRMs, please see: https://ec.europa.eu/jrc/en/reference-materials.  

 

https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/training-manual-gmo-quantification-proper-calibration-and-estimation-measurement-uncertainty
https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/training-manual-gmo-quantification-proper-calibration-and-estimation-measurement-uncertainty
https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/training-manual-gmo-quantification-proper-calibration-and-estimation-measurement-uncertainty
https://ec.europa.eu/jrc/en/reference-materials
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The dried soybean powder containing GM Roundup Ready® soybean has been produced 

from whole seeds of a non-modified soy line (Asgrow A1900) and the genetically modified 

event 40-3-2 Roundup Ready® soybean (Asgrow line AG5602 RR). The dried maize powder 

containing GM MON810 maize has been produced from whole kernels of the non-modified 

cultivar EXP258B and MON810 cultivar DKC57-84.  

Mixed Flour. In order to obtain 1% of each GM event in a total of 100 mg mixed flour, 

the following recipe was used: 

 50 mg (total dry weight) of 1% of RR soya (ERM-BF410DK)  

 25 mg (total dry weight) of 2% MON810 (ERM-BF413EK)  

 25 mg (total dry weight) of 0% MON810 (ERM-BF413AK).  

CRM powders were weighed and added directly to reaction tubes ready for DNA extraction.  

The total amount of mixed flour prepared (100 mg) may vary depending on the DNA 

extraction method to be used. Please note that even though samples like flour and milk 

are considered homogenous, this does not mean that they should not be mixed or shaken. 

 

Processed materials 

Snack food crumb. This sample is derived from a GMO proficiency testing scheme to 

which the European Reference Laboratory for GM Food and Feed (EURL GMFF) participated 

(FAPAS, Genetically Modified Material Analysis Scheme -GeMMA, Round 06, test material 

GMO-06B). The material was prepared from commercially available non-GM soya-based 

dried snack food (containing no detectable GM DNA) and GM-containing soya snack food. 

 

Snack food crumb  1372 g GM-free soya snack food, 28 g GM soya snack food 

 

Before mixing, both materials were ground and sieved to give a homogenous crumb mix 

and then tumble-blended overnight. Finally, materials were mixed for approximately one 

hour using a rotary blender. Storage of the materials was at –20°C. 

Biscuit. The original material was produced at the JRC and was used to validate a PCR 

method for both Roundup Ready® soybean and Maximizer maize (Bt-176), in processed 

food fractions (Lipp et al., 2001).  

Any other material, similar to the one mentioned above, would be suitable for the purposes 

of this manual.  
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Dry soybean and maize derived flours were weighed and mixed with the other ingredients 

in the proportion indicated below. 

 

Biscuits # 1 
250 g maize (0% GMO), 250 g soybean (0% GMO), 300 g 

wheat, 200 g sugar, 100 g butter, 10 g salt, 16 g vanilla baking 

powder, 2 eggs 

 

The ingredients were carefully mixed with 600 ml water and homogenised, spread out 

evenly on a baking plate and baked in a pre-heated oven at 180°C with recirculating air 

for 10 min. The material was removed from the oven, covered to avoid contamination and 

cooled down at room temperature. Storage was at -20°C.  

Soy milk powder. This sample is derived from Round 05 FAPAS-GeMMA proficiency 

testing scheme. 

A total of 1700 g of US soybean milk powder were tumble blended overnight with 300 g of 

Roundup Ready® soybean protein isolate. Individual sub-samples (10 g) were dispensed 

into screw-topped plastic containers and stored at ambient temperature prior to 

distribution.  

Biscuits MON810. This material was produced at the JRC (EURL-CT-01/13, Detection and 

Quantification of GM Events in Biscuit Powder (98140 maize, MON 810 maize, MON 863 

maize). 

Dry maize derived flour was weighed and mixed with the other ingredients in the 

proportions indicated below. 

 

Biscuits MON810 
200 g wheat flour, 100 g maize flour* (2% GMO), 150 g 

sugar, 100 g butter, 1 egg 

*2% MON810 maize flour was obtained by adding wild-type maize flour to 100% MON810 

flour and mixing for 30 minutes. 

 

The ingredients were carefully mixed, spread out evenly on a baking tray and baked in a 

pre-heated oven at 180°C with recirculating air for 10 min. The material was removed from 

the oven, covered to avoid contamination and allowed to cool at room temperature. 

Storage was at 4°C until required.  
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List of samples distributed during the course and expected results 

 

Table 1. Expected quantitative results. GMO content is expressed in mass fraction (%) for 

each ingredient (soybean or maize). 

Sample 

% GMO* (for each specific ingredient) 

 

RR soybean MON810 maize 

Biscuits #1 0% 0% 

Mixed flour  1% 1% 

Flour MON810 -  1% 

Snack food 

crumb 

2.2% - 

Soya milk 

powder 

8.9% - 

Biscuits 

MON810 

- 2% 

*For a more detailed explanation on quantitative detection of GMOs, please see Session 

10 and 11. 
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Table 2. Expected qualitative results. The plus (+) symbol means that the correspondent 

result was positive, while the minus (-) means that the result was negative. 

SAMPLE Zein* Lectin* 35S* nos* E35S/hsp70(b)* CTP/EPSPS* 

ERM-BF410AK 

(0%) 

- + - - - - 

ERM-BF410BK 

(0.1%) 

- + + + - + 

ERM-BF410DK 

(1%) 

- + + + - + 

ERM-BF410GK 

10%) 

- + + + - + 

ERM-BF413AK 

(0%) 

+ - - - - - 

ERM-BF413CK 

(0.5%) 

+ - + - + - 

ERM-BF413EK 

(2%) 

+ - + - + - 

ERM-BF413GK 

(10%) 

+ - + - + - 

Biscuits #1 + + - - - - 

Mixed flour  + + + + + + 

Flour MON810 + - + - + - 

Snack food 

crumb 
- + + + - + 

Soya milk 

powder 

- + + + - + 

Biscuits MON810 + - + - + - 

*A more detailed explanation on qualitative detection of GMOs can be found from Session 

7 to 9. 
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Introduction 

The extraction and purification of nucleic acids is the first step in the detection and 

quantification of GMOs. The objective of nucleic acid extraction methods is to obtain 

purified nucleic acids from various sources with the aim of conducting GM specific analysis 

using the Polymerase Chain Reaction (PCR). The quality and purity of the extracted nucleic 

acids is one of the most critical factors for PCR analysis.  

As a wide variety of methods exists for extraction and purification of nucleic acids, the 

choice of the most suitable technique is generally based on the following criteria: 

 Target nucleic acids 

 Organism  

 Starting material (e.g. tissue, leaf, seed, processed material) 

 Desired results (e.g. yield, purity, purification time required) 

 Downstream application (e.g. PCR, cloning, labelling, blotting, real-time PCR, 

cDNA synthesis) 

In recent years, DNA extraction methods have been developed for different matrices 

shifting from a "same strategy for all matrices" approach to a "matrix centred" approach. 

In fact, it is very important to know the nature of the sample for successful DNA extraction. 

For example, it is important to determine whether the sample’s origin is from raw or 

processed material, if it is rich in fat/oil or salt, etc. As an example, extraction from highly 

processed food is more challenging due to the reduced number of intact DNA copies 

available for amplification. At the same time if two methods have a similar extraction 

efficiency for different matrices, then choosing only one helps optimize resources. 

The following paragraph describes the principles of the main steps of DNA extraction and 

purification as well as considerations on inhibition during PCR as a consequence of different 

extraction procedures.  

Inhibition 

Inhibitors are a series of substances of different nature that can be present in the sample 

and that may interfere with the different steps of a PCR analysis. Their presence can be 

related to the extraction buffers or the intrinsic composition of the samples themselves 

(Table 1). The presence of inhibitors can lead to false negative results in the PCR. To 

minimise this effect the most appropriate extraction methods, depending on the matrix to 

be analysed, shall be chosen. In order to detect the presence of PCR inhibitors in the 

sample, it is highly recommended to perform a control experiment to test PCR inhibition. 

For this purpose, a plant-specific (eukaryote or chloroplast) or species-specific PCR analysis 

is commonly used to perform what is referred to as an "inhibition test" or "inhibition run". 
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This is described in more detail in session 10, since it is important in real-time PCR when 

event specific targets are being quantified. 

 

Table 1. Examples of PCR inhibitors reported in the literature and methods to minimize 

inhibition. 

Inhibitor Description and inhibitory 

concentration for PCR 

Methods to minimize inhibition 

TAB ≥ 0.005%; ≥ 0.01% 70% ethanol wash 

EDTA ≥ 0.5mM; ≥ 1 mM Reduce the concentration of EDTA to 

0.1 mM in the TE buffer or simply use 

Tris-HCl (10 mM) to bring DNA in 

solution. DNA can also be brought in 

pure water (but the DNA cannot be 

stored for long term use) 

Ethanol > 1% (v/v) Dry pellet and resuspend 

Fat 

 

Lipase or hexane treatment and 

chloroform extraction. 

Isopropanol > 1% (v/v) Dry pellet and resuspend 

Phenol > 2% (v/v); ≥ 0.2% Incorporation of 1.2% citric acid at 

the DNA extraction step neutralized 

the inhibitory effect of chlorogenic 

acids 

Polysaccharides Acidic polysaccharides such as 

dextran sulphate are inhibitory. 

Dextran sulphate:  

> 0.1%; ≥ 0.001% 

Pectin: > 0.5% 

Xylan: > 0.0025% 

Use CTAB buffer and chloroform 

extraction. Treatment with enzymes 

such as pectinase, cellulase, 

hemicellulase and α-amylase can be 

used to remove polysaccharides. 

High salt precipitation 

Protein 1% casein hydrolisate in PCR 

mixture caused inhibition. 

Use SDS, CTAB or guanidinium 

buffers, proteinase K 

SDS ≥ 0.005% Wash with 70% ethanol 
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Sodium Acetate ≥ 5 mM Wash with 70% ethanol 

Sodium Chloride ≥ 25 mM Wash with 70% ethanol or use silica-

based purification 

CTAB= Cetyltrimethyl ammonium bromide; EDTA= Ethylenediamine tetra acetic acid; 

SDS= Sodium dodecyl sulfate; Tris-HCl= Tris[hydroxymethyl] aminomethane 

hydrochloride 

Extraction methods 

The extraction of nucleic acids from biological material requires the cell lysis, the 

inactivation of cellular nucleases and denaturation of nucleoproteins, the removal of 

contaminants, and the DNA precipitation. Often, the ideal lysis procedure is a compromise 

of techniques and must be rigorous enough to disrupt the complex starting material (e.g. 

tissue), yet gentle enough to preserve the target nucleic acid. Common lysis procedures 

include: 

 Mechanical disruption (e.g. grinding, hypotonic lysis) 

 Chemical treatment (e.g. detergent lysis, chaotropic agents, thiol reduction) 

 Enzymatic digestion (e.g. proteinase K) 

Cell membrane disruption and inactivation of intracellular nucleases can be combined. For 

instance, a single solution may contain detergents to solubilise cell membranes and strong 

chaotropic salts to inactivate intracellular enzymes. After cell lysis and nuclease 

inactivation, cellular debris can be removed either by filtration and/or precipitation.  

Purification methods 

Methods for purifying nucleic acids from cell extracts are usually combinations of two or 

more of the following techniques: 

 Extraction/precipitation 

 Chromatography 

 Centrifugation 

 Affinity separation 

A brief description of these techniques is provided in the following paragraphs 

(Zimmermann et al., 1998). 

 

Extraction/Precipitation 

Solvent extraction is used to eliminate contaminants from nucleic acids. For example, a 

combination of phenol and chloroform is frequently used to remove polar molecules such 
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as proteins. Precipitation with isopropanol or ethanol is used to concentrate nucleic acids. 

If the amount of target nucleic acid is low, an inert carrier (such as glycogen) can be added 

to the mixture to increase precipitation efficiency. Other precipitation methods of nucleic 

acids include selective precipitation using high concentrations of salt (“salting out”) or 

precipitation of proteins using changes in pH. 

Chromatography 

Chromatography methods may utilise different separation techniques such as gel filtration, 

ion exchange, selective adsorption, or affinity binding. Gel filtration exploits the molecular 

sieving properties of porous gel particles. A matrix with defined pore size allows smaller 

molecules to enter the pores by diffusion, whereas bigger molecules are excluded from the 

pores and eluted at the void volume. Thus, molecules are eluted in order of decreasing 

molecular size. Ion exchange chromatography is another technique that utilises an 

electrostatic interaction between a target molecule and a functional group on the column 

matrix. Nucleic acids (highly negatively charged, linear polyanions) can be eluted from ion 

exchange columns with simple salt buffers. In adsorption chromatography, nucleic acids 

adsorb selectively onto silica or glass in the presence of certain salts (e.g. chaotropic salts), 

while other biological molecules do not. A low salt buffer or water can then elute the nucleic 

acids, producing a sample that can be used directly in downstream applications. 

Centrifugation 

Selective centrifugation is a powerful purification method. Frequently, centrifugation is 

combined with DNA precipitation or the use of DNA extraction or purification columns which 

rely on gel filtration to purify DNA or RNA from smaller contaminants (salts, nucleotides, 

etc.), for buffer exchange, or for size selection. Some procedures combine selective 

adsorption on a chromatographic matrix (see above paragraph “Chromatography”) with 

centrifugal elution to purify selectively one type of nucleic acid. 

Affinity separation 

In recent years, more and more purification methods have combined affinity immobilisation 

of nucleic acids with magnetic separation using magnetic beads linked to particles that 

“trap” DNA or RNA based on their chemical properties or charge. For instance, poly(A) + 

mRNA may be bound to streptavidin-coated magnetic particles by biotin-labelled oligo(dT) 

and the particle complex removed from the solution (and unbound contaminants) with a 

magnet. This solid phase technique simplifies nucleic acid purification since it can replace 

several steps of centrifugation, organic extraction and phase separation with a single, rapid 

magnetic separation step. 
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CTAB extraction and purification method 

The cetyltrimethylammonium bromide (CTAB) protocol, which was first developed by 

Murray and Thompson in 1980 (Murray and Thompson, 1980), was successively published 

by Wagner and co-workers in 1987 (Wagner et al., 1987). The method is appropriate for 

the extraction and purification of DNA from plants and plant derived foodstuffs and is 

particularly suitable for the elimination of polysaccharides and polyphenolic compounds 

that otherwise affect DNA purity and therefore quality. This procedure has been widely 

applied in molecular genetics of plants and already been tested in validation trials in order 

to detect GMOs (Lipp et al., 1999; 2001). Several additional variants have been developed 

for a wide range of raw and processed food matrices (Hupfer et al., 1998; Hotzel et al., 

1999; Meyer et al., 1997; Poms et al., 2001). 

Principles of CTAB method: lysis, extraction and precipitation 

Plant cells can be lysed with the ionic detergent CTAB, which forms an insoluble complex 

with nucleic acids in a low-salt environment. Under these conditions, polysaccharides, 

phenolic compounds and other contaminants remain in the supernatant and can be washed 

away. The DNA complex is solubilised by raising the salt concentration and precipitated 

with ethanol or isopropanol. In this section, the principles of these three main steps, lysis 

of the cell membrane, extraction of the genomic DNA and its precipitation will be described. 

Lysis of the cell membrane. As previously mentioned, the first step of the DNA extraction 

is the rupture of the cell and nucleus wall. For this purpose, the homogenised sample is 

first treated with the extraction buffer containing EDTA Tris/HCl and CTAB. All biological 

membranes have a common overall structure comprising lipid and protein molecules held 

together by non-covalent interactions. 

 

 

Figure 1. Simplified representation of the cell membranes31 

As shown in Figure 1, the lipid molecules are arranged as a continuous double layer in 

which the protein molecules are “dissolved”. The lipid molecules are constituted by 

                                           
31 Pictures originally taken from the Genetic Science Learning Center, University of Utah 



Extraction and Purification of DNA  

Session 4                                                                                                               45 

hydrophilic ends called “heads” and hydrophobic ends called “tails”. In the CTAB method 

the lysis of the membrane is accomplished by the detergent (CTAB) contained in the 

extraction buffer. Because of the similar composition of both the lipids and the detergent, 

the CTAB component of the extraction buffer has the function of capturing the lipids 

constituting the cell and nucleus membrane. The mechanism of solubilisation of the lipids 

using a detergent is shown in Figure 2.  

 

 

Figure 2. Lipid solubilisation32 

Figure 3 illustrates how, when the cell membrane is exposed to the CTAB extraction buffer, 

the detergent captures the lipids and the proteins allowing the release of the genomic DNA. 

In a specific salt (NaCl) concentration, the detergent forms an insoluble complex with the 

nucleic acids. EDTA is a chelating component that among other metals binds magnesium 

(Mg). Magnesium is a cofactor for DNase. By binding Mg with EDTA, the activity of present 

DNase is decreased. Tris/HCl gives the solution a pH buffering capacity (a low or high pH 

damages DNA). It is important to notice that, since nucleic acids can easily degrade at this 

stage of the purification, the time between the homogenisation of the sample and the 

addition of the CTAB buffer solution should be minimised. After the cell and the organelle 

membranes (such as those around the mitochondria and chloroplasts) have been broken 

apart, the purification of DNA can be performed. 

 

Figure 3. Disruption of the cellular membrane and extraction of genomic DNA2 

Extraction. In this step, polysaccharides, phenolic compounds, proteins and other cell 

lysates dissolved in the aqueous solution are separated from the CTAB nucleic acid 

complex. The elimination of the polysaccharides, as well as phenolic compounds, is 

                                           
32 Pictures originally taken from the Genetic Science Learning Center, University of Utah 
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particularly important because of their ability to inhibit a great number of enzymatic 

reactions. Under low salt concentration (< 0.5 M NaCl), the contaminants of the nucleic 

acid complex do not precipitate and can be removed by extraction of the aqueous solution 

with chloroform. The chloroform denatures the proteins and facilitates the separation of 

the aqueous and organic phases. Normally, the aqueous phase forms the upper phase. 

However, if the aqueous phase is dense because of salt concentration (> 0.5 M), it will 

form the lower phase. In addition, the nucleic acid will tend to partition into the organic 

phase if the pH of the aqueous solution has not been adequately equilibrated to a value of 

pH 7.8 - 8.0. If needed, the extraction with chloroform is performed two or three times in 

order to remove completely the impurities from the aqueous layer. To achieve the best 

recovery of nucleic acid, the organic phase may be back-extracted with an aqueous solution 

that is further added to the prior extract. Once the nucleic acid complex has been purified, 

the last step of the procedure, i.e. precipitation, can be accomplished.  

Precipitation. In this final stage, the nucleic acid is co-precipitated with salt. DNA 

precipitation is performed by using high salt concentrations of sodium chloride or sodium 

acetate, and alcohol, either ethanol or isopropanol. The purpose of DNA precipitation is to 

remove the detergent and other chemicals used during the extraction as well as to 

concentrate the DNA. Following this, the precipitate is treated or washed with 70% ethanol 

to remove excess salt from the DNA. Following DNA precipitation and washing, the 

precipitated DNA is dissolved in a solvent such as a diluted concentration of tris-EDTA (TE) 

buffer or sterile molecular biology grade water. 

Commercially available kits 

Nowadays, extraction and purification kits are commercially available in many different 

variants. As previously stated, a kit does not necessarily apply to every kind of matrix but 

more than one kit can be suitable for the same sample. Kit extraction methods can also be 

combined with different extraction protocols to aid in column purification of the extracted 

DNA. 

References about the suitability of different extraction methods for different matrixes are 

available at the end of this chapter. 

Quality of extracted DNA 

Once extraction and purification procedures have been completed, the quality of DNA 

needs to be assessed. Some examples of DNA quantification methods are: 

 UV Spectrophotometry 

 Fluorometry 

 Agarose Gel Electrophoresis (which will be discussed in session 5) 
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Each of these methods has advantages and disadvantages, so it is important to evaluate 

which one is fitter for the purpose, in terms of the resources available in the laboratory. 

It is important to assess the quality and purity of the DNA, both for detection and 

quantification because, if the DNA is highly damaged or inhibited, the analysis could result 

in a false negative or in an underestimation of GMO content, respectively.  

Quantification of DNA by spectrophotometry 

DNA, RNA, oligonucleotides and even mononucleotides can be measured directly in 

aqueous solutions in a diluted or undiluted form by measuring the absorption A (also 

defined as optical density, OD) in ultraviolet light (but also in the visible range). If the 

sample is pure (i.e. without significant amounts of contaminants such as proteins, phenol 

or agarose), the spectrophotometric measurement of the amount of ultraviolet irradiation 

absorbed by the bases is simple and reasonably accurate. For this method, aqueous buffers 

with low ion concentrations (e.g. TE buffer) are ideal. The concentration of nucleic acids is 

usually determined by measuring at 260 nm against a blank. Interference due to 

contaminants can be recognised by the calculation of a “ratio”. Since proteins absorb at 

280 nm, the ratio A260/A280 is used to estimate the purity of nucleic acid. Pure DNA should 

have a ratio of approximately 1.8, whereas pure RNA should give a value of approximately 

2.0. Absorption at 230 nm reflects contamination of the sample by substances such as 

carbohydrates, peptides, phenols or aromatic compounds. In the case of pure samples, the 

ratio A260/A230 should be approximately 2.2. It is important to consider that when using the 

spectrophotometric approach the chemicals used in the extraction of the DNA can influence 

the concentration determination as well as the A260/A280 ratio. 

Principles of spectrophotometric determination of DNA 

A spectrophotometer makes use of the transmission of light through a solution to 

determine the concentration of a solute within the solution. The apparatus operates on the 

basis of a simple principle in which light of a known wavelength passes through a sample 

and the amount of light energy transmitted is measured with a photocell on the other side 

of the sample.  

As shown in Figure 4, the design of the single beam spectrophotometer involves a light 

source, a prism, a sample holder and a photocell. Connected to each are the appropriate 

electrical or mechanical systems to control the illumination intensity, the wavelength and 

for the conversion of energy received at the photocell into a voltage fluctuation. The voltage 

fluctuation is then displayed on a meter scale or is recorded via connection to a computer 

for later investigation.  
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Figure 4. Schematic light transmission 

 

All molecules absorb radiant energy at a specific wavelength, from which it is possible to 

extrapolate the concentration of a solute within a solution. According to the Beer-Lambert 

law there is a linear relationship between the absorbance A and the concentration of the 

macromolecule given by the following equation: 

 

A = OD = l c (1) 

 

Where  is the molar extinction coefficient, c is the concentration; and l is the path length 

of the cuvette.  

Proteins and nucleic acids absorb light in the ultraviolet range within wavelengths of 

between 210 and 300 nm. As previously explained, the maximum absorbance of DNA and 

RNA solutions is at 260 nm whereas the maximum absorbance of protein solutions is at 

280 nm. Since, both DNA and RNA solutions do partially absorb light at 280 nm, and protein 

solutions partially absorb light at 260 nm, the ratio between the readings at 260 nm and 

280 nm (A260/A280) provides an estimate of the purity of the nucleic acids. Pure preparations 

of DNA and RNA have A260/A280 values of 1.8 and 2.0 respectively. For a 10 mm pathway 

and a 260 nm wavelength, an absorption A = 1 corresponds to approximately 50 µg/ml of 

dsDNA, approximately 37 µg/ml of ssDNA, 40 µg/ml of RNA or approximately 30 µg/ml of 

oligonucleotides. If there is contamination with protein, the A260/A280 will be significantly 

less than the values given above and accurate quantification of the amount of nucleic acid 

will not be possible. It is important to mention that impurities in DNA solutions caused by 

RNA cannot be confidently identified by spectrophotometry. An absorbance of 325 nm can 

be used to indicate the presence of debris in the solution or that the cuvette itself is dirty.  
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Determination of the concentration of nucleic acids 

Choice of the cuvette. The amount of nucleic acid solution used for the measurement of 

the absorbance A, depends on the capacity of the cuvette. A suitable cuvette should be 

chosen depending on sample concentration range, dilution factor and available sample 

volume. In most of the procedures used for the detection of GMO the volume of genomic 

DNA collected is between 50 and 100 l. Several types of microvolume cuvettes with a 

capacity of 5 to 70 l are utilised for the spectroscopic quantification of small volumes of 

nucleic acids. 

Set up. In order to calibrate the spectrophotometer, it is important: 

 to set the correct cell path length 

 to set the correct factor (select between dsDNA, ssDNA, RNA) 

 to measure a blank solution (set reference) (A260 = 0) containing the same 

solvent used to dissolve the DNA in after precipitation 

 to measure the OD of the sample 

When determining the concentration of multiple samples, it is advisable to set the blank 

periodically in between batches of sample. It is also useful to use a known amount of pure 

nucleic acid in order to check the reliability of the spectrophotometer. 

 

Measurement of an unknown sample. Depending on the capacity of the cuvette used, 

specific amounts of DNA solution are used for the concentration evaluation (e.g. for cuvette 

of capacity lower than 0.2 ml, 5 l of DNA is diluted in 195 l of water or ideally, the same 

solvent used to dissolve the DNA). After calibrating the spectrophotometer and the addition 

of the nucleic acid solution, the cuvette is capped, the solution mixed, and the absorbance 

measured. In order to reduce pipetting errors, the measurement should be repeated at 

least twice and at least 5 l of the DNA solution should always be used. A260 readings lower 

than 0.02 or between 1 and 1.5 (depending on the instrument used) are not recommended 

to be considered reliable because there might be the possibility of a high margin of error. 

The concentration c of a specific nucleic acid present in a solution is calculated using the 

following equations: 

 Single-stranded DNA: c(pmol/l) = A260/0.027 

 Double-stranded DNA: c(pmol/l) = A260/0.020 

 Single-stranded RNA: c(pmol/l) = A260/0.025 

 Oligonucleotide: c(pmol/l) = A260100/1.5NA+0.71NC+1.20NG + 0.84NT 

where A260 is the absorbance measured at 260 nm. 
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An example of absorbance readings of highly purified calf thymus DNA suspended in 1x 

TNE buffer assuming that the reference DNA is dsDNA with A260 = 1 for 50 g/ml in a 10 

mm path length cuvette is shown in Table 2. The concentration of DNA was nominally 25 

g/ml. 

 

Table 2. Absorbance reading of highly purified calf thymus DNA in 1x TNE buffer 

Wavelength Absorbance A260/A280 Conc. (g/ml) 

325 0.01 - - 

280 0.28 - - 

260 0.56 2.0 28 

230 0.30 - - 

 

This method is still in use and, in the latest years, it has been improved and refined. In 

fact, the use of traditional spectrophotometers requires a bigger amount of DNA compared 

to the most recent developments of this method requiring only 1 µl of undiluted DNA 

solution for quantification, this allows a quicker analyses and minor "waste" of useful DNA. 

A disadvantage of this technique is the fact that the signal is more susceptible to 

contaminants. In other words, the signal of the contaminant can interfere with the 

quantification. Therefore, fluorometry has been developed to overcome this problem. 

Quantification of DNA by fluorometry 

Fluorometry applies the same technology as spectrophotometry but with an extra feature: 

the addition of a fluorescent dye that binds to double stranded DNA. The fluorometric 

method is considered more accurate than the spectrophotometric method. A standard 

concentration of DNA (usually supplied with the reagent kit) is used to determine the 

concentration of double stranded DNA in the sample (more information on this procedure 

at http://www.nanodrop.com/Library/PicoGreen%20-%20dsDNA%20protocol.pdf). 

 

http://www.nanodrop.com/Library/PicoGreen%20-%20dsDNA%20protocol.pdf
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Experimental 

Equipment 

 

REMARK 

All of the equipment must be sterilised prior to use and any residue of DNA must be 

removed. In order to avoid contamination, barrier pipette tips that are protected against 

aerosol should be used. 

 

 Instruments for size reduction like a sterile surgical blade or a mortar  

 Water bath or heating block 

 Microcentrifuge 

 Micropipettes 

 Vortex mixer 

 1.5 ml microcentrifuge tubes 

 Weight boats or equivalents 

 Spatulas 

 Balance capable of 0.01 g measurement 

 Loops 

 Rack for microcentrifuge tubes 

 Optional: vacuum desiccator to dry DNA pellets 

 Powder free nitrile or latex gloves 

Plastic ware has to be sterile and free of DNases, RNases and nucleic acids. Filter pipette 

tips protected against aerosol should be used. 

 

Reagents 

 

REMARK 

All chemicals should be of molecular biology grade. Deionised water and buffers should be 

autoclaved prior to use. In addition, all chemicals should be DNA and DNase free. 

 
 Cetyltrimethylammonium bromide (CTAB) CAS 56-09-0 

 Chloroform CAS 67-66-3 

 Isopropanol CAS 67-63-0 

 Na2EDTA CAS 139-33-3 

 Ethanol CAS 64-17-5 

 NaCl CAS 7647-14-5 

 Proteinase K CAS 39450-01-6 
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 RNase A CAS 9001-99-4 

 Tris-HCl CAS 1185-53-1 

 Sterile deionised water  

 Liquid nitrogen 

 

2 % CTAB-buffer 200 mL 

 

20 g/l CTAB 4 g 

1.4 M NaCl 16.4 g 

0.1 M Tris-HCl 3.15 g 

20 mM Na2EDTA 1.5 g  

 

Alternatively 20 ml of a 1 M ready-to-use solution of Tris-HCl pH 8.0 can be used: 

 add 100 ml of deionised water 

 adjust pH to a value of 8.0 with 1M NaOH  

 fill up to 200 ml and sterilize 

 store buffer at room temperature for maximum 12 months 

 

0.5 % CTAB-precipitation solution 

 

5 g/l CTAB 1 g 

0.04 M NaCl 0.5 g 

 Add 100 ml of deionised water 

 Adjust pH to a value of 8.0 with 1 M NaOH 

 Fill up to 200 ml and filter sterilize 

 Store solution at 4°C for maximum 6 months 

 

NaCl 1.2 M 

 

 Dissolve 7.01 g of NaCl in 100 ml deionised water 

 Autoclave and store at room temperature 
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Ethanol-solution 70 % (v/v) 

70 ml of pure ethanol are mixed with 30 ml of sterile deionised water. 

 

NaOH 1M 

 Dissolve 2 g of NaOH in 50 ml of sterile water. 

 NaOH 0.1M 

 Dilute 10 ml of NaOH 1M in 90 ml of sterile water 

 

RNase A 10 mg/ml (store at –20°C) 

 Dissolve the RNase A at a final concentration of 10 mg/ml in sterile water.  

 If required from RNase A preparation supplier: boil the RNase A solution at 

95°C for 15 min in order to remove any residual nuclease activity. 

 

Proteinase K 20 mg/ml (store at –20°C) 

Dissolve the Proteinase K at a final concentration of 20 mg/ml in sterile distilled 

water according to the supplier’s specifications. 

 

Ready-to-use 1 x Tris-EDTA buffer solution pH 8.0  

A ready-to-use 1 x TE solution BioUltra, for molecular biology, pH 8.0  

 

0.2 x TE buffer  

TE 0.2 x buffer is obtained through five-fold dilution of the 1 x TE buffer. 

 

Procedure 

The procedure should be run under sterile conditions. Contamination can be avoided during 

sample preparation by using single-use equipment and decontamination solutions. 

1. Transfer 100 mg of a homogeneous sample into a sterile 1.5 ml microcentrifuge 

tube 

2. Add 300 l of sterile deionised water, mix with a loop or vortex 

3. Add 500 l of CTAB-buffer, mix with a loop or vortex 
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4. Add 20 l Proteinase K (20 mg/ml), mix and incubate at 65°C for 30-60 min * 

5. Add 20 l RNase A (10 mg/ml), mix and incubate at 65°C for 5-10 min * 

6. Centrifuge for 10 min at about 13,000 rpm 

7. Transfer the supernatant to a microcentrifuge tube containing 500 l chloroform, 

mix completely by inverting the tubes several times for 30 sec 

8. Centrifuge for 10 min at 13,000 rpm until phase separation occurs 

9. Transfer 500 l of upper layer into a new microcentrifuge tube containing 500 

l chloroform, mix completely by inverting the tubes several times for 30 sec  

10. Centrifuge for 5 min at 13,000 rpm  

11. Transfer upper layer into a new tube 

12. Add 2 volumes of CTAB precipitation solution, mix completely by pipetting 

13. Incubate for 60 min at room temperature 

14. Centrifuge for 15 min at 13,000 rpm 

15. Discard supernatant 

16. Dissolve precipitate in 350 l NaCl (1.2 M) 

17. Add 350 l chloroform and mix completely by inverting the tubes several times 

for 30 sec  

18. Centrifuge for 10 min at 13,000 rpm until phase separation occurs 

19. Transfer the upper layer to a new microcentrifuge tube  

20. Add 0.6 volumes of isopropanol and mix gently and completely by inverting 

the tube  

21. Centrifuge for 10 min at 13,000 rpm 

22. Discard the supernatant  

23. Add 500 l of 70% ethanol solution, mix gently and completely by inverting the 

tube 

24. Centrifuge for 10 min at 13,000 rpm 

25. Discard the supernatant 

26. Dry pellets and re-dissolve DNA in 100 µL 0.2xTE buffer. 

 

The DNA solutions may be stored in a refrigerator for a maximum of two weeks, or in the 

freezer at - 20°C for longer periods. 

It is good practice to store a certain amount of backup material in case something goes 

wrong during the subsequent steps of the analysis and the extraction needs to be repeated.  

                                           
* These additional optional steps are commonly introduced to the CTAB extraction method to enhance the yield 

of genomic DNA from highly complex matrixes. 
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Introduction 

Gel electrophoresis is a method that allow separation of macromolecules on the basis of 

their size, electric charge and other physical properties. The term electrophoresis describes 

the migration of charged particles under the influence of an electric field. “Electro” refers 

to electricity and “Phoresis”, from the Greek word phoros, meaning, "to carry across." 

Thus, gel electrophoresis refers to a technique in which molecules are forced across a span 

of a gel matrix, under an electrical current. The driving force for electrophoresis is the 

voltage applied to electrodes at either end of the gel. The ionic properties and size of a 

molecule determine how rapidly it will move through a gelatinous medium under an electric 

field. Many important biological macromolecules (e.g. amino acids, peptides, proteins, 

nucleotides and nucleic acids) possess ionisable groups and, at any given pH, exist in 

solution as electrically charged species either as cations (+) or anions (-). Depending on 

the nature of the net charge, the charged particles will migrate either to the cathode or to 

the anode. For example, when an electric field is applied across a gel at neutral pH, the 

negatively charged phosphate groups of the DNA cause it to migrate toward the anode 

(Westermeier, 1997). 

Agarose gel electrophoresis is a standard method used to separate, identify and purify DNA 

fragments. The technique is simple, rapid to perform, and capable of resolving fragments 

of DNA that cannot be separated adequately by other procedures. Furthermore, the 

location of DNA within the gel can be determined by staining with a low concentration of 

fluorescent DNA intercalating dye such as ethidium bromide or other less harmful 

commercial DNA stain. 

The following sections will outline the physical principles, components (gel matrix, buffer, 

loading buffer and marker) and procedures for the preparation of agarose gel 

electrophoresis (Sambrook et al., 1989). 

 

Physical principles of agarose gel electrophoresis 

Gel electrophoresis is a technique used for the separation of nucleic acids and proteins. 

Separation of macromolecules depends upon two variables: charge and mass. When a 

biological sample, such as DNA, is mixed in a buffer solution and applied to a gel matrix, 

these two variables act together. The electrical current from one electrode repels the 

molecules while the other electrode simultaneously attracts the molecules. The frictional 

force of the gel material acts as a "molecular sieve", separating the molecules by size. 

During electrophoresis, macromolecules are forced to move through the pores and their 

rate of migration through the electric field depends on the following: 



Agarose Gel Electrophoresis 

Session 5                                                                                                               59 

 The strength of the field 

 The size and shape of the molecules 

 The relative hydrophobicity of the samples 

 The ionic strength and temperature of the buffer in which the molecules are moving 

 The concentration of the gel matrix that determines the pore size 

To understand completely the separation of charged particles in gel electrophoresis, it is 

important to look at the simple equations relating to electrophoresis. When a voltage is 

applied across the electrodes, a potential gradient, E, is generated and can be expressed 

by the equation: 

E = V/d (1) 

where V, measured in volts, is the applied voltage and d the distance in cm between the 

electrodes. 

When the potential gradient, E, is applied, a force, F, on a charged molecule is generated 

and is expressed by the equation: 

F = Eq (2) 

where q is the charge in coulombs bearing on the molecule. This force, measured in 

Newtons drives a charged molecule towards an electrode. 

There is also an additional force, the frictional resistance, that slows down the movement 

of charged molecules. This frictional force is a function of: 

 the hydrodynamic size of the molecule 

 the shape of the molecule  

 the pore size of the medium in which electrophoresis is taking place 

 the viscosity of the buffer 

The velocity v of a charged molecule in an electric field is a function of the potential 

gradient, charge and frictional force of the molecule and can be expressed by the equation:  

v = Eq / f (3) 

where f is the frictional coefficient. 

The electrophoretic mobility, M, of an ion can then be defined by the ion’s velocity divided 

by the potential gradient: 

M = v / E (4) 

In addition, from equation (3) one can see that electrophoretic mobility M can be 

equivalently expressed as the charge of the molecule, q, divided by the frictional 

coefficient, f: 
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M = q / f (5) 

When a potential difference is applied, molecules with different overall charges will begin 

to separate due to their different electrophoretic mobilities. The electrophoretic mobility is 

a significant and characteristic parameter of a charged molecule or particle and depends 

on the pK value of the charged group and the size of the molecule or particle. Even 

molecules with similar charges will begin to separate if they have different molecular sizes, 

since they will experience different frictional forces. Linear double stranded DNA migrates 

through gel matrices at rates that are inversely proportional to the log10 of the number of 

base pairs. Larger molecules migrate more slowly because of the greater frictional drag 

and because of the less efficient movement through the pores of the gel.  

The current in the solution between the electrodes is conducted mainly by the buffer ions 

with a small proportion being conducted by the sample ions. The relationship between 

current I, voltage V, and resistance R is expressed as in Ohm’s law: 

R = V / I (6) 

This equation demonstrates that for a given resistance R, it is possible to accelerate an 

electrophoretic separation by increasing the applied voltage V, which would result in a 

corresponding increase in the current flow I. The distance migrated will be proportional to 

both current and time. However, the increase in voltage, V, and the corresponding increase 

in current, I, would cause one of the major problems for most forms of electrophoresis, 

namely the generation of heat. This can be illustrated by the following equation in which 

the power, W, (measured in Watts) generated during the electrophoresis is equal to the 

product of the resistance times the square of the current: 

W = I2R (7) 

Since most of the power produced in the electrophoretic process is dissipated as heat the 

following detrimental effects can result: 

 An increased rate of diffusion of sample and buffer ions leading to broadening of 

the separated samples 

 The formation of convection currents, which leads to mixing of separated samples; 

 Thermal instability of samples that are rather sensitive to heat (e.g. denaturation 

of DNA) 

 A decrease of buffer viscosity hence a reduction in the resistance of the medium 
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Components of agarose gel electrophoresis 

Agarose 

Agarose, a natural colloid extracted from seaweed, is a linear polysaccharide (average 

molecular mass ~12,000 Da) made up of the basic repeated unit agarobiose, which 

comprises alternating units of galactose and 3, 6-anhydrogalactose. Agarose is very fragile 

and easily destroyed by improper handling. Agarose gels have large "pore" sizes and they 

are used primarily to separate large molecules with a molecular mass greater than 200 

kDa. 

Agarose gels can be processed reasonably quickly, but they have limited fragment 

resolution and DNA/fragment bands formed tend to be fuzzy/diffuse. This is a result of 

pore size and it cannot be controlled. Agarose gels are obtained by suspending the dry 

powdered agarose in an aqueous buffer, and by boiling the mixture until the agarose melts 

into a clear solution. Furthemore, the solution is poured into a gel-tray containing a comb 

that is used to mould wells in the gel into which the DNA sample will the loaded. The gel 

is cooled down at room temperature to become rigid. Upon hardening, the agarose forms 

a matrix whose density is determined by its concentration, the comb can be removed and 

the form wells are used to load the DNA samples. 

Electrophoresis buffer 

The electrophoretic mobility of DNA is affected by the composition and ionic strength of 

the electrophoresis buffer. In the absence of ions, electrical conductance is minimal and 

DNA migrates slowly, if at all. In a buffer of high ionic strength, electrical conductance is 

very efficient; however, conductance might result in the generation of heat. In extreme 

cases of heat generation, if the voltage applied is too high for too long, the gel will melt 

and the heat may damage the electrophoretic apparatus. 

Several buffers are available for electrophoresis of native double-stranded DNA. These 

contain EDTA (pH 8.0) and Tris-acetate (TAE), Tris-borate (TBE), or Tris-phosphate (TPE) 

at a concentration of approximately 50 mM (pH 7.5 - 7.8). Electrophoresis buffers are 

usually prepared as concentrated solutions and stored at room temperature. TBE was 

originally used at a working strength of 1 x for agarose gel electrophoresis. However, a 

working solution of 0.5 x provides more than enough buffering power and almost all 

agarose gel electrophoresis is now carried out using this buffer concentration.  

Agarose concentration 

A DNA fragment of a given size migrates at different rates through a gel depending on the 

concentration of agarose. For a specific concentration of agarose and/or buffer, it is 

possible to separate DNA segments containing between 20 and 50,000 bp. In horizontal 

gels, agarose is usually used at concentrations between 0.7% and 3% (see Table 1). 
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Table 1. Recommended agarose gel concentration for resolving linear DNA molecules 

% agarose DNA size range (bp) 

0.75 10.000 - 15.000 

1.0 500 - 10.000 

1.25 300 - 5000 

1.5 200 - 4000 

2.0 100 - 2500 

2.5 50 - 1000 

 

Marker DNA 

For a given voltage, agarose gel and buffer concentrations, the migration distance depends 

on the molecular weight of the starting material. A marker generally contains a defined 

number of DNA fragments of known size that makes it easier to determine the size of the 

unknown DNA. Marker DNA should be loaded into wells on both the right and left sides of 

the gel to be able to determine if any systematic distortion of DNA migration through the 

gel occurred during the electrophoresis. 

Loading buffer 

The DNA samples to be loaded onto the agarose gel are first mixed with a loading buffer 

usually comprising water, sucrose or glycerol, and a dye (e.g. xylene cyanole, bromophenol 

blue, bromocresol green,). The minimum amount of DNA that can be detected by 

photography of ethidium bromide stained gels is approximately 2 ng in a 0.5 cm wide well 

band. If there is more than 500 ng of DNA in a well band of this width, the well will be 

overloaded, resulting in smearing. The loading buffer serves three purposes:  

 Increases the density of the sample ensuring that the DNA drops evenly into the 

well  

 Adds colour to the sample, thereby simplifying the loading process  

 Imparts a dye to the sample that, in an electric field, moves toward the anode at a 

predictable rate 
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Experimental 

Caution: Ethidium bromide is a powerful mutagen/carcinogen and is moderately 

toxic. Gloves should always be worn when handling solutions and gels containing 

ethidium bromide. 

 

Equipment 

 Horizontal electrophoresis unit with power supply 

 Microwave oven or heating stirrer 

 Micropipettes 

 1.5 ml reaction tubes 

 Balance capable of 0.1 g measurements 

 Spatulas 

 Rack for reaction tubes 

 Glassware grade A 

 Transilluminator (UV wavelength: ~312 nm) 

 Instruments for documentation like a digital camera based image acquisition 

system. 

 

Reagents 

  TBE Tris/Boric acid/EDTA buffer (10x) 

  Deionised water 

 Agarose, suitable for DNA electrophoresis 

 Tris[hydroxymethyl] aminomethane (Tris)  CAS 77-86-1 

 Boric acid CAS 10043-35-3 

 Na2EDTA CAS 139-33-3 

 Ethidium bromide CAS 1239-45-8 

 Sucrose CAS 57-50-1 

 Xylene cyanole FF CAS 2650-17-1 

 DNA markers:   

 Lambda DNA EcoRI/HindIII digested (or other similar suitable marker) 

 100 bp DNA ladder 
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10 x TBE buffer (1 litre) 

Prepare 10x TBE buffer according to the instructions below or buy a ready-to-use solution. 

Tris 54.0 g 

Boric acid 27.5 g 

Na2EDTA 7.44 g 

 Mix reagent to deionised water to obtain a 1 litre solution at pH 8.3 

 Store at room temperature 

 

6 x loading buffer (10 ml)  

Prepare 6x loading buffer according to the instructions below or buy a ready-to-use 

solution. 

Xylene cyanole FF  0.025 g  

Sucrose 4 g 

 Add sucrose and xylene cyanole FF to deionised water to obtain 10 ml of solution 

(the sucrose can be substituted with 20% (v/v) glycerol). 

 Mix the solution, autoclave, and store at 4°C. 

 

Procedure 

 Seal the edges of a clean, dry plastic gel-tray either with tape or by other means. 

Position the appropriate comb so that complete wells are formed when the agarose 

solution is added. 

 Dilute 10x TBE buffer to prepare the appropriate amount of 0.5x TBE buffer to fill 

the electrophoresis tank and to prepare the gel. 

 Weigh powdered agarose depending on the dimensions of the amplicon (according 

to Table 1) and add it to an appropriate amount of 0.5x TBE buffer in an Erlenmeyer 

flask with a loose-fitting cap (usually 150 ml gel solution for a 15 x 15 cm gel-tray 

and 100 ml gel for a 15 x 10 cm gel-tray). 

 Heat the slurry in a microwave oven or in a boiling water bath until the agarose 

dissolves (check the volume of the solution after heating and adjust with distilled 

water to compensate for evaporation).  

 Cool the mixture down to 50 - 60°C and add ethidium bromide (from a stock solution 

of 10 mg/ml) to a final concentration of 0.2 µg/ml and mix thoroughly. If waste 

disposal is a challenge, the gel can be stained post electrophoresis in an ethidium 

bromide solution. 
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 Pour the solution into the gel-tray and allow the gel to set. The amount of gel used 

should correspond to a depth of approximately 3 - 5 mm.  

 After the gel is completely set, carefully remove the comb and the tape and place 

the gel in the electrophoresis tank.  

 Add enough 0.5 x TBE buffer to the electrophoresis unit to cover the gel to a depth 

of about 2 - 5 mm. 

  

Prepare samples and marker for genomic DNA as follows: 

sample  marker 

 

water 3 µl  water   6 µl 

loading buffer 2 µl  loading buffer  2 µl 

sample 5 µl   DNA EcoRI / HindIII 2 µl 

                        10 µl                                  10 µl 

 

Prepare samples and marker for PCR products as follows: 

sample  marker 

 

loading buffer 2 µl  100 bp DNA ladder 15 µl 

sample 8 µl 

                        10 µl 

 

 Load 10 µl of each sample (including positive and negative controls) into 

consecutive wells and the appropriate DNA marker into the first and last lane.  

 Close the lid of the gel tank and attach the electrical leads so that the DNA will 

migrate toward the anode and apply a voltage of 90-100 V/15 cm. 

 Run the gel until the xylene cyanole has migrated the appropriate distance through 

the gel (~ 40 - 60 minutes). 

 Turn off the current; remove the leads and the lid from the gel tank. Place the gel 

on a UV lightbox and photograph the gel. Gloves must be worn when handling the 

gel containing ethidium bromide and tools/surfaces that came in contact. 

 Discard the gel into the solid waste bin and the electrophoresis buffer containing 

ethidium bromide, into the liquid waste container. 
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Introduction 

The invention of Polymerase Chain Reaction (PCR) by Mullis and co-workers in 1985 has 

revolutionised the molecular biology and molecular diagnostics (Saiki et al., 1985). The 

PCR is an in vitro technique used to enzymatically amplify a specific DNA region of a known 

DNA sequence. Whereas previously only minute amounts of a specific target DNA could be 

obtained, with the introduction of the PCR a single DNA target can be amplified to a million 

copies within a few hours. 

PCR techniques have become essential for many common procedures such as cloning 

specific DNA fragments, detecting and identifying genes in diagnostics and forensics, and 

in the investigation of gene expression patterns. PCR has allowed the investigation of new 

fields such as the control of the authenticity of foodstuff, the presence of genetically 

modified DNA and microbiological contamination. In understanding the principles of PCR 

and its applications, the nature of the DNA molecule must first be considered, therefore 

the structure and the replication of DNA will be described in the following section. 

Components, structure and replication of DNA 

Components. A molecule of DNA is constituted of two parallel complementary twisted 

chains of alternating units of phosphoric acid and deoxyribose, linked by cross-pieces of 

purine and pyrimidine bases, resulting in a right-handed helical structure that carries 

genetic information encoded in the sequence of the bases. In eukaryotic cells, most of the 

DNA is contained within the nucleus and is referred to as chromosomal DNA. The nucleus 

is separated from the rest of the cell (cytoplasm) by a double layer membrane (nuclear 

envelope). In addition to chromosomal DNA, DNA can be found in the mitochondria and 

chloroplasts (extrachromosomal DNA). 

The building blocks of DNA, called nucleotides, are: 

 dATP, deoxyadenosine triphosphate 

 dGTP, deoxyguanosine triphosphate 

 dTTP, deoxythymidine triphosphate 

 dCTP, deoxycytidine triphosphate 

For convenience, these four nucleotides are called dNTPs (deoxynucleoside triphosphates). 

A nucleotide comprises three major parts: a purine base (adenine, A, and/or guanine, G), 

or a pyrimidine base (cytosine, C, and/or thymine, T), a pentose sugar molecule 

(deoxyribose) and a triphosphate group. As shown in Figure 1, a purine or pyrimidine base 

is bound to a pentose ring by a N-glycosidic bond and a phosphate group is bound to the 

5’ carbon atom of the sugar by a diesteric bond. In the ribonucleic acid, RNA, thymine is 

substituted by uracil (U) and the deoxyribose molecule is replaced by ribose. 
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Figure 1. The components of nucleotides (source: Vierstraete, 1999)  

 

Structure. Figure 2 shows how the nucleotides form a DNA chain. DNA is formed by 

coupling the nucleotides between the phosphate group from a nucleotide (which is 

positioned on the fifth C-atom of the sugar molecule) with the hydroxyl on the third C-

atom on the sugar molecule of the previous nucleotide. To accomplish this, a diphosphate 

group is split off (with the release of energy). This means that new nucleotides are always 

added on the 3' side of the chain. As shown in Figure 3, DNA is double-stranded (except in 

some viruses), and the two strands pair each other in a very precise way. Each base in a 

strand will pair with only one kind of base from the opposing strand forming a base pair 

(bp): A is always paired to T by two hydrogen bonds; and C is always paired to G by three 

hydrogen bonds. In this way, the two chains are complementary to each other and one 

chain can serve as a template for the production of the other. 
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Figure 2. Formation of a DNA chain from individual nucleotides (source: Vierstraete, 

1999)  

 

The bases form a hydrophobic nucleus inside the double helix. The sugars and phosphate 

groups (in their anionic form) constitute the external hydrophilic layer of the molecule. 

Under in vivo and in vitro conditions, double-stranded DNA is more stable than a single-

stranded DNA. 

 

Replication. DNA contains the complete genetic information that defines the structure 

and function of an organism. Three different processes are responsible for the transmission 

of genetic information: 

 Replication 

 Transcription 

 Translation 

During replication, a double-stranded nucleic acid is duplicated to give an identical copy. 

This process propagates the genetic information during mitosis. During transcription, a 

DNA segment that constitutes a gene is read and transcribed into a single-stranded 

sequence of RNA. The RNA moves from the nucleus into the cytoplasm. Finally, during 
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translation, the RNA sequence is translated into a sequence of amino acids as the protein 

is formed (Alberts et al., 1983).  

 

Figure 3. Structure of DNA in a cell (source: Vierstraete, 1999). 

The replication of DNA is the process on which the PCR amplification is based, and will be 

described in detail. 
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During replication, the DNA molecule unwinds, with each single strand becoming a 

template for synthesis of a new, complementary strand. Each daughter molecule, 

consisting of one old and one new DNA strand, is the exact copy of the parent molecule. 

 

Figure 4. The replication fork (source: Vierstraete, 1999) 

 

Several enzymes are required to unwind the double helix and to synthesise a new strand 

of DNA. Topoisomerase and helicase are responsible for the unwinding of the DNA by 

breaking the supercoiled structure and nicking a single strand of DNA. Then, primase (part 

of an aggregate of proteins called the primeosome) attaches a small RNA primer to the 

single-stranded DNA, to act as a 3-'OH end from which the DNA polymerase begins 

synthesis. This RNA primer is eventually removed by RNase H and the gap is filled in by 

DNA polymerase I. At this stage, DNA polymerase proceeds along a single-stranded 

molecule of DNA, recruiting free dNTPs to hydrogen bond with their appropriate 

complementary dNTP on the single strand (A with T and G with C), forming a covalent 

phosphodiester bond with the previous nucleotide of the same strand. The energy stored 

in the triphosphate is used to covalently bind each new nucleotide to the growing second 

strand. There are different forms of DNA polymerase and the DNA polymerase III is the 

one responsible for the progressive synthesis of new DNA strands. DNA polymerase only 

acts from 5' to 3'. Since one strand of the double helix is 5' to 3' and the other one is 3' to 

5', DNA polymerase synthesises a second copy of the 5' to 3' strand (the lagging strand), 

in spurts (Okazaki fragments) (Ogawa and Okazaki, 1980). The synthesis of the new copies 

of the 5' to 3' strand is shown in Figure 4. The other strand, the leading strand, can proceed 

with synthesis directly, from 5' to 3', as the helix unwinds. DNA polymerase cannot start 

synthesising ex novo on a naked single strand but needs a primer with a free 3'-OH group 

onto which it can attach a dNTP. 
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Ligase catalyses the formation of a phosphodiester bond given an unattached but adjacent 

3'-OH and 5'-phosphate. This can fill in the unattached gap left when the RNA primer is 

removed and filled in. It is worth noting that single-stranded binding proteins are important 

to maintain the stability of the replication fork. Single-stranded DNA is very labile, or 

unstable, so these proteins bind to it while it remains single-stranded, protecting it from 

degradation. 

Principles of PCR 

PCR is based on the mechanism of DNA replication in vivo: dsDNA is unwound to ssDNA, 

duplicated, and rewound. This technique consists of repetitive cycles of: 

 Denaturation of the DNA through melting at elevated temperature to convert 

double-stranded DNA to single-stranded DNA 

 Annealing (hybridisation) of two oligonucleotides used as primers to the target 

DNA 

 Extension of the DNA chain by nucleotide addition from the primers using DNA 

polymerase as catalyst in the presence of magnesium (Mg2+) ions. 

The oligonucleotides typically consist of relatively short sequences that are complementary 

to recognition sites flanking the segment of target DNA to be amplified. The steps of 

template denaturation, primer annealing and primer extension corresponds to a single 

"cycle" in the PCR amplification methodology. The primer annealing and extension steps 

can be combined into one with only two temperature steps (annealing/extension and 

denaturation). Figure 5 illustrates the three major steps in a PCR amplification process.  
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Figure 5. The steps of PCR amplification (source: Vierstraete, 1999)  

 

After the completion of each cycle, the newly synthesised DNA strands can serve as new 

template for the next cycle. As shown in Figure 6, the major product of this exponential 

reaction is a segment of dsDNA whose termini are defined by the 5' termini of the 

oligonucleotide primers and whose length is defined by the distance between the primers. 

The products of the successful first round of amplification are heterogeneously sized DNA 

molecules, whose lengths may exceed the distance between the binding sites of the two 

primers. In the second round, these molecules generate DNA strands of defined length that 

accumulate in an exponential manner in subsequent rounds of amplification. Thus, 

amplification, as a final number of copies of the target sequence, is expressed by the 

following equation: 

(2n-2n)x (1) 

where n is the number of cycles, 2n is the first product obtained after the first cycle and 

second products obtained after the second cycle with undefined length, x is the number of 

copies of the original template. The value of 2n is negligible in comparison to 2n.  

Potentially, after 20 cycles of PCR, there will be a 220–fold amplification of the target 

sequence, assuming 100% efficiency during each cycle. The efficiency of a PCR varies from 

template to template and according to the degree of optimisation that has been carried 

out. 

A detailed description of the three steps of PCR amplification (template denaturation, 

primer annealing and extension) is given in the following paragraphs (Sambrook et al., 

1989). 
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Figure 6. The exponential amplification of DNA in PCR (source: Vierstraete, 1999) 

 

Template denaturation 

During denaturation, the double strand DNA melts opening up to single-stranded DNA, and 

all enzymatic reactions stop (i.e. the extension from a previous cycle). The two 

complementary chains are separated by an increase in temperature. This is known as 

denaturation. To obtain the denaturation of DNA, the temperature is usually increased to 

~ 93 - 96°C. In this way, the strong H-bonds are broken and the number of non-paired 

bases increases. The reaction is complete when all of the dsDNA becomes ssDNA. The 

temperature at which half of the dsDNA is single-stranded is known as the melting 

temperature (Tm).The type of solvent, the salt concentration and the pH used, influence 

the denaturation process. For example, in low salt concentrations, high pH and in the 

presence of organic solvents such as formaldehyde, the melting temperature, Tm, 

decreases. The concentration of G/C and T/A can also affect the value of Tm. The Tm of the 

DNA structure containing an elevated quantity of G/C is higher compared to that of DNA 

rich in T/A. For example, Serratia marcescens has approximately 60% G/C with a Tm of 

approximately 94°C, whereas Pneumococcus has approximately 40% G/C and a Tm of 

approximately 85°C. 

Primer annealing 

The annealing or re-hybridisation of the DNA strands takes place at lower temperature 

(usually 55 - 65°C). Once the temperature decreases, the two complementary ssDNA 

chains will reform into a dsDNA molecule. In this phase, the primers are flowing and 

hydrogen bonds are constantly formed and broken between the single-stranded primer 

and the single-stranded template. The more stable bonds last a bit longer (primers that 

exactly fit the template DNA) and on that small piece of double-stranded DNA (template 

and primer), the polymerase can attach and begins copying the template. Once there are 
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a few bases built in, the ionic bond is so strong between the template and the primer that 

it will not break. 

Primer extension 

In this step, the primers are extended across the target sequence by using a heat-stable 

DNA polymerase (frequently Taq DNA polymerase) in the presence of dNTPs resulting in a 

duplication of the starting target material. The ideal working temperature for the Taq DNA 

polymerase is 72°C. When the primers have been extended a few bases, they possess a 

stronger ionic attraction to the template, which reduces the probability of the reverse 

process. Primers that do not match exactly come loose again (because of the higher 

temperature) and do not give an extension of the fragment. The bases (complementary to 

the template) are coupled to the primer on the 3' side (the polymerase adds dNTPs from 

5' to 3', reading the template from 3' to 5'). The length of time of the primer extension 

steps can be increased if the region of DNA to be amplified is long, however, for the 

majority of PCR experiments, an extension time of 1 minute is sufficient to get a complete 

extension.  
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Instrumentation and components for the PCR 

Instruments 

Two major developments have allowed the PCR process to be automated: 

a. The use of thermostable DNA polymerases, which resist inactivation at high 

temperatures. Thus, an initial aliquot of polymerase can last throughout 

numerous PCR cycles. 

b. The development of thermal cyclers or PCR machines having blocks that can be 

heated and cooled in an automated and programmed manner. 

Several designs of temperature cycling devices have been used. For example: heating and 

cooling by fluids, heating by electrical resistance and cooling by fluids and heating by 

electric resistance and cooling by semiconductors. A typical temperature cycling profile for 

a three-step protocol is shown in Figure 7. 

 

 

Figure 7. PCR temperature cycling profile (in-house graph). 

 

Critical for a successful PCR are the thermal cycling parameters such as denaturation, 

primer annealing and primer extension already mentioned, as well as the components used 

and the cycle number described in the following paragraphs. 
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Target DNA 

In principle, PCR amplification can be performed if at least one intact copy of the target 

DNA is present. A greater number of target copies enhance the probability of successful 

DNA amplification. Any damage, such as a nick in the target DNA, will prevent PCR 

amplification. The size of the target sequence can be anything from < 0.1 to a few 

kilobases. The total amount of DNA typically used for PCR is 0.05 to 1.0 µg; this allows 

detection of single copies of target sequence. Even if a sample does not need to be highly 

purified, some contaminants such as heparin, heme, formalin, Mg2+-chelating agents, as 

well as detergents should be eliminated to avoid inhibition of the amplification process. 

Primers 

Generally, primers used are 16 - 30 nucleotides in length that allows the use of a 

reasonably high annealing temperature. Primers should avoid stretches of polybase 

sequences (e.g. poly dG) or repeat motifs – since these can hybridise inappropriately on 

the template. Inverted repeat sequences should be avoided so as to prevent formation of 

secondary structure in the primer, which would prevent hybridisation to template. Primers 

should not be complimentary to any other regions in the genome other than the target 

sequence. Furthermore, primers should not be complimentary to each other, particularly 

at their 3' ends, to avoid the formation of primer dimers. Ideally, the 3' end of the primer 

should be rich in G, C bases to enhance annealing of the end that will be extended. The 

distance between primers should be less than 10 Kb in length. Typically, substantial 

reduction in yield is observed when the primers extend from each other beyond ~3 Kb. 

Oligonucleotides are usually used at the concentration of 1μM in PCR. This is sufficient for 

at least 30 cycles of amplification. The presence of higher concentration of oligonucleotides 

can cause amplification of undesirable non-target sequences. Conversely, the PCR is 

inefficient with a limiting primer concentration. 

History of DNA polymerase in PCR applications 

The original method of PCR used the Klenow fragment of E. coli DNA polymerase I (Saiki 

et al., 1985). This enzyme, however, denatures at temperatures lower than that required 

to denature most template duplexes. Thus, in earlier experiments, fresh enzyme had to be 

added to the reaction after each cycle. In addition, samples have to be moved from one 

temperature bath to another to allow the individual steps of denaturation, annealing and 

polymerisation. The use of heat-resistant DNA polymerase has obviously facilitated the 

process because the addition of enzymes after every denaturation step is no longer 

necessary. Typically, DNA polymerases can only incorporate nucleotides from the 3’ end of 

a polynucleotide. The first thermostable DNA polymerase used was the Taq DNA 

polymerase isolated from the bacterium Thermus aquaticus (Saiki et al., 1988) living in 

a hot spring in Yellowstone National Park USA at temperatures close to 85°C. The optimal 

working temperature of this enzyme is 70 - 80°C. At this temperature, the bacterium 
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synthesises DNA at a rate of 35 - 100 nucleotides/sec. The average number of nucleotides, 

which an enzyme incorporates into DNA before detaching itself from the template, is known 

as the processivity. Even though this enzyme is probably the most widely used in PCR 

applications, several other DNA polymerases are commercially available.  

Characteristics of polymerases suitable for PCR 

Hot start polymerases. These enzymes are only activated at high temperature (generally 

at 95°C for 10 minutes) allowing the denaturation of all DNA molecules before starting the 

amplification process. This characteristic increases sensitivity and avoids the amplification 

of non-specific products especially when highly processed and complex samples are to be 

analysed (Gryson et al., 2004).  

Polymerases with 5’ to 3’ exonuclease activity. Removing nucleotides ahead of the 

growing chain is particularly important in those real-time PCR experiments using hydrolysis 

probes (e.g. TaqMan probes, Session 10).  

Polymerases with 3’ to 5’ exonuclease activity. Also called "proofreading activity", 

this property allows polymerases to check each nucleotide during DNA synthesis and excise 

mismatched nucleotides in the 3´ to 5´ direction being helpful in applications requiring 

small error rate. Nevertheless, exonuclease activity 3' to 5' can cause degradation of the 

primers. Therefore, the enzyme should only be added after the reaction has started, or 

alternatively, chemically modified primers should be used. 

Low DNA (LD) polymerases. Consist in highly purified polymerases certified for the 

absence of contaminating bacterial DNA commonly present in recombinant protein 

preparations. They are particularly sensitive and used for applications requiring the 

absence of bacterial DNA contamination (e.g. detection of antibiotic resistance genes). 

High fidelity. This kind of polymerases is particularly useful when doing sequencing 

because it has a reduced error rate compared to other conventional DNA polymerases. 

Second-generation polymerases. Chimeric enzymes engineered substituting domains 

of the protein structure for the purpose of putting together the advantages of different 

polymerases, thus increasing accuracy (Yamagami et al., 2014), processivity, and 

resistance to environmental inhibitors (Baar et al., 2011). 

Reaction buffers and MgCl2 in PCR reactions  

In addition to the reagents directly involved in the reaction, PCR requires a suitable buffer. 

The buffer composition depends on the type and characteristics of the enzyme being used 

and most suppliers usually provide a 10x buffer for use with the respective enzyme. The 

most common reaction buffer used with Taq/AmpliTaq® DNA polymerase contains:  

 10 mM Tris, pH 8.3 

 50 mM KCl 
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 1.5-2.5 mM MgCl2 

The presence of divalent cations in PCR is critical. The MgCl2 concentration in the final 

reaction mixture is usually between 0.5 to 5.0 mM, and the optimum concentration is 

determined empirically (Innis and Gelfand, 1990). 

Mg2+ ions: 

 Form a soluble complex with dNTPs which is essential for dNTP incorporation,  

 Stimulate polymerase activity,  

 Increase the Tm of primer/template interaction (and therefore they stabilise the 

duplex interaction). 

Generally, a low Mg2+ concentration leads to low yields (or no yield) whereas a high Mg2+ 

concentration leads to accumulation of non-specific products (mispriming). It is important 

to avoid a high concentration of chelating agents such as EDTA or negatively charged ionic 

groups such as phosphate in the template DNA solution. Current literature includes 

discussions on various PCR buffers and additives, such as DMSO, PEG 6000, formamide, 

glycerol, spermidine and non-ionic detergents, used to increase the reaction specificity or 

efficiency (Roux, 1995). Certain DNA polymerases will indeed reach their optimum level of 

activity (Rolfs et al., 1992) only in the presence of such additives. 

Deoxyribonucleoside triphosphates 

Free deoxyribonucleoside triphosphates (dNTPs) are required for DNA synthesis. The dNTPs 

concentrations for PCR should be 20 to 200 μM for each dNTP and the four dNTPs should 

be used at equivalent concentrations to minimize mis-incorporation errors (Innis et al., 

1988). High-purity dNTPs are supplied by several manufacturers either as four individual 

stocks or as a mixture of all four dNTPs. dNTPs stock solutions (usually 100 mM) should be 

adjusted to pH 7.0-7.5 with 1 M NaOH to ensure that the pH of the final reaction does not 

fall below 7.1 (Sambrook et al., 1989). However, many dNTPs stock solutions are now 

supplied with already adjusted pH. 

Cycle number and plateau effect 

The number of amplification cycles necessary to produce a band visible on an agarose gel 

depends largely on the starting concentration of the target DNA. In order to amplify 50 

target molecules, 40 - 45 cycles are recommended, whereas 25 - 30 cycles are enough to 

amplify 3x105 molecules to the same concentration (Innis and Gelfand, 1990). This non-

proportionality is due to the so-called plateau effect, which is the attenuation in the 

exponential rate of product accumulation in late stages of a PCR when the product reaches 

0.3 - 1.0 nM. This may be caused by degradation of reagents (dNTPs, enzyme), reagent 

depletion (primers, dNTPs – the former a problem with short products, the latter with long 

products), end-product inhibition (pyrophosphate formation), competition for reagents by 
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non-specific products, or competition for primer binding by re-annealing of the 

concentrated (10 nM) product (Innis and Gelfand, 1990). If the desired product is not 

obtained in 30 cycles, a small sample (1 μl) of the amplified product can be taken, mixed 

and re-amplified 20 - 30 cycles in a new reaction mix, rather than extending the run to 

more cycles. In some cases where the template concentration is limiting, this re-

amplification can produce a good product, whereas extension of cycling to 40 times or 

more does not. However, re-amplification is also prone to contamination especially in a 

routine diagnostic environment. 

Design of primers for PCR 

The most critical parameter for successful PCR is the design of primers. A poorly designed 

primer can result in a PCR reaction that will not work. The primer sequence determines 

several things such as the target position and length of the product, its melting 

temperature and ultimately the yield (Innis and Gelfand, 1994). A poorly designed primer 

can result in little or no product due to a lack of successful priming, non-specific 

amplification and/or primer-dimer formation, which can become competitive enough to 

suppress product formation. This application note is provided to give rules that should be 

taken into account when designing primers for PCR. More comprehensive coverage of this 

subject can be found elsewhere (Dieffenbach et al., 1995). 

Primer selection 

Several variables must be taken into account when designing PCR primers. Among the 

most critical are: 

 Primer length 

 Melting temperature (Tm) 

 Specificity 

 Complementary primer sequences 

 G/C content and polypyrimidine (T, C) or polypurine (A, G) stretches 

 3’-end sequence 

Each of these critical elements will be discussed in the following sections. 

Primer length 

Since specificity, temperature and time of annealing partly depend on primer length, this 

parameter is critical for successful PCR. In general, oligonucleotides between 18 and 24 

bases are extremely sequence-specific, provided that the annealing temperature is 

optimal. Primer length is also proportional to annealing efficiency. In general, the longer 

the primer, the more inefficient the annealing. With fewer templates primed at each step, 

this can result in a significant decrease in amplified product. The primers should not be too 
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short unless the application specifically requires it. As discussed below, the goal should be 

to design a primer with an annealing temperature of at least 50°C. 

The relationship between annealing temperature and melting temperature is one of the 

“Black Boxes” of PCR. A general rule-of-thumb is to use an annealing temperature that is 

5°C lower than the melting temperature. Often, the annealing temperature determined 

this way will not be optimal and empirical experiments will have to be performed to 

determine the optimal one. This is most easily accomplished using a gradient thermal 

cycler. 

Melting temperature (Tm) 

It is important to keep in mind that there are two primers added to a site/target directed 

PCR reaction. The both oligonucleotide primers should be designed in a way to have similar 

melting temperatures. If primers are mismatched in terms of Tm, amplification will be less 

efficient or may not work at all since the primer with the higher Tm will misprime at lower 

temperatures and the primer with the lower Tm may not work at higher temperatures. The 

melting temperatures of oligos are most accurately calculated using nearest neighbour 

thermodynamic calculations with the formula: 

 

Tm
primer = ΔH [ΔS+ R ln (c/4)] -273.15°C + 16.6 log 10 [K+] (2) 

 

where H is the enthalpy and S is the entropy for helix formation, R is the molar gas constant 

and c is the concentration of primers. 

This is most easily accomplished by using primer design software packages already 

available on the market (Sharrocks, 1994). Fortunately, a good working approximation of 

this value (generally valid for oligos in the 18 - 24 base range) can be calculated using the 

formula: 

 

Tm = 2(A+T) + 4(G+C) (3) 

 

where A, T, G, C are the purinic and pyrimidinic bases. 

Table 1 shows the calculated values for primers of various lengths using this equation 

(known as the Wallace formula) and assuming 50% GC content (Suggs et al., 1981). 
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Table 1. Calculation of the Tm of the primers with Wallace’s equation 

Primer 

length 

 

Tm = 2 (A+T) + 

4(G+C) 

 

Primer 

length 

 

Tm = 2 (A+T) + 4(G+C) 

 

4 12°C 22 66°C 

6 18°C 24 72°C 

8 24°C 26 78°C 

10 30°C 28 84°C 

12 36°C 30 90°C 

14 42°C 32 96°C 

16 48°C 34 102°C 

18 54°C 36 108°C 

20 66°C 38 114°C 

 

The temperatures calculated using the Wallace's rule are inaccurate at the extremes of this 

chart. When calculating the melting temperatures of the primers, care must be taken to 

ensure that the melting temperature of the product is low enough to obtain 100% melting 

at 92°C. This parameter will help to assure a more efficient PCR but is not always necessary 

for successful PCR. In general, products between 100 - 600 base pairs are efficiently 

amplified in many PCR reactions. If there is a doubt, the product Tm can be calculated using 

the formula: 

 

Tm =81.5 + 16.6 (log10[K+] + 0.41 (%G+C)-675/length (4) 

 

Specificity 

As mentioned above, primer specificity is partly dependent on primer length. That said, 

primers must be chosen so that they have a unique sequence within the template DNA that 

is to be amplified. A primer designed with a highly repetitive sequence will result in a smear 

when amplifying genomic DNA. However, the same primer may give a single band, if a 
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single clone from a genomic library is amplified. Because Taq DNA polymerase is active 

over a broad range of temperatures, primer extension will occur at the lower temperatures 

of annealing. If the temperature is too low, non-specific priming may occur, which can be 

extended by the polymerase if there is a short homology at the 3' end. In general, a melting 

temperature of 55° - 72°C gives the best results (note that this corresponds to a primer 

length of 18 - 24 bases using Wallace's rule). 

Complementary primer sequences  

Primers need to be designed with absolutely no intra-primer homology beyond 3 base 

pairs. If a primer has such a region of self-homology, “snap back”, or “hair-pin”, partially 

double-stranded structures can occur, which will interfere with annealing to the template. 

Another related danger is inter-primer homology. Partial homology in the middle regions 

of two primers can interfere with hybridisation. If the homology occurs at the 3' end of 

each primer, dimer formation will occur, preventing the formation of the desired product 

due to competition. 

G/C content and polypyrimidine (T, C) or polypurine (A, G) stretches 

The GC base content of primers should be between 45% and 55%. The primer sequence 

must be chosen in a way to avoid poly-G or poly-C stretches that can promote non-specific 

annealing. Poly-A and poly-T stretches are also to be avoided, as these will “breathe” and 

will open up the stretches of the primer-template complex. In this case, the efficiency of 

the amplification can be lowered. Polypyrimidine (T, C) and polypurine (A, G) stretches 

should also be avoided. Ideally, the primer will have a near random mix of nucleotides, a 

50% GC content and be ~20 bases long. This will put the Tm in the range of 56° - 62°C 

(Dieffenbach et al., 1995). 

3’-end sequence 

The 3' terminal position in PCR primers is essential for the control of mispriming. The 

problem of primer homologies occurring in these regions has already been explored. 

Another variable to look at is the inclusion of a G or C residue at the 3' end of primers. This 

“GC Clamp” helps to ensure correct binding at the 3' end, due to the stronger hydrogen 

bonds of the G/C residues. This also helps to improve the efficiency of the reaction by 

minimising any “breathing” that might occur. 

Specialised PCR  

In addition to the amplification of a target DNA sequence by the typical PCR procedures 

already described, several specialised types of PCR have been developed for specific 

applications. 
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Nested PCR 

Nested PCR is a modification of PCR that was designed to improve sensitivity and 

specificity. Nested PCR involves the use of two primer sets and two successive PCR 

reactions. The first set of primers are designed to anneal to sequences upstream from the 

second set of primers and are used in an initial PCR reaction. Amplicons resulting from the 

first PCR reaction are used as template for a second set of primers and a second 

amplification step33. 

Nested sets of primers can be used to improve PCR yield of the target DNA sequence 

(Newton and Graham, 1994). PCR with nested primers is performed for 15 to 30 cycles 

with one primer set and then for an additional 15 to 30 cycles, with a second primer set, 

for an internal region of the first amplified DNA product. Thus, the larger fragment 

produced by the first round of PCR is used as the template for the second PCR. Using the 

nested PCR method can dramatically increase the sensitivity and specificity of DNA 

amplification. The specificity is particularly enhanced because this technique can eliminate 

any spurious non-specific amplification products. This is because after the first round of 

PCR any non-specific products are unlikely to be sufficiently complementary to the nested 

primers to be able to serve as a template for further amplification, thus the desired target 

sequence is preferentially amplified. However, the increased risk of contamination is a 

drawback of this extreme sensitivity, and great care must be taken when performing such 

PCRs, particularly in a diagnostic laboratory. 

Multiplex PCR 

Whereas standard PCR usually uses one pair of primers to amplify a specific sequence, 

multiplex PCR uses multiple pairs of primers to amplify many sequences simultaneously. 

The presence of many PCR primers in a single tube could cause many problems, such as 

the increased formation of misprimed PCR products, "primer dimers", and the amplification 

discrimination of longer DNA fragments (Atlas and Bey, 1994).  

For this type of PCR amplification, primers are chosen with similar annealing temperatures. 

The lengths of amplified products should be similar; large differences in the lengths of the 

target DNAs will favour the amplification of the shorter target over the longer one, resulting 

in differential yields of amplified products. In addition, multiplex PCR buffers contain Taq 

polymerase additive, which decreases the competition among amplicons and the 

discrimination of longer DNA fragments during multiplex PCR. 

The products of the analysis can be further hybridised with a gene-specific probe for 

verification. 

                                           
33 https://www.sciencedirect.com/topics/neuroscience/nested-polymerase-chain-reaction 

https://www.sciencedirect.com/topics/neuroscience/nested-polymerase-chain-reaction
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Multiplex PCR is very useful for "screening" purposes in case of GMO detection (see Session 

9), because it reduces the amount of experiments. It is not possible to use the protocol of 

two single PCRs and put them together into a multiplex reaction because the amount of 

enzyme would be split among two or more targets as well as the quantity of reagents, 

lowering in this way the efficiency of the reaction. Nevertheless, there are many specific 

multiplex PCR protocols available.  

PCR in practice 

As already illustrated in the previous sections, PCR is widely used and it is a powerful 

analytical and preparative technique. However, because of the nature of this procedure, 

trace amounts of DNA contaminants can serve as templates, resulting in amplification of 

the wrong target nucleic acid (false positives). Thus, it is critical to perform PCR 

amplification in a DNA-free environment. Physically separate, distinct working areas with 

dedicated equipment reduces the risk of contamination. A forward workflow should be 

maintained throughout the process. Strict compliance with decontamination requirements 

(e.g. decontamination of nucleic acids and prevention of aerosols) is the most important 

prerequisite to reduce the rate of false-positive results to a minimum. PCR contamination 

can be caused by several sources such as:  

 Laboratory benches, equipment and pipetting devices contaminated by 

previous DNA preparations, or by purified restriction fragments. 

 Cross-contamination between samples. 

 Products from previous PCR amplifications. 

This section provides some recommendations, with the aim of defining the routine 

requirements for the establishment and maintenance of a clean environment for any PCR-

based assay system, regardless of the number of samples being processed (Roth et al., 

1997). 

Physical prevention methods 

Laboratory facilities. In order to avoid contamination, physically separate working areas 

should be set up as follows: 

1. Sample preparation area 

This room consists of an area where all the steps prior to amplification of the 

template DNA are performed (e.g. isolation and purification of DNA). 

2. PCR set-up room 

This “clean” room is devoted to the procedures related to the preparation of the 

PCR reaction (e.g. mastermix and primers dilutions). 

3. Post-PCR area 
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The area is dedicated to the amplification of the target DNA sequence, and the 

detection and analysis of the PCR products. 

In addition, the following general rules should be observed:  

 All the rooms should contain dedicated equipment (coats, gloves, reagents, and 

supplies). 

 Reagents and other devices must be labelled with content and date of 

preparation. 

 Use a forward work flow system, i.e. never move material, samples or 

equipment from post-PCR areas into pre-PCR locations. 

 Use disposable PCR reaction tubes, which are DNase and RNase free. 

 Use filter and/or aerosol-resistant tips and a dedicated (used only for PCR) set 

of pipettes, preferably positive displacement pipettes. 

 If possible, set up PCR reactions under a fume hood that is equipped with UV 

light or in a dead air box. Equipment and disposable gloves should be dedicated 

to such areas. 

 Periodically wash benches and shelves with 10% bleach followed by 70% 

ethanol. 

Sample handling 

 Use sterile techniques and always wear fresh gloves when working in the areas 

previously described. Change gloves frequently, especially if you suspect they 

have become contaminated with solutions containing template DNA. 

 Always use new and/or sterilised glassware, plasticware, and pipettes to prepare 

PCR reagents and template DNA. 

 Autoclave all reagents and solutions that can be autoclaved without affecting 

their performance. Reagents such as primers, dNTPs, and Taq DNA Polymerase 

cannot be autoclaved. 

 Have your own set of PCR reagents and solutions that are only used for PCR, 

and store these reagents in small aliquots. 

 When pipetting DNA, avoid creating aerosols that can carry contaminants. 

 Always include control reactions, for example, a negative (“not containing DNA”) 

control, that contains all reaction components except the template DNA, and a 

positive control that has been successfully used in previous PCRs. 

Biochemical prevention methods 

Uracil-DNA Glycosylase. The PCR can amplify a single molecule over a billion-fold. Thus, 

even tiny amounts of a contaminant can be amplified and lead to a false positive result. 

Such contaminants are often products from previous PCR amplifications (carry-over 

contamination). Therefore, methods to avoid such contamination have been developed. 
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One common strategy is substituting dUTP for dTTP during PCR amplification, to produce 

uracil-containing DNA (U-DNA) (Longo et al., 1990). Treating subsequent PCR reaction 

mixtures with Uracil-DNA Glycosylase (UNG) prior to PCR amplification and subsequent 

cleavage of pyrimidinic polynucleotides at elevated temperature (95°C) under alkaline 

conditions (during the initial denaturation step) will remove contaminating U-DNA from the 

sample (see Figure 8). 

 

 

 

Figure 8. Uracil-DNA Glycosylase reaction  

 

This method, of course, requires that all PCR-reactions in the lab are carried out with dUTP 

instead of dTTP. 

Note the following when using dU-containing PCR products in downstream applications: 

 PCR products containing dU perform as well as those containing dT when used 

as hybridisation targets or as templates for dideoxy sequencing. 

 PCR products containing dU can be cloned directly if they are transformed into 

UNG–bacterial hosts. 

 A dU-containing substrate is readily digested by some common restriction 

enzymes (e.g. EcoR I and BamH I), while others show reduced activity (e.g. Hpa 

I, Hind II, Hind III) on these substrates. 

Note: The use of dU-containing DNA is not recommended for protein-binding or 

DNA-protein interaction studies. 

DNase I, exonuclease III. Other biochemical methods are based on the treatment of 

the contaminated DNA with DNase I, exonuclease III or with a restriction enzyme, 
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containing a recognition sequence within the target DNA. However, because of the harsh 

reaction condition required, these enzymes present the disadvantage of reducing the 

efficiency of the PCR amplification. 

 

Preparation of the mixture for the PCR reaction (Mastermix) 

The essential reagent components for PCR are water, reaction buffer, a thermostable DNA 

polymerase, oligonucleotide primers, deoxynucleotides (dNTPs), template (target) DNA, 

and magnesium ions (Mg2+). In general, all reagents (except the template DNA) are mixed 

in a single tube, in enough volume according to the number of reactions to be performed 

(mastermix). Commercial mastermix containing buffer, deoxynucleotides (dNTPs), and 

magnesium ions (Mg2+) can also be used. The mastermix is then aliquoted into individual 

tubes and the template DNA is added. The use of a mastermix solution reduces the risk of 

contamination and improves the performance of the PCR reaction for the following reasons: 

 A uniform quality of the solution is guaranteed for all the reagents for a series 

of analyses, 

 The risk of contamination of the parent and resulting solutions is decreased, 

 Larger volumes can be pipetted thus avoiding pipetting error, 

 There are fewer pipetting stages and therefore time is saved. 

Successful amplification of the region of interest depends on the amount and quality of the 

template DNA. The amount of template required is dependent upon the complexity of the 

DNA sample. Taking into account that the size of nuclear genome varies among organisms, 

the DNA concentration should be maintained constant (usually 10 ng/l). A comparison of 

genome size of plant species frequently used in plant transformation and the corresponding 

number of genome copies (copy number) in a defined amount of DNA (ng), are given in 

Table 2 where 1C is the weight in picograms of the haploid genome. 
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Table 2. C values of the most frequent crops that have been genetically modified.  

(*C values available at http://data.kew.org/cvalues/CvalServlet?querytype=1) 

 

Taxon 1 C * (pg)  copy number in 100 ng 

Soybean 1.13 88496 

Maize 2.73 36630 

Rice 0.5 200000 

Rapeseed 1.15 86957 

Cotton 2.4 41667 

Sugar beet 1.25 80000 

Tobacco 5.18 19305 

 

For example, in a 4 kb plasmid containing a 1 kb insert, 25% of the input DNA is the target 

of interest. Conversely, a 1 kb gene in the maize genome (5 x 109 bp) represents 

approximately 0.00002% of the input DNA. Approximately 1,000,000-fold more maize 

genomic DNA is required to obtain the same number of target copies per reaction. For 

optimised results, > 104 copies of the target sequence should be used as a starting 

template to obtain a signal in 25 - 30 cycles. Even if in practice less than 10 copies of a 

target sequence can be amplified, in this case, more PCR cycles might be required to detect 

a signal by gel electrophoresis. General protocols routinely applied consider a number of 

cycles ranging between 30 and 40. Care should be taken in further increasing the number 

of cycles, since this may increase non-specific amplification. 

The data contained in Table 2 was extrapolated using the following principle. If calculating 

the number of copies of DNA in a certain amount of extracted DNA, for example, from 

soybean (e.g. 200 ng of DNA), the following formula shall apply: 

 

(200 ng * 1000)/ 1.13 pg = 176991 copies 

where 1.13 is the average C value for soybean expressed in picograms. 

 

 

http://data.kew.org/cvalues/CvalServlet?querytype=1
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Controls 

As reported in the previous paragraphs, potential sources of contamination can be found 

throughout the laboratory. Samples, laboratory staff, air conditioning, equipment, and 

reagents can all be a source of contamination. Among contaminant agents, the following 

can occur: 

1. Carry-over contamination of amplified target DNA from previous PCRs 

2. Cross-contamination between samples, resulting in transfer of target DNA from 

one sample to another 

3. Genomic DNA from previous sample DNA extraction 

4. Degradation of DNA by decontamination chemicals 

Whereas the first three forms of contamination produce false positives the last can produce 

a false negative result. This form of contamination, first observed by Niederhauser and co-

workers in 1994, produces the inhibition of PCR reactions (Niederhauser et al., 1994). In 

fact, decontamination using the UNG method favours the formation of complexes with the 

primers. 

In order to obtain reliable results, it is important to always perform the analysis with 

different controls monitoring malfunctioning of the amplification procedure, cross 

contamination, and inhibition (see Table 3). 

 

Positive controls 

The efficiency of the DNA extraction and its amplification has to tested against positive 

controls. Ideally, limits of detection should be given as genomic equivalents, which would 

allow the production of defined sensitivity controls, with small copy numbers. As a rule, a 

reference preparation, containing a known concentration of the target DNA under 

investigation, should be available. 

 

Negative controls 

Contamination (carry-over of amplified products or nucleic acids) may occur during the 

isolation and purification of the target DNA, as well as during the preparation of the 

amplification reaction mixture. The use of a negative control with the amplification reaction 

mixture is therefore essential. 

 

Inhibition controls 

In contrast to positive and negative controls that have to go together with the sample 

analysis, it is appropriate to do the DNA inhibition test before the experiment, to avoid 
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wasting time and resources. Basically, inhibition is related to the concentration of 

inhibitors, and for this reason inhibition tests (runs) require the preparation of a set of 

serial dilutions of the extracted DNA. After their amplification, it should be possible to tell 

if the sample is highly inhibited or not based on the expected rate of PCR amplification in 

terms of the serial dilution. Determining whether PCR inhibition is present is important to 

avoid false negatives as well as during real-time PCR quantification. If a GMO is present in 

very low concentration and the extracted DNA is inhibited, the analysis could give a 

negative result even if the target DNA is present (false negative).  

 

Table 3. Controls to be inserted within the PCR based tests according to ISO 24276 

Name Description Purpose Expected Result 

Environmental 

control 

Nucleic acid free water Looking for cross 

contamination in 

laboratory 

environment 

 

Negative 

Extraction 

blank control 

Control in which the sample 

is substituted by nucleic 

acid-free water and that 

follows all extraction steps 

 

Looking for presence of 

contamination during 

extraction procedures 

Negative 

Positive 

extraction 

control 

It contains the DNA under 

study (GMO), can be an 

appropriate Certified 

Reference Material 

To assure that the 

procedure actually 

extracted DNA  

Positive 

Negative DNA 

target control 

Contains taxon reference 

DNA but no GMO  

To assure the absence 

of false positives 

 

Negative 

Amplification 

reagent 

control 

Contains all reagents for 

amplification except the 

target DNA (sterile water 

instead) 

To assure that there is 

no contamination 

Negative 

PCR inhibition 

control 

Serial dilutions of the 

Certified Target DNA 

To monitor inhibition Within the range 
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Characteristics of Roundup Ready® soybean34 

Brief identification  

 

Designation 

(Unique 

identifier) 

GTS 40-3-2 (MON-Ø4 Ø32-6) 

Applicant Monsanto Canada Inc. 

Plant Species Glycine max L. (soybean)  

Novel Traits Novel tolerance to glyphosate, the active ingredient of 

Roundup® herbicide  

Trait Introduction 

Method 

Particle acceleration (biolistics) 

Proposed Use Production of soybeans for animal feed (mostly defatted 

toasted meal and flakes) and human consumption (mostly oil, 

protein fractions and dietary fibre).  

 

Background information 

Soybean line GTS 40-3-2 was developed by Monsanto Canada Inc. to allow the use of 

glyphosate as an alternative weed control system in soybean production. 

The development of GTS 40-3-2 was based on recombinant DNA technology, through the 

introduction of a glyphosate tolerant form of the enzyme 5-enolpyruvylshikimate-3-

phosphate synthase (EPSPS) gene, isolated from Agrobacterium tumefaciens strain CP4, 

into the commercial soybean variety "A5403" (Asgrow Seed Company).  

 

Description of the novel trait: Glyphosate tolerance 

Glyphosate, the active ingredient of Roundup®, is a systemic, post emergent herbicide 

used worldwide as a non-selective weed control agent. Glyphosate acts as a competitive 

inhibitor of 5-enol-pyruvylshikimate-3-phosphate synthase (EPSPS), an essential enzyme 

of the shikimate biochemical pathway involved in the production of the aromatic 

                                           
34 Extracted from the Canadian Food Inspection Agency, Decision Document DD95-05. 
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aminoacids phenylalanine, tyrosine and tryptophan (Figure 1). The inhibition of EPSPS 

results in growth suppression and plant death. 

The inserted glyphosate tolerance gene codes for a bacterial version (derived from the CP4 

strain of Agrobacterium tumefaciens) of this essential enzyme, ubiquitous in plants, fungi 

and microorganisms and is highly insensitive to glyphosate. It can therefore fulfil the 

aromatic aminoacid metabolic needs of the plant.  

The EPSPS gene is under the regulation of a strong constitutive promoter from Cauliflower 

Mosaic Virus (P-CaMV E35S) and terminates with the nopaline synthase terminator (T-

nos) derived from Agrobacterium tumefaciens (Figure 2). A plant-derived DNA sequence 

coding for a chloroplast transit peptide (CTP4 from Petunia hibrida) was cloned at the 5’ of 

the glyphosate tolerance gene. The signal peptide fused to the EPSPS gene facilitates the 

import of newly translated enzyme into the chloroplasts, where both the shikimate pathway 

and glyphosate sites of action are located. Once importation has occurred, the transit 

peptide is removed and rapidly degraded by a specific protease.  

EPSP synthase is ubiquitous in nature and is not expected to be toxic or allergenic. When 

subjected to comparative analyses with sequence databases of toxic or allergenic 

polypeptides, the amino acid sequence of the enzyme showed no significant homology with 

any known toxin or allergen. 
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Figure 1. EPSPS catalyses the reaction of shikimate-3-phosphate and 

phosphoenolpyruvate (PEP) to form 5-enolpyruvylshikimate-3-phosphate (EPSP) and 

phosphate. EPSP is an intermediate for aromatic aminoacids synthesis. As a consequence 

of inhibition of this biochemical pathway, proteins’ synthesis is disrupted, resulting in plant 

death. EPSPS is the only physiological target of glyphosate in plants, and no other PEP-

utilising enzymes are inhibited by glyphosate. 

 

 

 

Figure 2. Schematic representation of the Roundup Ready® soybean gene cassette (Size 

of elements composing the construct in kilobases). 
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Development method 

The commercial soybean variety A5403 (Asgrow Seed Co.) was transformed by means of 

gold particle bombardment with the PV-GMGT04 plasmid vector harvested from Escherichia 

coli (see Figure 3). The PV-GMGT04 plasmid contained the CP4 EPSPS gene coding for 

glyphosate tolerance, the gus gene for production of ß-glucuronidase as a selectable 

marker, and the nptII gene for antibiotic resistance (kanamycin). The original transformant 

selected showed two sites of integration, one with the gus selectable marker and the other 

with the glyphosate tolerance gene. These two sites subsequently segregated 

independently in the following sexual generation, and line GTS 40-3-2, upon analysis, was 

found to contain just one insertion site, in which only the glyphosate tolerance gene is 

integrated. 

 

Figure 3. Plasmid map including genetic elements of vector PV-GMGT04 used in the 

transformation of RR soybean event 40-3-2 (taken from Monsanto, 2000)35 

 

Stability of insertion of the introduced traits 

The original data (Padgette et al., 1995, 1996) indicated that GTS 40-3-2 contained a 

single functional CP4 EPSPS gene cassette, consisting of the Cauliflower Mosaic Virus 

(CaMV) E35S promoter, a chloroplast transit peptide, the CP4 EPSPS coding sequence, and 

the nos polyadenylation signal. 

No incorporation of any coding region from outside the fusion gene of the original plasmid 

vector was found. Subsequent generations demonstrated no further segregation of the 

                                           
35 Monsanto Company (2000). Updated Molecular Characterization and Safety Assessment of Roundup Ready 
Soybean Event 40-3-2. Monsanto Report, Product Safety Centre. 
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fusion gene described above, showing that line GTS 40-3-2 was homozygous for the fusion 

gene. DNA analyses over six generations showed that the insertion was stable. 

More recent characterisation studies have shown that, during integration of the insert DNA 

several rearrangements occurred and that, in addition to the primary functional insert, 

Roundup Ready® soybean event 40-3-2 contains two small not functional segments of 

inserted DNA of 250 bp and 72 bp, respectively (Monsanto, 2000; Windels et al., 2001). 

 

Regulatory decision 

Roundup Ready (RR) soybean was the first soybean line approved for marketing in the 

EU. After clearance in the US in 1994, consent for importation into the European Union 

was also given with Commission Decision 96/281/EC of 3 April 1996 (Commission Decision 

96/281/EC) and from there renewed in 2006. The decision only allows for the importation 

of seed into the EU for industrial processing into non-viable products including animal 

feeds, food and any other products in which soybean fractions are used, while cultivation 

is not allowed.  
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Characteristics of maize MON81036 

Brief identification  

Designation (Unique identifier) Event MON810 maize (MON-ØØ81Ø-6) 

Applicant Monsanto Canada Inc.  

Plant Species Zea mays L. (maize)  

Novel Traits Resistance to European Corn Borer (ECB) 

(Ostrinia nubilalis)  

Trait Introduction Method Particle acceleration (biolistics)  

Proposed Use Production of Z. mays for human consumption 

(wet or dry mill or seed oil), and meal and silage 

for livestock feed. 

 

Background information 

Maize event MON810 was developed by Monsanto Canada Inc. to be specifically resistant 

to European Corn Borer (ECB; Ostrinia nubilalis) and to provide a method to control yield 

losses due to damage through insect feeding caused by the ECB in its larval stages, without 

the use of conventional pesticides. 

MON810 was developed using recombinant DNA technology and microprojectile 

bombardment of plant cells to introduce a gene encoding the production of a naturally 

occurring insecticidal protein (derived from Bacillus thuringiensis ssp. kurstaki). This 

protein is active against certain species of Lepidoptera, the insect order to which butterflies 

and moths belong, including ECB. More specifically, the protein expressed in MON810 is a 

truncated form of the insecticidal protein, CRYIA(b) δ-endotoxin, and protects the maize 

plants from leave and stalk damage caused by ECB larvae.  

 

Description of the novel trait: Resistance to the European Corn Borer (ECB) 

Bacillus thuringiensis ssp. kurstaki is an endospore-forming, gram-positive, soil-borne 

bacterium. In its sporogenic stage it produces several insecticidal proteins, including the 

δ-endotoxin CRYIA(b) protein active against certain lepidopteran insects such as the ECB, 

Spruce Budworm, Tent Caterpillar, Gypsy Moth, Diamondback Moth, Cabbage Looper, 

                                           
36 Extracted from the Canadian Food Inspection Agency, Decision Document 97-19. 
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Tobacco Budworm, and Cabbage Worm. The protein has been repeatedly shown to be non-

toxic to humans, other vertebrates and beneficial insects (Lee et al., 1995). 

MON810 was transformed with one copy of cryIA(b) gene (3.46 Kb) under the control of 

the strong constitutive enhanced CaMV 35S promoter, and the maize HSP70 intron leader 

sequence (Figure 4). 

The cryIA(b) coding sequence from Bacillus thuringiensis ssp. kurstaki HD-1 was modified 

to optimize and maximize the expression of the δ-endotoxin CRYIA(b) protein in plants. 

The protein becomes toxic for lepidopteran larvae following cleavage to a bio-active, 

trypsin-resistant core. The insecticidal activity is thought to depend on the binding of the 

active fragment to specific receptors present on midgut epithelial cells of susceptible 

insects and on the subsequent formation of pores, disrupting the osmotic balance and 

eventually resulting in cell lysis. Specific lepidopteran pests of maize sensitive to the 

protein are ECB and corn earworm.  

The amino acid sequence of the toxin expressed in the modified maize was found to be 

identical to that occurring naturally, and equivalent to the protein produced as a 

biopesticide being widely used by the organic food industry. 

 

Figure 4. Schematic representation of the cryIA(b) construct from MON810, including the 

enhanced CaMV 35S-promoter, the maize hsp70 intron 1 and the synthetic cryIA(b) gene. 

Development method 

MON810 was obtained from maize genotype Hi-II by biolistic transformation with a mixture 

of plasmid DNAs, PV-ZMBK07 and PV-ZMGT10. The PV-ZMBK07 plasmid contained the 

cryIA(b) gene (Figure 5) and PV-ZMGT10 plasmid contained the CP4 EPSPS and gox genes. 

Both plasmids also contained the nptII gene (for bacterial selection) under the control of a 

bacterial promoter, and an origin of replication from a pUC plasmid (ori-pUC) required for 

replication of the plasmids in E. coli. The two vectors were introduced by microprojectile 

bombardment into cultured plant cells. Glyphosate tolerant transformed cells were selected 

and subsequently cultured in tissue culture medium for plant regeneration (Armstrong et 

al., 1991). 

Molecular analyses provided by the authors indicated that only the elements from construct 

PV-ZMBK07 were integrated into the genome of line MON810 as a single insert, consisting 

of the enhanced CaMV 35S (E35S) promoter, the hsp70 leader sequence and the truncated 
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cryIA(b) gene. The nos 3' termination signal, present in plasmid PV-ZMBK07, was lost 

through a 3' truncation of the gene cassette and therefore was not integrated into the host 

genome (BATS, 2003).  

 

 

Figure 5. Schematic representation of the plasmid PV-ZMBK07 used in engineering 

MON810 (Sanders et al, 1998). 

Stability of insertion of the introduced traits 

Data provided by the authors show that segregation and stability were consistent with a 

single site of insertion of the cryIA(b) gene into the MON810 genome. The stability of the 

insertion was demonstrated through multiple generations of crossing. The maize line has 

been crossed with several different maize genotypes for 4 generations with protection 

against ECB maintained. MON810 was derived from the third generation of backcrossing. 

Stable integration of the single insert was demonstrated through all three generations by 

Southern Blot analysis. 

Regulatory decision  

Planting of maize line MON810 was approved in the United States in July 1996 by the 

Environmental Protection Agency. Commercialisation of this line of maize in the EU was 

authorised following Commission Decision 98/294/EC of 22 April 1998 (Commission 

Decision 98/294/EC).  

The Canadian Food Inspection Agency issued the Decision Document 97-19 for its approval 

as food and feed. The MON810 line is also approved in Argentina, Australia, Japan, South 

Africa and Switzerland. 

CryIA(b) 
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This line of maize is the only one cultivated in the EU and it is intended for human 

consumption (wet mill, dry mill or seed oil), meal and silage for livestock feed. The 

procedure for the renewal of the seeds for cultivation authorisation is currently ongoing 

(https://webgate.ec.europa.eu/dyna/gm_register/index_en.cfm, accessed February 

2020). 

Characteristics of maize Bt-11 

Brief identification  

Designation (unique identifier) Event Bt-11 maize (SYN-BT Ø11-1) 

Applicant Syngenta Seeds SAS 

Plant Species Zea mays L. (maize)  

Novel Traits Resistance to the (ECB) (Ostrinia nubilalis), 

and tolerance to phosphinothricin (PPT) 

herbicide, specifically glufosinate 

ammonium. 

Trait Introduction Method Particle acceleration (biolistics)  

Proposed Use Production of Z. mays for human 

consumption (wet or dry mill or seed oil), 

and meal and silage for livestock feed. 

 

Background information 

Maize event Bt-11 was developed by Syngenta Seeds SAS to be specifically resistant to 

ECB (Ostrinia nubilalis) and to provide a method to control yield losses due to damage 

through insect feeding caused by the ECB in its larval stages, without the use of 

conventional pesticides. 

Bt-11 was developed using recombinant DNA technology and microprojectile bombardment 

of plant cells, to introduce a gene encoding the production of a naturally occurring 

insecticidal protein (derived from Bacillus thuringiensis spp. kurstaki). This protein is active 

against certain species of Lepidoptera, the insect order to which butterflies and moths 

belong, including ECB.  

It also contains phosphinothricin N-acetyltransferase (PAT) encoding gene from 

Streptomyces viridochromogenes to confer tolerance to phosphinothricin (PPT) herbicide, 

specifically glufosinate ammonium. 

https://webgate.ec.europa.eu/dyna/gm_register/index_en.cfm
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Description of the novel trait: Resistance to the ECB 

Constitutive expression of the cry1Ab gene in Bt-11 is controlled by the 35S promoter 

derived from cauliflower mosaic virus (CaMV) modulated by the IVS6 intron (from maize 

alcohol dehydrogenase 1S gene), and the 3'-polyadenylation signal of the nopaline 

synthase (nos) gene from Agrobacterium tumefaciens. The phosphinothricin 

acetyltransferase (pat) gene is present as a selectable marker enabling identification of the 

transformed plant cells and to provide field tolerance to glufosinate ammonium. 

Constitutive expression of the pat gene is under the control of the CaMV 35S promoter, 

the IVS 2 intron, and NOS 3' terminator. For the properties of cryIA(b) gene see paragraph 

on MON810. 

Tolerance to glufosinate ammonium 

Bt-11 was also genetically modified to express the pat gene cloned from the common 

aerobic soil actinomycetes; Streptomyces viridochromogenes strain Tu494, which encodes 

a phosphinothricin-N-acetyltransferase (PAT) enzyme. The PAT enzyme was used as a 

selectable marker enabling identification of transformed plant cells as well as a source of 

resistance to the herbicide phosphinothricin (also known as glufosinate ammonium, the 

active ingredient in the herbicides Basta, Rely, Finale, and Liberty). Glufosinate ammonium 

acts by inhibiting the plant enzyme glutamine synthetase, the only enzyme in plants that 

detoxifies ammonia by incorporating it into glutamine. Inhibition of this enzyme leads to 

an accumulation of ammonia in the plant tissues, which kills the plant within hours of 

application. PAT catalyses the acetylation of the herbicide phosphinothricin and thus 

detoxifies glufosinate ammonium into an inactive compound. The modified maize line is 

protected from ECB and permits farmers to use phosphinothricin-containing herbicides for 

weed control in the cultivation of maize. 

 

Figure 6. Schematic representation of the cryIA(b) and pat gene construct, including the 

enhanced CaMV 35S-promoters, the maize hsp70 intron 6 and 2 and the nos terminators. 

Development method 

The Bt-11 corn line was created through direct DNA transformation of plant protoplasts 

from the inbred maize line H8540 and regeneration on selective medium. A single plasmid, 

designated pZO1502, was used in the transformation event and contained a truncated 
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synthetic cry1Ab gene and a synthetic pat gene. Prior to transformation, the plasmid vector 

was treated with the restriction endonuclease NotI in order to remove the beta lactamase 

(bla) gene from the DNA fragment containing the cry1Ab and pat genes. 

The plasmid pZO1502 also contained the beta lactamase (bla) gene included as selectable 

marker to screen transformed bacterial cells. The bla gene confers resistance to some beta-

lactam antibiotics, including the moderate-spectrum penicillin and ampicillin. Bacterial cells 

that contained the pZ01502 plasmid were selected through their resistance to ampicillin. 

The bla gene was excised from the plasmid vector prior to transformation of the maize 

tissue. 

Other genetic components incorporated included a non-functional lacZ gene, encoding a 

portion of the enzyme beta-galactosidase; and the pUC origin of replication derived from 

the plasmid pBR322. Following the transformation event, plants were regenerated and the 

pollen of maize plants (Zea mays L.) derived from transformation event Bt-11 was used to 

pollinate the female flowers of an inbred maize line. Descendants of the initial crossings 

were successively backcrossed to evaluate different maize lines carrying the Bt-11 event. 

Several hybrid maize varieties have been derived from the Bt-11 maize event. 

Stability of insertion of the introduced traits 

The stability of the inserted DNA in Bt-11 maize was demonstrated by a Mendelian 

inheritance pattern using Southern Blot analysis. Segregation analysis of the cry1Ab and 

pat genes over multiple generations demonstrated that they were closely linked, as they 

always segregated together. Restriction fragment length polymorphism (RFLP) mapping 

was used to determine the location of the novel genes in Bt-11. The single insertion site 

was mapped to the long arm of chromosome 8. 

Regulatory decision  

Bt-11 maize has been approved for import and feed and food use in the EU through 

Commission Decision 98/292/EC in 1998.  

The placing on the market of Bt-11 sweet corn was approved in 2004 (2004/657/EC). The 

authorization has been renewed (2010/419/EU), for food and feed use, and for other uses 

other than food and feed with the exception of cultivation. Field maize and sweet corn are 

not currently approved for cultivation in the EU. 
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Smart screening and matrix approach 

The following section contains a general overview of the state of the art of screening for 

GM elements as well as the matrix approach.  

It is appropriate, when testing for the presence of a GMO(s), to plan a stepwise approach. 

Screening aims at finding out if a sample contains GM material and if so what ingredient(s) 

it comes from. The screening regime can be set up in a manner that optimizes time, 

resources and reduces the workload. Testing a sample for every single GMO event 

authorized for marketing in the EU is time consuming and expensive. The "matrix 

approach" provides a cost and time effective approach to GM screening. 

Tools like the JRC GMO-Matrix (available at http://gmo-

crl.jrc.ec.europa.eu/jrcgmomatrix/) make possible to determine the effect of taxon, 

element, construct or event specific methods the sample tests positive or negative for. This 

can help minimize the analytical effort for further analyses. The matrix approach allows 

the identification of possible events based on the positive and negative methods used to 

test a sample. Alternatively, the GMOMETHODS database can be used to exclude events 

based on the taxon, element, construct or event specific methods the sample may test 

negative for, or include events based on positive test results. In this manner the events in 

the sample can be narrowed down and the most cost and time effective testing regime can 

be selected based on test results. 

In Figure 1, the schematic representation of targets and corresponding methods.  

When looking for GMOs in a sample, the best approach is to first test the sample with 

element (2) or construct specific methods (3). These methods can detect the 

elements of the transgene (for example a promoter or a terminator), or construct specific 

combinations of such elements (for example, a specific promoter in combination with a 

specific gene). In addition to this, taxon specific methods (1) can be used to identify 

the plant species present in the sample.  

Once the number of events has been narrowed down to a manageable number by 

eliminating the possible events present, the sample can then be tested with different event 

specific method(s) (4) that detect the target to uniquely identify a specific GM event(s). 

 

 

 

 

 

 

 

http://gmo-crl.jrc.ec.europa.eu/jrcgmomatrix/
http://gmo-crl.jrc.ec.europa.eu/jrcgmomatrix/
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Figure 1. Schematic representation of methods and their targets. P: promoter; T: 

terminator 

Characteristics of the qualitative PCR systems described in the 

manual 

During this course, different detection systems will be used:  

 Taxon-specific primers will be used to confirm the presence of soybean and maize 

and the quality (amplifiability) of the extracted DNA.  

 Element specific “screening methods” will be used for the detection of the most 

common regulatory sequences, the 35S promoter and nos terminator. 

 Construct specific and event-specific primers will be used to selectively detect and 

identify the events taken into consideration in the manual: Roundup Ready® 

soybean, MON810 maize and Bt11 maize.  

Please note that the methods mentioned in this manual are only used for didactical scope. 

For more information on validated methods for detection and quantification of GMOs, 

please consult the GMOMETHODS database (http://gmo-

crl.jrc.ec.europa.eu/gmomethods/). 

Taxon specific PCR 

Detection of the lectin gene 

For the identification of soybean DNA a soybean specific method, which targets the species-

specific lectin gene (Le1) will be used (Table 1) (Meyer et al., 1996). 

As indicated above, the purpose is to confirm the presence of PCR amplifiable extracted 

DNA from soybean containing samples. The expected product is an amplicon of 118 bp. 

 

http://gmo-crl.jrc.ec.europa.eu/gmomethods/
http://gmo-crl.jrc.ec.europa.eu/gmomethods/
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Table 1. Primers for lectin gene 

Primer forward: GM03 GCCCTCTACTCCACCCCCATCC target: lectin gene 

Primer reverse: GM04 GCCCATCTGCAAGCCTTTTTGTG target: lectin gene 

 

Detection of the invertase gene 

Invertase is an enzyme that catalyzes the hydrolysis of sucrose. The invertase 1 gene 

(ivr1) is used for the detection of Zea mays. A PCR assay (Table 2) will be used to confirm 

the presence and PCR amplifiable extracted DNA from maize-containing samples. If the 

target DNA is present, intact and amplifiable, the amplification band is expected to be 225 

bp (ISO/FDIS 21569:2005). 

Other genes can be used for the detection of Zea mays, for example, Alcohol 

dehydrogenase I (Adh I) and the high mobility group (hmg). Examples of taxon specific 

genes, especially for use in quantitative analysis can be found at http://gmo-

crl.jrc.ec.europa.eu/gmomethods/). 

 

Table 2. Primers for invertase gene 

Primer forward: IVR1-F CCGCTGTATCACAAGGGCTGGTACC Target: ivr1 gene 

Primer reverse: IVR1-R GGAGCCCGTGTAGAGCATGACGATC Target: ivr1 gene 

 

Screening method: Detection of the CaMV 35S promoter and 

nos terminator 

The detection of the 35S promoter and nos terminator by PCR constitutes the so-called 

“screening methods” for the identification of genetically modified plant-derived foods. The 

use of the 35S promoter and nos terminator as target sequences allows the detection of 

the majority but not all GM events. In fact, from the GMO matrix it is evident that, for 

example, maize event MIR604 and soybean event CV127 do not contain these elements. 

The characteristics of some maize events approved for market introduction in the EU are 

listed in Table 3 as an example.  

 

 

 

 

 

http://gmo-crl.jrc.ec.europa.eu/gmomethods/
http://gmo-crl.jrc.ec.europa.eu/gmomethods/
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Table 3. Characteristics of transgenic maize events carrying the CaMV 35S promoter 

and/or the nos terminator. 

 

Maize Event 35S promoter nos terminator 

1507 x 

 

3272 

 

x 

4114 x 

 

5307 

 

x 

59122 x 

 

Bt11 x x 

GA21 

 

x 

MIR604 

 

x 

MIR863 x x 

MON810 x 

 

MON87427 x x 

MON87460 x x 

MON88017 x x 

MON89034 x x 

NK603 x x 

T25 x 

 

 

Detection of the CaMV 35S promoter 

The cauliflower mosaic virus promoter regulates the gene expression of many transgenic 

plants such as Roundup Ready® soybean and maize event MON810. For its specific 

detection, primers 35S-cf3 and 35S-cr4 (Table 4) will be used (Lipp et al., 2001). The 

expected amplicon size is 123 bp. 

Table 4. Primers for cauliflower mosaic virus promoter 

Primer forward: 35S-cf3 CCACGTCTTCAAAGCAAGTGG Target: CaMV 35S promoter 

Primer reverse: 35S-cr4 TCCTCTCCAAATGAAATGAACTTCC Target: CaMV 35S promoter 
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Detection of the nos terminator 

Primers HA-nos118-f and HA-nos118-r (Lipp et al., 2001; Table 5) are used for the 

detection of the nos terminator. The nos terminator is present in the Roundup Ready® 

soybean and in several other transgenic lines (e.g. maize line Bt11). Amplification of the 

nos terminator results in the production of a DNA fragment of 118 bp.  

 

Table 5. Primers for nos terminator  

Primer forward: HA-nos118-f GCATGACGTTATTTATGAGATGGG Target: T-nos 

Primer reverse: HA-nos118-r GACACCGCGCGCGATAATTTATCC Target: T-nos 

 

Multiplex detection of the 35S promoter and nos terminator by real-time PCR 

Real-time PCR became popular for the possibility to quantify the target sequence in a 

reliable way. However, this technique is also more and more frequently used for qualitative 

detection purposes, thanks to its intrinsic specificity and due to the fact that it allows 

analysis and extrapolation of results directly from the instrument, omitting therefore the 

need for the identification and verification of the PCR product using gel electrophoresis.  

For this reason, assays like the duplex real-time PCR for the detection of both 35S and T-

nos have found application in routine GM analysis of food products (Table 6). 

Even though real-time PCR approaches will be explained in Sessions 10 and 11, it is worth 

to mention their applicability to qualitative analysis in this section. 

 

Table 6. Primers and probes for duplex real-time PCR for 35S promoter and nos terminator 

(Waiblinger et al., 2008). 

Primer forward: 35S-FTM 5'-GCCTCTGCCGACAGTGGT-3’ target: P-35S 

Primer reverse: 35S-RTM 5'-AAGACGTGGTTGGAACGTCTTC-3’ target: P-35S 

Probe: 35S-TMP-FAM 5'-FAM-CAAAGATGGACCCCCACCCACG-BHQ1-3’ target: P-35S 

Primer forward: 180-F 5’-CATGTAATGCATGACGTTATTTATG-3’ 
target:T-nos 

Primer reverse: 180-R 5’-TTGTTTTCTATCGCGTATTAAATGT-3’ 
target:T-nos 

Probe: TM-180YY 
5’-YY-ATGGGTTTTTATGATTAGAGTCCCGCAA-

BHQ1-3’ 
target:T-nos 



Characteristics of the Conventional and Real-time PCR Systems for Qualitative Analysis 

Session 8                                                                                                             116 

FAM: 6-Carboxyfluorescein; YY: Yakima Yellow; BHQ: Black Hole Quencher 

Construct specific PCR 

The amplification primers described in the following session have been designed to 

specifically detect the genetic structure inserted into the Roundup Ready® soybean, Bt11 

and MON810 maize genomes. The methods are part of the ISO/FDIS 21569:2005. For 

detailed information, please also consult the GMO METHODS: EU Database of Reference 

Methods for GMO Analysis. 

Specific detection of the junction region between the CaMV P-35S and the 

synthetic CTP sequence in Roundup Ready® soybean. 

This method, being a construct specific method, can be considered specific for Roundup 

Ready® soybean because this is the only GM event carrying this construct. The method 

(Table 7) etects the junction between the Cauliflower Mosaic Virus 35S promoter (CaMV P-

35S) and the chloroplast-transit-peptide (CTP) sequence from Petunia hybrida epsps gene. 

The expected amplicon size is 172 bp. 

 

Table 7. Primers for the specific detection of CaMV P-35S and CTP4 

Primer forward: p35S-af2 TGATGTGATATCTCCACTGACG target: CaMV P-35S 

Primer reverse: petu-ar1 TGTATCCCTTGAGCCATGTTGT target: CTP4 

 

Specific detection of the junction region between IVS2 from the maize adh1 gene and the 

synthetic pat gene in maize event Bt11. 

Again, in Table 8, a construct specific method, detecting the junction between the Intron 

2 (IVS2) from the maize alcohol dehydrogenase 1 (adh1) gene and the phosphinothricin 

N-acetyltransferase (pat) gene. The expected amplicon size is 189 bp. 

 

Table 8. Primers for the specific detection of IVS 2 adh1 and pat 

 Primer forward: IVS2-2 CTGGGAGGCCAAGGTATCTAAT target: IVS 2 adh1 

Primer reverse: PAT-B GCTGCTGTAGCTGGCCTAATCT target: pat 
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Specific detection of 5' integration border region (IBR) between the synthetic 

gene and the host genome of maize event MON810 

Finally, in Table 9, an event specific method that detects the 5' integration border region 

(IBR) between the insert of maize event MON810 and the maize host genome. The 

expected amplicon size is 170 bp. 

 

Table 9. Primers for the specific detection of 5' integration border region (IBR) 

Primer forward: VW01 TCGAAGGACGAAGGACTCTAACG Target: 5'-host genome 

Primer reverse: VW03 TCCATCTTTGGGACCACTGTCG Target: CaMV P-35S 
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Experimental 

Introduction 

The following protocols are PCR-based methods allowing the screening of GMOs (using the 

35S promoter and the nos terminator) and the detection of specific GMOs (Roundup 

Ready® soybean, MON810 maize and Bt11 maize) in raw and processed food, by 

comparison with corresponding non-GM samples (soybean and maize). 

The following methods allow only a qualitative result by indicating the presence/absence 

of the target sequence in the sample following gel electrophoresis to identify and verify the 

presence of the PCR product37.  

Equipment 

 Micropipettes 

 Thermocycler 

 Microcentrifuge 

 Vortex mixer 

 Rack for reaction tubes 

 0.2 ml PCR reaction tubes 

 1.5 ml microcentrifuge tubes 

 Separate sterile room with UV hood 

REMARK 

All plasticware should be DNA-free and where possible, sterilised prior to use. 

In order to avoid contamination, filter pipette tips should be used to minimize aerosol 

formation. 

Reagents 

 dATP CAS 1927-31-7 

 dCTP CAS 2056-98-6 

 dGTP CAS 2564-35-4 

 dTTP CAS 365-08-2 

 10 x PCR buffer (usually delivered from the same supplier as the Taq DNA 

polymerase)  

 25 mM MgCl2 

 Taq DNA polymerase 5 U/µL 

 Upstream and downstream oligonucleotides (i.e. forward and reverse primers) 

                                           
37 Whenever methods of this version of the manual have substituted older ones, it is because validated and/or 

ISO standard methods have been preferred upon the older methods. 
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 Nuclease-free water 

4 mM dNTP stock solution 

     dNTPs might be supplied in pre-mixed stocks - containing dATP, dCTP, dGTP, dTTP 

in equal concentration - or separately in individual concentrated stocks. If individual 

stocks are used, dissolve each dNTP in sterile deionised water, to obtain a final 4 

mM dNTP stock solution. 

     Divide in aliquots and store at -20°C. dNTPs are stable for several months. 

20 μM primer solutions 

Primer oligonucleotides are generally supplied in lyophilised form and should be diluted to 

a final concentration of 20 μM. 

 Prepare 20 μM primer solution according to the supplier’s instructions. 

- 1 μM = 1 pmol/μL so 20 μM = 20 pmol/μL 

- X nmol primer + 10X μL sterile water = 100 pmol/μL = 100 μM 

- Incubate 5 min at 65°C, shake and incubate for another 3 min at 65°C 

- Dilution 1:5   Prepare 1 microcentrifuge tube with 400 μL sterile water and 

add 100 μL of the primer solution  (100 μM ) Final concentration: 20 μM 

 Divide into small aliquots and store at -20°C. The aliquots stored at -20°C are stable 

for at least 6 months; the lyophilised primers are stable at -20°C for up to three 

years unless otherwise stated by the manufacturer.  

10x PCR buffer 

 Usually the 10x PCR buffer is provided together with the Taq DNA polymerase and 

is ready to use. The buffer should be mixed and briefly centrifuged prior to use. 

 Aliquots are stored at -20°C and are stable for several months. 

 

25 mM MgCl2 solution 

“PCR grade” MgCl2 solution is generally supplied together with the Taq DNA polymerase 

and is ready to use. The solution should be mixed (vortex) before use and briefly 

centrifuged (to eliminate the formation of a concentration gradient that can form after 

prolonged storage). Store at -20°C. 

 

Nuclease-free water aliquots 

Sterile nuclease-free, deionised water aliquots are prepared for the Mastermix and for the 

dilution of the DNA. For each series of analyses, a new aliquot should be used. 
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Taxon specific PCR: soybean-lectin 

The identification of soybean DNA is performed using the lectin gene as PCR target. 

The PCR with the primers GMO3/GMO4 determines if amplifiable soybean DNA is present 

in the sample. 

Characteristics of primers GM03 and GM04 

 

GM03 

Sequence GCCCTCTACTCCACCCCCATCC 

Length 22 

Mol. Weight (g/mol) 6471.6 

Melting point * (G/C) 65.1 

 

 

GM04 

Sequence GCCCATCTGCAAGCCTTTTTGTG 

Length  23 

Mol. Weight (g/mol) 6981.1 

Melting point * (G/C) 59.6 

*based on a [Na+] of 50 mM 

 

Controls 

It is important to always include the necessary controls with every PCR reaction. A negative 

or blank control is used to check if the PCR reagents are contaminated with taxon specific 

DNA. A positive control for the specific DNA target is critical to confirm the the sensitivity 

and specificity of the PCR assay. 

The following PCR controls must be included in each assay: 

 Positive control: pure DNA, isolated from the conventional soybean 
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 Negative control: pure DNA, isolated from another species, not containing the lectin 

gene 

 No-template control (NTC): negative control of the Mastermix, in which water is 

used instead of DNA 

 

Mastermix preparation 

The necessary reagents for a series of 10 samples (including positive/negative/no template 

controls) are mixed together according to the instruction given in Table 1. The following 

procedure applies to a sample containing 20 μL of GMO3/GMO4 Mastermix and 5 μL of DNA 

solution. All solutions are stored on ice during the preparation of the Mastermix. 

Table 1. GM03/GM04 Mastermix 

 Final 

concentration 

Mastermix 

 for one sample 

Mastermix 

for 10 samples 

Sterile, deionised water  10.3 μL 103 μL 

10x PCR Buffer 1x 2.5 μL 25 μL 

25 mM MgCl2  1.5 mM 1.5 μL 25 μL 

4 mM dNTPs 0.8 mM 5 μL 50 μL 

20 μM oligonucleotide GM03 0.2 μM 0.25 μL 2.5 μL 

20 μM oligonucleotide GM04 0.2 μM 0.25 μL 2.5 μL 

5 U/µL Taq DNA polymerase 1 U/rcn 0.2 μL 2 μL 

TOTAL  20 μL 200 μL 

 

 Prepare a 1.5 ml microcentrifuge tube 

 Add the reagents in the order given in Table 1 

 Mix gently the GMO3/GMO4 Mastermix by pipetting and/or brief vortexing followed by 

centrifugation 

 Divide the Mastermix into aliquots of 20 μL in 0.2 ml PCR reaction tubes 

 Add 5 μL of the DNA solution to the aliquots of Mastermix (note: dilute the DNA at 10-

20 ng/μL) 

 Vortex and centrifuge briefly 

 Place the PCR reaction tubes in the thermocycler 
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PCR program* (GM03/GM04) 

Stage Temperature  Time 

Activation/Initial Denaturation 95°C 10 min 

Denaturation 95°C 30 sec 

Annealing  60°C 30sec 

Extension 72°C 1 min 

Number of cycles 35  

Final Extension 72°C 3 min 

 4oC ∞ 

Following amplification, the samples are centrifuged briefly and put on ice. 

 

*Note: The use of a different thermocycler model or brand shall produce a similar result 

provided that the PCR programme is adapted and tested accordingly38. 

 

Analysis of PCR products 

After amplification of the target sequence, the PCR products are analysed by 2% agarose 

gel electrophoresis in the presence of ethidium bromide. An amount of 8 μL of a PCR 

reaction is mixed with 2 μL of loading buffer; samples are then loaded onto the agarose 

gel. Migration is performed at 100 V over a period of 1 hour. Size markers (15 μL of 100 

bp ladder) are electrophoresed in adjacent wells of the gel to allow accurate size 

determination of the amplicons. After the run, UV light allows visualisation of the amplified 

DNA on the gel. The gel may be photographed or documented electronically to provide a 

permanent record of the result of the experiment. 

 

 

 

                                           
38 The JRC does not endorse any equipment used during the training courses or mentioned in this manual. The 

analysis performed in our laboratories should be easily reproducible using alternative equipment, provided the 
differing characteristics of the system used are taken into account. 
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Interpretation of the results 

The primer pair GM03/GM04 for the detection of the native lectin gene is used as a system 

control check; the presence of a lectin specific band at 118 bp confirms that the extracted 

DNA is of appropriate PCR amplifiable quality. 

The positive control will amplify a band at 118 bp. There should be no band(s) present in 

the negative and the no-template control after gel electrophoresis. 

If the positive/negative controls do not give the expected results, the PCR analysis of the 

selected samples is not valid. 

If the controls give the expected results and the sample shows an absence of the 118 bp 

band, no amplifiable soybean DNA is present in the sample. It should be noted that these, 

as well as other protocols in this chapter, are qualitative methods, therefore they allow 

only for a qualitative (yes/no) result. 
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Taxon specific PCR: maize-invertase 

The identification of maize DNA is performed targeting the invertase gene (ivr1). 

The PCR with the primers IVR1-F/IVR1-R determines if maize DNA of suitable amplification 

quality is present in the sample. 

 

Characteristics of primers IVR1-F and IVR1-R 

IVR1-F 

Sequence 
CCGCTGTATCACAAGGGCTGGTACC 

Length  
25 

Mol. Weight (g/mol) 7643 

Melting point * (G/C) 63.2 

 

IVR1-R 

Sequence GGAGCCCGTGTAGAGCATGACGATC  

Length  25 

Mol. Weight (g/mol) 7732 

Melting point * (G/C) 62.8 

*based on a [Na+] of 50 mM 

 

Controls 

 Positive control: pure DNA, isolated from the conventional maize 

 Negative control: pure DNA, isolated from a species other than maize not containing 

the invertase gene 

 No-template control (NTC): negative control of the Mastermix, in which water is 

used instead of DNA 
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Mastermix preparation 

The necessary reagents for a series of 10 samples (including positives/negative/no 

template controls) are mixed together as indicated in Table 2. 

The following procedure applies to a sample containing 20 μL of IVR1-F/IVR1-R Mastermix 

and 5 μL of DNA solution. All solutions are stored on ice during preparation of the 

Mastermix. 

 

Table 2. IVR1-F/IVR1-R Mastermix 

Reagents 

Final 

concentration 

Mastermix 

for one sample 

Mastermix 

for 10 samples 

Sterile, deionised water 
 12.05 μL 120.5 μL 

10x PCR Buffer 1x 2.5 μL 25 μL 

25 mM MgCl2  1.5 mM 1.5 μL 15 μL 

4 mM dNTPs 0.4 mM 2.5 μL 25 μL 

20 μM oligonucleotide IVR1-F 0.5 μM 0.63 μL 6.3 μL 

20 μM oligonucleotide IVR1-R 0.5 μM 0.63 μL 6.3 μL 

5 U/µL Taq DNA polymerase 1 U/rcn 0.20 μL 2 μL 

TOTAL  20 μL 200 μL 

 

 Prepare a 1.5 ml microcentrifuge tube 

 Add the reagents following the order given in Table 2 

 Mix gently the IVR1-F/IVR1-R Mastermix by pipetting and centrifuge briefly 

 Divide the Mastermix into aliquots of 20 μL in 0.2 ml PCR reaction tubes 

 Add 5 μL of the DNA solution to the aliquots of Mastermix (note: dilute the DNA at 

10-20 ng/μL) 

 Vortex and centrifuge briefly 

 Place the PCR reaction tubes in the thermocycler 
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PCR program (IVR1-F/IVR1-R) 

Stage Temperature Time 

Initial denaturation 
95˚C 10 min 

Denaturation 95 ˚C 30 sec 

Annealing 64 ˚C 30 sec 

Extension 72 °C 1 min 

Number of cycles 35  

Final extension 
72˚C 10 min 

 4˚C ∞ 

Following amplification, the samples are centrifuged briefly and put on ice. 

Analysis of PCR products 

After amplification of the DNA, the PCR products are analysed using 2% agarose gel 

electrophoresis with ethidium bromide. An amount of 8 μL of the solution is mixed with 2 

μL of loading buffer. The solution mixture is then loaded onto an agarose gel. Migration 

should take place at 100 V over a period of 1 hour. Size markers (15 μL of 100 bp ladder) 

are electrophoresed in adjacent wells of the gel to allow accurate size determination of the 

amplicons. After the run, ultraviolet transillumination allows visualisation of the DNA in the 

gel. The gel may be photographed or documented electronically to provide a permanent 

record of the result of the experiment. 

Interpretation of the results 

The primer pair IVR1-F/IVR1-R is used for the detection of the native maize invertase gene 

as a control check on the amplification quality of the extracted DNA. If the extracted DNA 

is of sufficient amplification quality, an invertase specific band of 225 bp will be observed 

on the gel. 

The positive control should amplify a DNA fragment of 225 bp.  

The negative control and the no-template should not display any PCR amplification. 

If the positive/negative controls do not give the expected results, the PCR analysis of the 

selected samples is not valid. 
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If the controls give the expected results and the sample shows absence of the 225 bp band, 

then, provided that the DNA is not inhibited, no amplifiable maize DNA is present in the 

sample.  Please note that this method is being used only for didactical purposes and other 

options for the detection of taxon specific targets in maize are available.  

Screening method for the detection of Genetically Modified 

Plants 

Genes are under the regulation of promoters and terminators. The most widely used 

sequences for the regulation of a transgene are the 35S promoter (derived from the CaMV) 

and the nos terminator (derived from Agrobacterium tumefaciens). The detection of one 

of these regulatory sequences in the soybean and/or maize containing sample under 

examination indicates GMO presence. 

In Roundup Ready® soybean as well as in Bt11, the identification of both the 35S promoter 

and the nos terminator is possible, whereas only the 35S promoter is present in the 

MON810 maize line. 

Detection of the CaMV 35S promoter 

Characteristics of primers p35S-cf3 and p35S-cr4 

p35S-cf3 

Sequence CCACGTCTTCAAAGCAAGTGG 

Length  21 

Mol. weight (g/mol) 6414.5 

Melting point * (G/C) 57.4 

 

p35S-cr4 

Sequence TCCTCTCCAAATGAAATGAACTTCC 

Length  25 

Mol. weight (g/mol) 7544.2 

Melting point * (G/C) 56.3 

*based on a [Na+] of 50 mM 
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Controls 

 Positive control: DNA from reference material (e.g. maize 0.5% GM) 

 Negative control: DNA from reference material (e.g. maize 0% GM) 

 No-template control (NTC): negative control of the Mastermix, in which water is 

used instead of DNA 

Mastermix preparation 

The necessary reagents for a series of 10 samples (including positive/negative/no template 

controls) are mixed together according to the instructions given in Table 3. 

The following procedure applies to a sample containing 20 μL of p35S-cf3/p35S-cr4 

Mastermix and 5 μL of DNA solution. All solutions are stored on ice during the preparation 

of the Mastermix. 

 

Table 3. p35S-cf3/p35S-cr4 Mastermix 

Reagents Final 

concentration 

Volume for one 

sample  

Volume for 10 

samples 

Sterile, deionised water  

 

13.94 μL  139.4 μL 

10x PCR buffer 1x 2.5 μL  25 μL 

25 mM MgCl2  1.5 mM 1.5 μL 1.5 μL 

4 mM dNTPs  0.64 mM 0.4 μL 4 μL 

20 μM oligonucleotide 35s-

cf3 

0.6 μM 0.75 μL 7.5 μL 

20 μM oligonucleotide 35S-

cr4 

0.6 μM 0.75 μL 7.5 μL 

5 U/µL Taq DNA polymerase 0.8 U/rcn 0.16 μL 1.6 μL 

TOTAL  

 

20 μL 200 μL 

 

 Prepare a 1.5 ml microcentrifuge tube 

 Add the reagents following the order given in Table 3 

 Mix gently the p35S-cf3/p35S-cr4 Mastermix by pipetting and centrifuge briefly 

 Divide the Mastermix into aliquots of 20 μL in 0.2 ml PCR reaction tubes 
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 Add 5 μL of the DNA solution to the aliquots of Mastermix (note: dilute the DNA at 

10-20 ng/μL)  

 Vortex and centrifuge briefly 

 Place the PCR reaction tubes in the thermocycler 

 

PCR program (p35S-cf3/p35S-cr4) 

Stage  Temperature Time 

Initial Denaturation  95°C 10 min 

Denaturation 95°C 25 sec 

Annealing  62°C 30 sec 

Extension  72°C 45 sec 

Number of cycles 50  

Final Extension 72°C 7 min 

 4oC ∞ 

Following amplification, the samples are centrifuged briefly and put on ice. 

 

Analysis of PCR products 

After amplification of the target sequence, the PCR products are analysed using 2% 

agarose gel electrophoresis with ethidium bromide. 8 μL of the solution is mixed with 2 μL 

of loading buffer. The solution mixture is then loaded onto the agarose gel. Migration should 

take place at 100 V over a period of 1 hour. Size markers (15 μL of 100 bp ladder) are 

electrophoresed in adjacent wells of the gel to allow accurate size determination of the 

amplicons. After the run, ultraviolet transillumination allows visualisation of the DNA in the 

gel. The gel may be photographed or documented electronically to provide a permanent 

record of the result of the experiment. 

Interpretation of the results 

The primer pair p35S-cf3/p35S-cr4 is used for detection of the CaMV 35S promoter. This 

promoter regulates the gene expression of many transgenic plants such as Roundup 

Ready® soybean and maize line Bt11. If the extracted DNA is of sufficient amplification 

quality and contains the target, a specific band of 123 bp will be observed on the gel.  
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The positive control should amplify a DNA fragment of 123 bp.  

The negative control and the no-template should not display any PCR amplification. 

If the positive/negative controls do not give the expected results, the PCR analysis of the 

selected samples is not valid. 

If the controls give the expected results and the sample gives a band at 123 bp, it can be 

assumed that this sample contains GM DNA.  

 

Detection of the nos terminator 

Characteristics of primers HA-nos 118-f and HA-nos 118-r 

HA-nos 118-f 

Sequence 
GCATGACGTTATTTATGAGATGGG 

Length  24 

Mol. weight (g/mol) 7462.8 

Melting point * (G/C) 
56.2 

 

HA-nos 118-r 

Sequence 
GACACCGCGCGCGATAATTTATCC 

Length  24 

Mol. weight (g/mol) 7296.9 

Melting point * (G/C) 61.2 

*based on a [Na+] of 50 mM 

Controls 

 Positive control: DNA from reference material (e.g. RRS 0.5% GM) 

 Negative control: DNA from reference material (e.g. soybean 0% GM) 

 No-template control (NTC): negative control of the Mastermix, in which water is 

used instead of DNA 
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Mastermix preparation 

The necessary reagents for a series of 10 samples (including positive/negative/no template 

controls) are mixed together according to the instructions given in Table 4. 

The following procedure applies to a sample containing 20 μL of HA-nos118-f/HA-nos118-

r Mastermix and 5 μL of DNA solution. All solutions are stored on ice during the preparation 

of the Mastermix. 

 

Table 4. HA-nos118-f/HA-nos118-r Mastermix 

Reagents Final 

concentration 

Volume for 

one sample 

Volume for 10 

samples 

Sterile, deionised water  

 

10.34 μL  103.4 μL 

10x PCR buffer 1x 2.5 μL  25 μL 

25 mM MgCl2  1.5 mM 1.5 μL 15 μL 

4 mM dNTPs  0.64 mM 4 μL 40 μL 

20 μM oligonucleotide HA-

nos118f 

0.6 μM 0.75 μL 7.5 μL 

20 μM oligonucleotide HA-

nos118r 

0.6 μM 0.75 μL 7.5 μL 

5 U/µL Taq DNA polymerase 0.8 U/rcn 0.16 μL 1.6 μL 

TOTAL   20 μL 200 μL 

 

 Prepare a 1.5 ml microcentrifuge tube 

 Add the reagents following the order given in Table 4 

 Mix gently the HA-nos118-f/HA-nos118-r Mastermix by pipetting and centrifuge briefly 

 Divide the Mastermix into aliquots of 20 μL in 0.2 ml PCR reaction tubes 

 Add 5 μL of the DNA solution to the aliquots of Mastermix (note: dilute the DNA at 10-

20 ng/μL  

 Vortex and centrifuge briefly 

 Place the PCR reaction tubes in the thermocycler 
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PCR Program (HA-nos118-f/HA-nos118-r) 

Stage  Temperature Time 

Initial Denaturation  95°C 10 min 

Denaturation 95°C 25 sec 

Annealing  62°C 30 sec 

Extension  72°C 45 sec 

Number of cycles 50  

Final Extension 72°C 7 min 

 4oC ∞ 

Following amplification, the samples are centrifuged briefly and put on ice. 

 

Analysis of PCR products 

After amplification of the target sequence, the PCR products are analysed using 2% 

agarose gel electrophoresis with ethidium bromide. An amount of 8 μL of the solution is 

mixed with 2 μL of loading buffer. The solution mixture is then loaded onto the agarose 

gel. Migration should take place at 100 V over a period of 1 hour. Size markers (15 μL of 

100 bp ladder) are electrophoresed in adjacent wells of the gel to allow accurate size 

determination of the amplicons. After the run, ultraviolet transillumination allows 

visualisation of the DNA in the gel. The gel may be photographed or documented 

electronically to provide a permanent record of the result of the experiment. 

 

Interpretation of the results 

The primer pair HA-nos118-f/HA-nos118-r is used for detection of the nos terminator. This 

terminator is present in the Roundup Ready® soybean and other lines of transgenic plants 

(e.g. Maize line Bt11). If the extracted DNA is of sufficient amplification quality and contains 

the target, a specific band of 118 bp will be observed on the gel. 

The positive control should amplify a DNA fragment of 118 bp.  

The negative control and the no-template should not display any PCR amplification. 

If the positive/negative controls do not give the expected results, the PCR analysis of the 

selected samples is not valid. 
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If the controls give the expected results and the sample gives a band at 118 bp, it can be 

assumed that in this sample modified DNA is present. 

Specific detection of Roundup Ready® soybean, MON810 

maize and Bt11 by conventional PCR 

Detection of Roundup Ready® soybean  

This is a construct specific method for the detection of genetically modified glyphosate 

resistant GTS 40-3-2 (Roundup Ready®) soy beans in raw/processed materials by 

amplification of a 172 bp single copy sequence representing the junction region between 

the CaMV 35S promoter and the Petunia hybrida chloroplast targeting signal preceding the 

Agrobacterium EPSPS sequence. 

Characteristics of primers  

P35S-af2 

Sequence TGATGTGATATCTCCACTGACG 

Length  22 

Mol. weight (g/mol) 6725,4 

Melting point * (G/C) 53  

 

petu-ar1 

Sequence TGTATCCCTTGAGCCATGTTGT 

Length  22 

Mol. weight (g/mol) 6707,4 

Melting point * (G/C) 53 

*based on a [Na+] of 50 mM 

Controls 

 Positive control: DNA from reference material (e.g. RRS 0.1% GM) 

 Negative control: DNA from reference material (e.g. soybean 0% GM) 

 No-template control (NTC): negative control of the Mastermix, in which water is 

used instead of DNA 
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Mastermix preparation 

The necessary reagents for one sample (including positive/negative/no template controls) 

are mixed together according to the instructions given in Table 5. 

The following procedure applies to a sample containing 20 μL of P35S-af2/petu-ar1 

Mastermix and 5 μL of DNA solution. All solutions are stored in ice during the preparation 

of the Mastermix. 

 

Table 5. P35S-af2/petu-ar1 Mastermix 

Reagents Final 

concentration 

Volume for one 

sample 

Volume for 10 

samples 

Sterile, deionised water  

 

10.4 μL  104 μL 

10x PCR buffer 1x 2.5 μL  25 μL 

25 mM MgCl2  1.5 mM 1.5 μL 15 μL 

4 mM dNTPs  0.8 mM 5 μL 50 μL 

20 μM oligonucleotide 35s-f2 0.2 μM 0.25 μL 2.5 μL 

20 μM oligonucleotide petu-r1 0.2 μM 0.25 μL 2.5 μL 

5 U/µL Taq DNA polymerase 0.5 U/rcn 0.1 μL 1 μL 

TOTAL  

 

20 μL 200 μL 

 

 Prepare a 1.5 ml microcentrifuge tube 

 Add the reagents following the order given in Table 5 

 Mix gently the P35S-af2/petu-ar1 Mastermix by pipetting and centrifuge briefly 

 Divide the Mastermix into aliquots of 20 μL in 0.2 ml PCR reaction tubes 

 Add 5 μL of the DNA solution to the aliquots of Mastermix (note: dilute the DNA at 

10-20 ng/μL  

 Vortex and centrifuge briefly 

 Place the PCR reaction tubes in the thermocycler 
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PCR program (P35S-af2/petu-ar1) 

Stage Temperature Time 

Initial Denaturation 95 °C 10 min 

Denaturation 95 °C 30 sec 

Annealing 60 °C 30 sec 

Extension 72 °C 25 sec 

Number of cycles 35  

Final Extension 72 °C 3 min 

 4 oC ∞ 

Following amplification, the samples are centrifuged briefly and put on ice. 

 

Analysis of PCR products 

After amplification of the target sequence, the PCR products are analysed using 2% 

agarose gel electrophoresis with ethidium bromide. An amount of 8 μL of the solution is 

mixed with 2 μL of loading buffer. The solution mixture is then loaded onto the agarose 

gel. Migration should take place at 100 V over a period of 1 hour. Size markers (15 μL of 

100 bp ladder) are electrophoresed in adjacent wells of the gel to allow accurate size 

determination of the amplicons. After the run, ultraviolet transillumination (UV) allows 

visualisation of the DNA in the gel. The gel may be photographed or documented 

electronically to provide a permanent record of the result of the experiment. 

 

Interpretation of the results 

The primer pair P35S-af2/petu-ar1 is used for detection of the construct present in 

Roundup Ready® soybean and stacked events of this GM crop. If the extracted DNA is of 

sufficient amplification quality and contains the target, a specific band of 172 bp will be 

observed on the gel.  

The positive control should amplify a DNA fragment of 172 bp.  

The negative control and the no-template should not display any PCR amplification. 

If the positive/negative controls do not give the expected results, the PCR analysis of the 

selected samples is not valid. 
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If the controls give the expected results and the sample gives a band at 172 bp it can be 

assumed that in this sample Roundup Ready® soybean DNA is present. 

Detection of maize Bt11 

This is a construct specific method for the detection of genetically modified Bacillus 

thuringiensis toxin-producing Bt11 maize (Syngenta, former Novartis) in raw materials by 

PCR amplification of the junction region of single copy sequence elements originating from 

the maize adh 1S-Intron2 (IVS2) and the pat gene from Streptomyces viridochromogenes. 

Characteristics of primers  

IVS2-2 

Sequence CTGGGAGGCCAAGGTATCTAAT 

Length  22 

Mol. weight (g/mol) 6799.5 

Melting point * (G/C) 54.8  

 

PAT-B 

Sequence GCTGCTGTAGCTGGCCTAATCT 

Length  22 

Mol. weight (g/mol) 6717.4 

Melting point * (G/C) 56.7 

*based on a [Na+] of 50 mM 

 

Controls 

 Positive control: DNA from reference material (Bt11 1% GM) 

 Negative control: DNA from reference material (maize 0% GM) 

 No-template control (NTC): negative control of the Mastermix, in which water is 

used instead of DNA 

Mastermix preparation 

The necessary reagents for a series of 10 samples (including positive/negative/no template 

controls) are mixed together according to Table 6. 
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The following procedure applies to a sample containing 20 μL of IVS2-2/PAT-B Mastermix 

and 5 μL of DNA solution. All solutions are stored in ice during the preparation of the 

Mastermix. 

 

Table 6. IVS2-2/PAT-B Mastermix 

Reagents Final 

concentration 

Volume for one 

sample 

Volume for 10 

samples 

Sterile, deionised water  

 

11.55 μL  115.5 μL 

10x PCR buffer 1x 2.5 μL  25 μL 

25 mM MgCl2  2 mM 2 μL 20 μL 

4 mM dNTPs  0.4 mM 2.5 μL 25 μL 

20 μM oligonucleotide IVS2-2 0.5 μM 0.63 μL 6.25 μL 

20 μM oligonucleotide PAT-B 0.5 μM 0.63 μL 6.25 μL 

5 U/µL Taq DNA polymerase 1 U/rcn 0,2 μL 2 μL 

TOTAL  

 

20 μL 200 μL 

 

 Prepare a 1.5 ml microcentrifuge tube 

 Add the reagents following the order given in Table 6 

 Mix gently the P35S-af2/petu-ar1 Mastermix by pipetting and centrifuge briefly 

 Divide the Mastermix into aliquots of 20 μL in 0.2 ml PCR reaction tubes 

 Add 5 μL of the DNA solution to the aliquots of Mastermix (note: dilute the DNA at 

10-20 ng/μL  

 Vortex and centrifuge briefly 

 Place the PCR reaction tubes in the thermocycler 
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PCR program (IVS2-2/PAT-B) 

Stage Temperature Time 

Initial Denaturation 95°C 12 min 

Denaturation 95°C 30 sec 

Annealing 64°C 30 sec 

Extension 72°C 30 sec 

Number of cycles 40  

Final Extension 72°C 10 min 

 

4°C ∞ 

Following amplification, the samples are centrifuged briefly and put on ice. 

 

Analysis of PCR products 

After amplification of the target sequence, the PCR products are analysed using 2% 

agarose gel electrophoresis with ethidium bromide. An amount of 8 μL of the solution is 

mixed with 2 μL of loading buffer. The solution mixture is then loaded onto the agarose 

gel. Migration should take place at 100 V over a period of 1 hour. Size markers (15 μL of 

100 bp ladder) are electrophoresed in adjacent wells of the gel to allow accurate size 

determination of the amplicons. After the run, ultraviolet transillumination (UV) allows 

visualisation of the DNA in the gel. The gel may be photographed or documented 

electronically to provide a permanent record of the result of the experiment. 

 

Interpretation of the results 

The primer pair IVS2-2/PAT-B is used for detection of the construct present in Bt11 maize 

and stacked events of this GM crop. If the extracted DNA is of sufficient amplification 

quality and contains the target, a specific band of 189 bp will be observed on the gel.  

The positive control should amplify a band of 189 bp.  

The negative control and the no-template should not display any PCR amplification. 

If the positive/negative controls do not give the expected results, the PCR analysis of the 

selected samples is not valid. 
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If the controls give the expected results and the sample gives a band at 189 bp it can be 

assumed that in this sample Bt11 DNA is present. 

Detection of maize MON810 

This is an event specific method for the detection of genetically modified insect-protected 

MON 810 maize in raw materials by amplification of the single copy DNA integration-border 

region of the genomic sequence and the inserted sequence element originating from the 

CaMV 35S promoter as a result of in vitro recombination. 

Characteristics of primers  

VW01 

Sequence TCGAAGGACGAAGGACTCTAACG 

Length  23 

Mol. weight (g/mol) 7106.7 

Melting point * (G/C) 57.1 

 

VW03 

Sequence TCCATCTTTGGGACCACTGTCG 

Length  22 

Mol. weight (g/mol) 6677.4 

Melting point * (G/C) 56.7 

*based on a [Na+] of 50 mM 

 

Controls 

 Positive control: DNA from reference material with a certain percentage of GM 

material. 

 Negative control: DNA from reference material (maize 0% GM) 

 No-template control (NTC): negative control of the Mastermix, in which water is 

used instead of DNA 
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Mastermix preparation 

The necessary reagents for one sample are mixed together according to Table 7. 

The following procedure applies to a sample containing 20 μL of VW01/VW03 Mastermix 

and 5 μL of DNA solution. All solutions are stored in ice during the preparation of the 

Mastermix. 

 

Table 7. VW01/VW03 Mastermix 

Reagents Final 

concentration 

Volume for one 

sample  

Volume for 10 

samples 

Sterile, deionised water  

 

11.55 μL  115.5 μL 

10x PCR buffer 1x 2.5 μL  25 μL 

25 mM MgCl2  2 mM 2 μL 20 μL 

4 mM dNTPs  0.4 mM 2.5 μL 25 μL 

20 μM oligonucleotide VW01 0.5 μM 0.63 μL 6.25 μL 

20 μM oligonucleotide VW03 0.5 μM 0.63 μL 6.25 μL 

5 U/µL Taq DNA polymerase 1 U/rcn 0.2 μL 2 μL 

TOTAL  

 

20 μL 200 μL 

 

 Prepare a 1.5 ml microcentrifuge tube 

 Add the reagents following the order given in Table 7 

 Mix gently the P35S-af2/petu-ar1 Mastermix by pipetting and centrifuge briefly 

 Divide the Mastermix into aliquots of 20 μL in 0.2 ml PCR reaction tubes 

 Add 5 μL of the DNA solution to the aliquots of Mastermix (note: dilute the DNA at 

10-20 ng/μL)  

 Vortex and centrifuge briefly 

 Place the PCR reaction tubes in the thermocycler 
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PCR program (VW01/VW03) 

Stage Temperature Time 

Initial Denaturation 95°C 12 min 

Denaturation 95°C 30 sec 

Annealing 64°C 30 sec 

Extension 72°C 30 sec 

Number of cycles 40  

Final Extension 72°C 10 min 

 4°C ∞ 

Following amplification, the samples are centrifuged briefly and put on ice. 

 

Analysis of PCR products 

After amplification of the target sequence, the PCR products are analysed using 2% 

agarose gel electrophoresis with ethidium bromide. 8 μL of the solution is mixed with 2 μL 

of loading buffer. The solution mixture is then loaded onto the agarose gel. Migration should 

take place at 100 V over a period of 1 hour. Size markers (15 μL of 100 bp ladder) are 

electrophoresed in adjacent wells of the gel to allow accurate size determination of the 

amplicons. After the run, ultraviolet transillumination (UV) allows visualisation of the DNA 

in the gel. The gel may be photographed or documented electronically to provide a 

permanent record of the result of the experiment. 

 

Interpretation of the results 

The primer pair VW01/VW03 is used for detection of the construct present in MON810 

maize and stacked events of this GM crop. If the extracted DNA is of sufficient amplification 

quality and contains the target, a specific band of 170 bp will be observed on the gel.  

The positive control should amplify a band of 170 bp.  

The negative control and the no-template should not display any PCR amplification. 

If the positive/negative controls do not give the expected results, the PCR analysis of the 

selected samples is not valid. 
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If the controls give the expected results and the sample gives a band of 170 bp it can be 

assumed that in this sample MON810 DNA is present.  
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Introduction 

Once a food product has been found to be positive for one or more GM events (e.g. 

Roundup Ready® soybean, Bt-11 maize, MON810 maize, and T25 maize), the subsequent 

analytical steps consist of assessing compliance with the legislation in force, (EU Regulation 

(EC) 1829/2003 and Regulation (EC) 1830/2003) by measuring the amount of each GMO 

event present in the individual ingredients (Figure 1). 

The above-mentioned Regulations establish that all products consisting of or containing 

GMOs, or produced from GMOs must be labelled as such, if the GM ingredient is present in 

a proportion higher than 0.9%. Labelling is not required for products containing materials 

which contain, consist of, or are produced from GMOs in a proportion no higher than 0.9% 

of the food ingredients considered individually, provided that this presence is adventitious 

or technically unavoidable. 

All the ingredients (flour, grid, oil, etc.) derived from one species (e.g. maize, soybean, 

rapeseed, etc.) are considered collectively as one individual ingredient (e.g. maize).  

 

Figure 1. No labelling required. The amount of both GM soybean and GM maize is below 

the legal threshold. 

 

If, for instance, an ingredient exclusively derived from maize contains less than 0.9% GM 

maize, no labelling is necessary for the foodstuff derived from it. If, on the other hand, it 

contains more than 0.9% GM maize, the derived food products must be labelled. This is 

also true even if in the final product, considering the sum of all the ingredients derived 

from different species (e.g. soy and maize), the relative amount of GM maize drops below 

0.9%. If two or more different GM maize varieties/events are present, their concentrations 

should be summed up, and the total percentage used to determine the requirement for 
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labelling (Figure 2). If the resulting sum is below the 0.9% threshold, no labelling is 

required. 

 

Figure 2. Labelling required for the maize ingredient. The sums of the Bt-11 (0.6%) and 

MON810 (0.6%) events exceed the 0.9% threshold for labelling.  

 

The relative GMO content (percentage) is determined by normalising the amount of the 

GMO specific sequences against the amount of a plant specific gene (e.g. lectin for soybean 

and invertase for maize). The resulting GMO percentage is therefore expressed as GMO 

(%) = GM-DNA/reference-DNA x 100. 

 

PCR methods for quantification 

A major drawback of conventional PCR is the lack of accurate quantitative information due 

to amplification efficiency. If the reaction efficiency for each amplification cycle remains 

constant, the concentration of DNA following PCR would be directly proportional to the 

amount of initial DNA target. Unfortunately, the amplification efficiency varies among 

different reactions, as well as in subsequent cycles in a single reaction. In particular, in the 

later cycles of the PCR, the amplification products are formed in a non-exponential way at 

an unknown reaction rate.  

DNA quantification based on conventional PCR relies on end-point measurements, in order 

to achieve the maximum sensitivity, when the amplification reaches the maximum product 

yield (known as the "plateau phase"). At this stage, the reaction has gone beyond the 

exponential phase primarily due to depletion of reagents and the gradual thermal 
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inactivation of the polymerase used. The resulting correlation between the final product 

concentration and number of initial target molecules is therefore limited.  

To overcome this problem, real-time PCR method, have been developed, which address 

the problems of establishing a relationship between the concentration of target DNA and 

the amount of PCR product generated by amplification. 

Real-time PCR 

A more accurate and currently more widely used quantitative PCR methodology is 

represented by real-time PCR. In contrast to the end-point determinations, real-time PCR 

systems monitor the reaction as it actually occurs, in real time. In this kind of system the 

PCR reaction is coupled to the emission of a fluorescent signal, being proportional to the 

amount of PCR product produced in subsequent cycles. This signal increases proportionally 

to the amount of PCR product generated in each successive reaction cycle. By recording 

the amount of fluorescence emission at each cycle, it is possible to monitor the PCR reaction 

during its exponential phase. The first significant increase of fluorescence correlates to the 

initial amount of target template (Ahmed, 2002). 

Real-time PCR principles 

Higuchi et al. (1992, 1993) pioneered the analysis of PCR kinetics by setting-up a system 

able to detect PCR products as they accumulate. This "real-time" system included the 

intercalating molecule ethidium bromide in each reaction mix. A thermal cycler adapted to 

irradiate the samples with UV light, and able to detect the resulting fluorescence with a 

computer-controlled cooled CCD (charged coupled device) camera was used to perform 

the runs. As amplification occurred, increasing amounts of double-stranded DNA produced, 

and intercalated by ethidium bromide, resulted in an increase in fluorescence. By plotting 

the fluorescent light emission versus the cycle number, the system produced amplification 

plots providing a more complete picture of the PCR process than assaying product 

accumulation after a fixed number of cycles. 

Today, real-time PCR is the most widely accepted method, not only for quantification, but 

also for identification. 

The specificity of a real-time PCR method depends both on the chemistry used to generate 

and monitor the amplification reaction and the instrument used to monitor the signal. 

Various chemistries have been developed for this purpose: intercalating dyes (ethidium 

bromide, SYBR Green I) and hybridisation probes (TaqMan probes, Fluorescence 

Resonance Energy Transfer probes, Molecular Beacons, Scorpions and TaqMan Minor 

Groove Binder probes). 
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SYBR Green I dye based real-time PCR 

The first real-time PCR application was directly derived from the experiments by Higuchi 

et al. (1992, 1993) substituting ethidium bromide with a less toxic and more specific and 

sensitive (from 10 to 25 times) fluorescent double stranded (ds) DNA intercalating agent, 

SYBR Green I (Haugland, 2002). 

SYBR Green I dye binds to the minor groove of dsDNA, but not to single stranded DNA. As 

a consequence of binding, fluorescence (excitation approx. 488 nm and 254 nm; emission 

approx. 560 nm) is greatly enhanced (approx. from 800 to 1000 times). As the PCR 

proceeds, the increasing amount of newly synthesised DNA results in an increasing 

fluorescent signal (Figure 3). A limitation of the SYBR Green I based sequence detection 

system is represented by its non-specific DNA recognition mode. In fact, every double-

stranded DNA molecule present in a PCR reaction is quantified, including therefore non-

specific PCR products and primer-dimers. To overcome the problem and subtract the 

quantification component due to non-specific DNAs and to primer dimers on some devices, 

it is possible to perform a melting curve analysis. After the final stage of PCR, the products 

are slowly melted (melting curve analysis) and fluorescence data collected. Since every 

dsDNA has a specific melting temperature, it is possible to quantify the components having 

different melting temperatures in one single reaction mix, and therefore to eliminate the 

non-specific components from the quantification.  

 

Sequence specific probes based real-time PCR methods 

The problem of amplicon fluorescent detection specificity has been overcome using 

sequence specific probes with fluorescent labelling designed inside the PCR primers pair. 

The process of probe hybridisation (and eventual degradation) usually does not interfere 

with the exponential accumulation of the PCR product. A few different principles are now 

used to achieve specific real-time PCR based quantification reactions. 

 

Fluorescence Resonance Energy Transfer (FRET) probes 

Fluorescence Resonance Energy Transfer (FRET) is based on the energy transfer from a 

donor fluorophore to an acceptor fluorophore (Figure 3) (Haugland, 2002). Basic conditions 

for the FRET are: 

 Donor and acceptor molecules must be in close proximity (typically 10–100 Å);  

 The absorption spectrum of the acceptor must overlap with the fluorescence emission 

spectrum of the donor;  

 Donor and acceptor transition dipole orientations must be approximately parallel.  



Real-time PCR and Quantitative Analysis of GMOs 

Session 10                                                                                                            150 

If the donor and the acceptor fluorophore are in close proximity to each other, excitation 

of the donor by blue light results in energy transfer to the acceptor, which can then emit 

light of longer wavelength. The formation of PCR products can be monitored by using two 

sequence specific, oligonucleotide probes with a fluorescent label, called hybridisation 

probes, in addition to the PCR primers. Hybridisation probes are designed as a pair of which 

one probe is labelled with the donor (3’-Fluorescine) and one with the acceptor (5’- Red 

640 or 5’-Red 705) dye. As FRET decreases with the sixth power of distance, hybridisation 

probes have to be designed to hybridise to adjacent regions of the template DNA (usually 

they are separated by a 1-5 nucleotides gap). If both probes hybridise, the two dyes are 

brought close together and FRET to the acceptor dye results in a signal measurable by 

means of fluorometry.  

 

Degradation probes (TaqMan principle) 

The TaqMan assay exploits the 5'-3' exonuclease activity of Taq DNA Polymerase to cleave 

a degradation probe during PCR (Lie and Petropoulos, 1998). The degradation, or TaqMan, 

probe is typically a 20-30 base long oligonucleotide (usually with a Tm 10°C higher than 

the Tm of the primers) that contains a reporter fluorescent dye at the 5' and a quenching 

dye at the 3' end (Figure 3). Since the 3' end is blocked, the probe cannot be extended 

like a primer. During the PCR reaction, in the presence of a target, the probe specifically 

anneals between the forward and reverse primer sites. When the probe is intact, the 

proximity of the reporter dye to the quencher dye results in suppression of the reporter 

fluorescence primarily by Forster-type energy transfer (Forster, 1948; Lakowicz, 1983). 

During the reaction, the 5’-3’ exonuclease activity of the Taq DNA Polymerase degrades 

the probe between the reporter and the quencher dyes only if the probe hybridises to the 

target. This results in an increase of the fluorescence as amplification proceeds. 

Accumulation of PCR product is detected by monitoring the increase in fluorescence of the 

reporter dye. This process occurs at every cycle and does not interfere with the exponential 

accumulation of product. Different from FRET probes, degradation probes release 

fluorochromes at each cycle adding new dye to the previous one released. As a 

consequence, the fluorescent signal is greatly enhanced at each cycle. TaqMan assay uses 

universal thermal cycling parameters and PCR reaction conditions. One specific 

requirement for fluorogenic probes is that there is no G at the 5' end. A 'G' adjacent to the 

reporter dye quenches reporter fluorescence even after cleavage. 
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Figure 3. Different real-time PCR principles: I. SYBR green; II. FRET (Fluorescence 

Resonance Energy Transfer) probes; III. TaqMan 5`-3`- degradation probes39. 

 

TaqMan MGB probes 

A Minor Groove Binder (MGB) is a small crescent-shaped molecule that fits snugly into the 

minor groove of duplex DNA (Kutyavin et al., 2000). In TaqMan probes, the MGB group is 

attached at the 3' end along with the quencher dye (Figure 4). When the TaqMan probe 

hybridises, the MGB stabilizes annealing by folding into the minor groove of the DNA duplex 

created between the probe and the target sequence. Stabilisation is much more effective 

when the duplexes are perfectly matched (i.e. when there are no sequence mismatches). 

Besides the added discriminatory power, the increased stability means TaqMan MGB Probes 

are very short (typically 13–20 mer) compared to standard TaqMan probes (typically 18–

40 mer) while still satisfying design guidelines. TaqMan MGB Probes have several 

advantages for quantitative PCR, especially for multiplex assays. Improved spectral 

performance allows greater precision and consistency between individual assays and the 

greater hybridisation specificity enables enhanced target discrimination. Furthermore, the 

smaller probe can make it easier to design assays by providing more scope for fitting 

                                           
39 Pictures taken from http://dyes.gene-quantification.info/  

http://dyes.gene-quantification.info/
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probes within shorter target regions such as consensus "windows" of sequence 

conservation or divergence. Amplicon size can be reduced to a minimum by using shorter 

MGB probes that can further improve inter-assay consistency. 

 

Figure 4. The principle of Minor Groove Binder (MGB) probes 

 

Scorpion probes 

A further evolution is represented by the family of probes called “Scorpions”. A Scorpion 

consists of a specific probe sequence with a stem-loop structure (Figure 5) (Thelwell et al., 

2000).  

A fluorophore is attached to the 5' end giving a fluorescent signal that is quenched in the 

stem-loop configuration by a moiety joined to the 3' end. The stem-loop is linked to the 5' 

end of a primer. After the extension of the Scorpion primer, during amplification, the 

specific probe sequence is able to bind to its complement within the same strand of DNA. 

This hybridisation event opens the hairpin loop so that fluorescence is no longer quenched 

and an increase in signal is observed. A PCR stopper between the primer and the stem 

sequence prevents read-through of the hairpin loop, which could lead to the opening of the 

hairpin loop in the absence of the specific target sequence. The unimolecular nature of the 

hybridisation event gives rise to some advantages over homogeneous probe systems. 

Unlike Molecular Beacons, TaqMan or FRET assays, Scorpion assays do not require a 

separate probe besides the primers.  
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Figure 5. The principle of Scorpion probes (Bio-rad)40. 

 

Molecular Beacons 

Molecular Beacons are DNA probes designed to contain a stem-loop structure. The loop 

sequence is complementary to the specific target of the probe and the stem sequences are 

designed to be complementary to each other (Figure 6) (Tyagi and Kramer, 1996). The 5’ 

and 3’ ends of the probe are covalently bound to a fluorophore and a quencher. When the 

stem-loop structure is closed the fluorophore and the quencher are close together. In this 

case, all photons emitted by the fluorophore are absorbed by the quencher. In the presence 

of a complementary sequence, the probe unfolds and hybridises to the target. The 

fluorophore is displaced from the quencher, and the probe starts to emit fluorescence. 

Molecular beacons and scorpion probes are more sophisticated; therefore, they are usually 

used for research purposes and not for routine analysis. 

 

 

                                           
40 Photo taken from http://www.bio-rad.com/it-it/applications-technologies/introduction-pcr-primer-probe-

chemistries?ID=LUSOJW3Q3, accessed 06/08/2019. 

http://www.bio-rad.com/it-it/applications-technologies/introduction-pcr-primer-probe-chemistries?ID=LUSOJW3Q3
http://www.bio-rad.com/it-it/applications-technologies/introduction-pcr-primer-probe-chemistries?ID=LUSOJW3Q3
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Figure 6. The principle of Molecular Beacons (Bio-rad)41.  

Quantification with real-time PCR 

 

Relative quantification 

The GMO content of a sample can be expressed as the amount of genetically modified 

material in the amount of the total material. In order to determine this value in a real-time 

PCR based system it is necessary to measure the number of GMO specific target DNA 

sequences as well as the number of DNA sequences of an endogenous reference gene (for 

use as a “normaliser”). The reference gene should be chosen in order to be species specific, 

present as a single copy per haploid genome, stably represented as such in different lines 

of the same species and as amplifiable as the GMO traits in analysis (although this is more 

due to a good primers-probe design). One problem in relative quantification arises from 

the interpretation of percentage of GMO content that is not specified in the legislation; 

therefore, the GM content (percentage) can be assumed as the weight of the pure modified 

ingredient over the total weight of the pure ingredient (e.g. weight of GM maize over total 

weight of entire maize contained in the sample). From the analytical point of view, it is 

appropriate to calculate the GMO percentage as the number of target DNA sequences per 

target taxon specific sequences, however this definition does not take some important 

characteristics of the GMO lines; therefore the following parameters need to be carefully 

considered in the interpretation of results: 

                                           
41 Photo taken from http://www.bio-rad.com/it-it/applications-technologies/introduction-pcr-primer-probe-

chemistries?ID=LUSOJW3Q3 accessed 06/08/2019. 

http://www.bio-rad.com/it-it/applications-technologies/introduction-pcr-primer-probe-chemistries?ID=LUSOJW3Q3
http://www.bio-rad.com/it-it/applications-technologies/introduction-pcr-primer-probe-chemistries?ID=LUSOJW3Q3
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a) The ploidy of the event. It is possible that the GM event has a different ploidy from 

the wild type (wt) event (e.g. tetraploid instead of diploid); 

b) The zygosity of the event. The GM trait could be homozygous or hemizygous; 

c) The number of insertions per haploid genome of one single artificial construct. One 

construct could be inserted as a single copy per haploid genome or in more copies.  

The last point can be bypassed by designing the primer-probe system on the border of the 

insertion of the construct in the genome. Since border sequences are unique this will give 

the double advantage to the system of being event-specific and of excluding multiple 

insertions of the same construct from the quantification. Point a) and b) are bypassed 

empirically by the use of reference materials as quantification is performed in relation to 

the reference material of the same origin (e.g. maize flour reference material to quantify 

maize flour). Alternatively, quantification standards different from certified reference 

materials (e.g. cloned DNA sequences or genomic DNA mixtures) can be calibrated against 

certified reference materials (CRMs) in order to correct molecular discrepancies in 

quantification. A widely accepted way to solve problems related to points a) and b) is 

expressing the GMO percentage in terms of haploid genome equivalents. 

In every case, this aspect of quantification should be taken into account when a method is 

developed, since the limit of detection (LOD) and the limit of quantification (LOQ) are 

influenced by the real number of copies being quantified.  

 

Design of a real-time GMO quantification experiment 

The design of a real-time PCR analysis must include the following components: 

 A PCR system to detect a specific GM event. 

 A PCR system that is taxon specific; designed to detect and quantify a species 

specific gene. This is a very important part of the PCR set up because it will allow 

us to calculate the GMO percentage over the total ingredient (used as a "normalizer" 

in the calculation of the GM relative concentrations).  

 Standard curves for both the target and endogenous reference. For each 

experimental sample, the amount of target and endogenous reference is 

determined from the appropriate standard curve. The amount of target is 

normalised with the endogenous reference quantity to obtain the relative 

concentration of the target. To meet statistical requirements, the standard curves 

should include at least 4 different concentration points. Each point of the standard 

curve, and the sample, should be loaded at least in triplicate. 

 In addition to that, a negative control (NTC – no template control) has to be added 

for both the reference gene and the GMO quantifications.  
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 Extraction blank control, environmental controls and positive extraction controls 

(CRMs) are usually used, as previously stated (session 6) to check the efficiency of 

the procedure and to check for contamination. Finally, the reference gene 

quantification and the GMO specific sequence quantification should occur in the 

same PCR run (co-amplification), and not in different runs, to avoid possible 

statistical fluctuations between different experiments.  

Real-time PCR data 

The output of the real-time PCR is a ΔRn, being the difference between Rn+ (the 

fluorescence signal including all components) and Rn- (the background signal of the 

reaction baseline or reading of a NTC sample).  

Graphical analysis of real-time PCR data 

As real-time PCR is proceeding, fluorescence data (Rn values) are collected to build up a 

plot of the amount of signal versus the cycle number (or the time). Usually the plot is 

constructed on a semi-logarithmic scale. In real-time PCR it is possible to distinguish three 

different phases: a first “lag” stage with slight fluctuations of the plots corresponding to 

background signal; a second exponential phase with increasing parallel plots, and a third 

stage where the plots tend to reach a “plateau” (Figure 7). 

 

Figure 7. A real-time PCR plot. The typical phases of a real-time PCR are highlighted. 
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The power of real-time PCR resides in the fact that quantification occurs not at the endpoint 

stage of the PCR reaction (plateau), but at the stage where the exponential growth of the 

amount of amplified DNA (Rn value) reaches a point significantly greater than background 

signal. This way of measuring significantly enhances the accuracy of quantification since 

there is a direct correlation between the starting amount of template and the stage at 

which the amplification starts to become exponential. In real-time PCR a threshold cycle 

(CT), also called quantification cycle (Cq), is experimentally defined as the cycle in which 

the fluorescence signal reaches the mean of fluorescence signals measured between the 

third and the fifteenth cycle plus ten standard deviations. The higher the initial amount of 

genomic DNA, the sooner accumulated product is detected in the PCR process, and the 

lower the Cq value is. In practice, the choice of the threshold line determining the Cq value 

is often up to the operator, representing one of the subjective elements in real-time PCR. 

The threshold line should be placed above any baseline activity and within the exponential 

increase phase, which looks linear in the log transformation (all plots are parallel). In any 

case the threshold line should be placed at the level where the plots of the replicas start 

to coincide the most. In fact, sometimes the replicas happen to have, in the very first part 

of the exponential phase, a slight divergence diminishing or totally disappearing as the 

reaction goes on. 

 

Calculation of the GMO content 

The GMO content of a sample can be determined in two different ways: 

Comparative Cq method (ΔΔCq): This method uses no known amount of standards but it 

compares the relative amount of the GMO target sequence to the reference gene sequence. 

The standard curve is obtained by loading a series of samples at different known 

concentrations of GMO content (e.g. certified reference materials). The result is one 

standard curve of ΔΔCq (ΔCq = Cq reference gene - Cq GMO) values. The GMO content value is 

obtained by calculating the ΔCq value of the sample and comparing it with the values 

obtained with the standards.  

For this method to be successful, the amplification efficiencies of both the target and 

reference PCR systems should be similar. A sensitive method to control this is to look at 

how ΔCq (the difference between the two Cq values of two PCRs for the same initial template 

amount) varies with template dilution. If the efficiencies of the two amplicons are 

approximately equal, the plot of log input amount versus ΔCq would have a nearly 

horizontal line (a slope of <0.10). This means that both PCRs perform equally efficiently 

across the range of initial template amounts. If the plot shows unequal efficiency, the 

standard curve method should be used for GMO quantification. The dynamic range should 

be determined for both (1) minimum and maximum concentrations of the targets for which 
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the results are accurate and (2) minimum and maximum ratios of two gene quantities for 

which the results are accurate. 

Standard curve method: two standard curves, based on different amounts of DNA, are 

plotted:  

 The first curve with a quantification system specific for the GM target; 

 The second curve with a quantification system specific for the reference gene. 

For each sample, the amounts of the specific target and of the reference gene are 

determined by interpolation with the corresponding standard curve. The GM DNA content 

(percentage) is then calculated as the ratio between the GM target sequence amount and 

the reference gene sequence amount (GM/reference x 100).  

It is worth considering that, necessarily, the samples in analysis must fall within the 

upper and lower limits of both standard curves. Outliers must be excluded since they are 

prone to quantification errors. 

The standard curve method is recently the most applied in routine analysis.  

Stacked events 

Stacked events are becoming more and more popular because they combine in one product 

characteristics inserted in single GM lines, like for example, both resistance to parasites 

and tolerance to pesticides at the same time. 

They characterize GMOs that have been produced crossing different GM lines. For instance, 

MON810 and NK603 are both GM maize lines authorized for marketing in the EU as single 

events but they are authorized also as stacked event NK603xMON810, this meaning that 

the plant DNA contains the constructs of both events.  

More information on the characteristics of NK603xMON810 is available and can be 

consulted at: 

http://ec.europa.eu/food/dyna/gm_register/gm_register_auth.cfm?pr_id=17).  

The presence of stacked events in a product can be an issue when the GM content needs 

to be quantified. It is not currently possible to discriminate if e.g. a sample contains two 

different GM events or if it contains a stack of the two lines. 

Official control laboratories, when quantifying GM content, consider stacked events as two 

separate GM events. In other words, if a sample is tested for MON810 and NK603 and it is 

quantified as being 0.6% of both over the total ingredient, the operator would need to say 

that he detected both NK603 and MON810, but he would not be able to discriminate if it is 

http://ec.europa.eu/food/dyna/gm_register/gm_register_auth.cfm?pr_id=17
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a stack or not. Different GM events of the same taxon have to be summed up to calculate 

the amount of GM material over the total ingredient (e.g. maize). In the case shown in 

Figure 1 we obtain 1.2% GM presence in both cases. This means that the GM presence 

should be indicated in the label because the amount of GMO over the total ingredient is 

above the 0.9% threshold. 

 

Figure 8. The total amount of GM maize is above the legal threshold: need of labelling  

 

PCR inhibition 

The previous paragraphs deal with the setup of the quantification of GMOs. However, 

previous to that, the extracted DNA should be checked for the presence of inhibitors. PCR 

inhibitors generally exert their effects through direct interaction with DNA or interference 

with thermostable DNA polymerases. Direct binding of agents to single stranded or double-

stranded DNA can prevent its amplification and impair the results obtained in a qPCR. 

Therefore, before GMO quantification, the extracted DNA is checked for PCR inhibitors, in 

a test called "inhibition run". If the test indicates the presence of inhibitors, the extraction 

has to be repeated, or, alternatively, the sample can be treated for the presence of 

inhibitors. 

This test consists of a series of four point four-fold serial dilutions, starting with the working 

dilution (e.g. 40 ng/µl, used later for GMO quantitation), and at least 2 replicates for each 

dilution. The sample is tested for a taxon-specific sequence (the taxon-specific reference 

system). Amplification and quantification take place with real-time PCR and from the 

obtained Cq values the efficiency of the reaction (R2 and slope of the curve) is calculated.  

The protocol for inhibition run will be laid down in the next session. For more information 

on the procedure and the analysis of inhibition run results please consult Annex II of 
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"Verification of analytical methods for GMO testing when implementing interlaboratory 

validated methods" (found at http://gmo-crl.jrc.ec.europa.eu/guidancedocs.htm).  

 

Multiplexed real-time PCR reactions 

Depending upon the chemistry and the apparatus used for the quantification, it is possible 

to design real-time PCR reactions to perform the quantification of the reference and of the 

GM specific sequences separately, in distinct tubes, or in the same tubes as a “multiplexed” 

reaction. 

Both set-ups have advantages and disadvantages: multiplexed reactions are time, sample 

and reagent saving (it is possible to analyse twice the number of samples in one single 

experiment), avoid set-up errors between the measurement of the reference and the GMO 

target gene since they occur in the same tube, but may be less sensitive (in terms of LOQ) 

because of the interference between the multiplex reactions and the different time that 

individual reactions may take to use up the reagents. On the other hand, separate reactions 

to measure the reference gene and the GMO target gene are more sensitive in terms of 

LOQ, but require twice the reagents, sample and wells on the real-time PCR apparatus and 

are more exposed to the risk of, e.g. pipetting errors. The availability of multiple reporter 

dyes for TaqMan probes (e.g. FAM and VIC) makes it possible to detect the amplification 

of more than one target in the same tube. The reporter dye FAM is distinguishable from 

VIC because they have different maximal emission wavelengths. The availability of multiple 

dyes with distinct emission wavelengths (FAM, VIC, but also TET and JOE) makes possible 

to perform multiplex TaqMan assays. The dye TAMRA is used as a quencher on the probe 

and ROX as passive reference in the reaction mix. For best results, the combination of FAM 

(target) and VIC (endogenous control) is recommended since they have the largest 

difference in the emission maximum while dyes JOE and VIC should not be combined. 

Multiplex TaqMan assays can be performed on any instrument with capability to detect 

multiple dyes with distinct emission wavelengths. An example of multiplex real-time PCR 

is explained in session 9 while its detailed protocol can be found in session 11.  

 

Digital PCR 

Digital Polymerase Chain Reaction (dPCR) is a rather new technology which can be used 

for the detection and absolute quantification of DNA targets.  

There are two ways to conduct dPCR: chamber-based methods and droplet-based 

methods. The chamber-based dPCR (cdPCR) uses solid-state partitions (chambers). The 

reaction mixture is distributed in the different chambers with the help of a syringe, and 

http://gmo-crl.jrc.ec.europa.eu/guidancedocs.htm
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then the PCR amplification is performed in each chamber. A dedicated thermal cycler allows 

the chambers to be cycled and read. The number and size of chambers is fixed and thus 

highly consistent over runs (Pecoraro et al., 2019).  

In droplet-based dPCR (ddPCR), the partitioning of the reaction mix is achieved by making 

water-in-oil emulsion prior to the PCR, and generating high numbers of droplets. The DNA 

targets in the emulsion are amplified in standard PCR wells or plates. Once the PCR is 

finished, a dedicated reader measures the end-point fluorescence of each droplet. The 

number of partitions varies between different platforms and between individual reactions. 

The main difference between dPCR and real-time PCR is that in dPCR the reaction volume 

containing the DNA is split over a high number of small partitions. The absolute number of 

target DNA molecules in the original sample can be calculated using limiting dilutions and 

Poisson statistics (Lievens et al., 2016; Pecoraro et al., 2019). After the amplification, each 

partition is scrutinized and defined as positive or negative respectively, with a value 

assigned of one or zero (that is why it is called digital).  

An example is shown in Figure 9, where the result of a cdPCR run is presented in (a) and 

those of ddPCR in (b). The red coloured compartments indicate positive signals containing 

one or two targets, while the grey ones indicate no signal and are considered negative. 

Similarly, Figure 9(b) shows the ddPCR result, where blue dots indicate positive signals 

and grey negative ones.  

 

Figure 9. (a) Chamber Digital PCR, with red dots indicating positive signals and grey dots 

indicating negatives and (b) Droplet Digital PCR, with positive signals represented as blue 

dots and negative signals in grey.  
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The advantages of dPCR, compared with endpoint PCR and real-time PCR are summarized 

below: 

 Absolute target quantification: no need of a calibration curve. Therefore, any matrix 

differences between the calibrant and test samples possibly leading to different PCR 

amplification efficiencies are limited;  

 Very high level of sample partitioning, leading to results of very high precision (Hindson 

et al., 2011; Pecoraro et al., 2019);  

 Ability to detect targets at very low concentrations (minority targets) even in a high 

background of competing non-target DNA; 

  Lower effect of inhibition and better amplification rate thanks to the partitioning (Rački 

et al., 2014; Nixon et al., 2014; Iwobi et al., 2016; Pecoraro et al., 2019).  

 

Digital PCR has the potential to substitute real-time PCR in the field of GMO quantification. 

As a general rule, any probe-based real-time PCR assay can be converted into a digital 

PCR assay. In fact, direct transferability of some EURL GMFF validated methods for GMOs 

(GMOMETHODS: EU Database of Reference Methods for GMO Analysis, https://gmo-

crl.jrc.ec.europa.eu/gmomethods/) has been proven successful (Jacchia et al., 2018).  

When analysing digital PCR results, the output is in copy numbers and therefore, in the 

case of GMOs, a conversion factor is necessary, in order to respect the legal requirements 

which are in mass fractions. A comprehensive approach has developed in 

"Recommendation for the unit of measurement and the measuring system to report 

traceable and comparable results expressing GM content in accordance with EU legislation" 

(Corbisier et al., 2017) 

For more information and a detailed analysis of the recommendations of the European 

Network of GMO Laboratories (ENGL) for the use of digital PCR, please refer to the 

"Overview and recommendations for the application of digital PCR" (http://gmo-

crl.jrc.ec.europa.eu/ENGL/docs/WG-dPCR-Report.pdf). 

 

  

http://gmo-crl.jrc.ec.europa.eu/ENGL/docs/WG-dPCR-Report.pdf
http://gmo-crl.jrc.ec.europa.eu/ENGL/docs/WG-dPCR-Report.pdf
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Experimental 

Introduction 

The following protocols are real-time PCR-based methods for the quantification of the 

specific GM event MON810 by single real-time PCR and for the detection of 35S promoter 

and nos terminator by multiplex real-time PCR (qualitative analysis).  

The real-time PCRs are carried out with thermocycler ABI PRISM 7500. 

It has to be noted that both experiments should be preceded by an inhibition run to test 

the amplifiability of the extracted DNA.  

Real-time PCR for quantitative analysis 

Real-time PCR will be used to amplify an endogenous reference target DNA sequence that 

is unique to maize (taxon specific), plus a DNA target sequence that indicates the presence 

of the genetically modified crop.  

The assays can encompass two independent PCR systems, or happen in the same well as 

a multiplex reaction (in our case they will be performed independently). Each target DNA 

has specific DNA primers and dye-labelled probes. One PCR system detects a GMO-specific 

target DNA sequence, the other is an endogenous reference system designed to serve as 

a quantitative reference that detects GM and non-GM maize. 

Real-time PCR for qualitative analysis 

As previously stated, being widespread in many GMO laboratories, real-time is used also 

for qualitative purposes. The following duplex real-time PCR is an example of screening 

method putting together the detection of 35S promoter and nos-terminator. The two 

reactions will take place in the same well, this being possible because the specific probes 

are labelled with different dyes, allowing the two amplifications to be monitored separately. 

Note: The protocols included in this manual have been chosen for didactical purposes and 

should be considered as basic examples of GMO analysis using the real-time PCR approach. 

We recommend to periodically review pertinent sources and literature to acquire 

information on more recently developed and validated protocols (http://gmo-

crl.jrc.ec.europa.eu/StatusOfDossiers.aspx). Please also note that these protocols have 

been selected according to the instrumentation available in our laboratory. The JRC in no 

way promotes the exclusive use of any particular company or brand. 

http://gmo-crl.jrc.ec.europa.eu/StatusOfDossiers.aspx
http://gmo-crl.jrc.ec.europa.eu/StatusOfDossiers.aspx
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Multiplex element specific method for the detection of P35S 

and t-nos by real-time PCR 

In this paragraph the protocol for a duplex real-time PCR screening method for the 

detection of genetically modified (GM) plants is described. 

Target DNA sequences from Cauliflower Mosaic Virus 35S promoter (P35S) and nos-

terminator from Agrobacterium tumefaciens (T-nos) are amplified. The duplex real-time 

PCR method is using primer and probe sequences that have already been published for the 

individual (“single”) detection of both target sequences. Combined with a reference gene 

and using reference standard material, the method can be used to semi-quantitatively 

estimate the amount of GM plants in an unknown sample. 

Materials and equipment 

 

 ABI PRISM® 7500 Sequence Detector System (Applied Biosystems)  

 96-Well Reaction Plates 

 Optical caps/adhesion covers 

 Micropipettes 

 Racks for reaction tubes 

 0.5 mL and 2 mL DNase free reaction tubes 

 Standard bench top centrifuge with rotor or standard microfuge fit for 0.5 mL 

reaction tubes, centrifuge for 96-Well reaction plates  

 Vortex mixer 

 1.5 ml microcentrifuge tubes 

 

Characteristics of primers for T-nos 

Primer forward: 180-F 

Sequence CATGTAATGCATGACGTTATTTATG 

Length  25 

Mol. weight (g/mol) 7686.1 

Melting point * (G/C) 51.1 
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Probe: TM-180YY 

Sequence YY-ATGGGTTTTTATGATTAGAGTCCCGCAA-BHQ1 

Length  28 

 

Primer reverse: 180-R 

Sequence TTGTTTTCTATCGCGTATTAAATGT 

Length  25 

Mol. weight (g/mol) 7643.1 

Melting point * (G/C) 49.5 

 

Characteristics of primers for P 35S 

Primer forward: 35S-FTM 

Sequence GCCTCTGCCGACAGTGGT 

Length  18 

Mol. weight (g/mol) 5491.6 

Melting point * (G/C) 54.9 

 

Probe: 35S-TMP-FAM 

Sequence FAM-CAAAGATGGACCCCCACCCACG-BHQ1 

Length  22 

 

Primer reverse: 35S-RTM 

Sequence AAGACGTGGTTGGAACGTCTTC 

Length  22 

Mol. weight (g/mol) 6790.5 

Melting point * (G/C) 54.8 
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Controls 

Each test series shall include the controls as stated in Table 3; Session 6 of this manual. 

If the controls do not yield the expected results, the test results shall be rejected and the 

analysis shall be repeated. 

 

Experimental procedure 

1. Thaw, mix and centrifuge the components needed for the run (Table 1). Keep thawed 

reagents on ice. 

  

Table 1. Reaction mix for real-time PCR (ABI 7500)  

* Waiblinger et al., 2008 (DOI 10.1007/s00217-007-0748-z). 

 

2. In a 2 mL tube on ice, add the components in the order mentioned in Table 1 (except 

DNA) to prepare the reaction mix. Please prepare only the reaction mix needed for the 

run.  

3. Mix well and centrifuge briefly. 

4. Label one 0.5 mL reaction tube for each DNA sample to be tested. 

5. Add into each reaction tube the amount of reaction mix needed for 3.3 repetitions (66 

µL). Add into each tube the proper amount of DNA for 3.3 repetitions (16.5 µL DNA). 

The additional 0.3 repetition included will ensure adequate volume when loading the 

samples. Vortex for approximately 10 sec. each tube. This step is of mandatory 

Reagents* Final concentration Volume per reaction (µL) 

TaqMan® universal PCR Master Mix (2x) 1X 12.5 

Primer 35S-F (2µM) 0.1 µmol/L 1.25 

Primer 35S-R (2µM) 0.1 µmol/L 1.25 

Probe 35S-TMP FAM (2µM) 0.1 µmol/L 1.25 

Primer 180-F (20 µM) 1.0 µmol/L 1.25 

Primer 180-R (20 µM) 1.0 µmol/L 1.25 

Probe TM-180 YY (4 µM) 0.2 µmol/L 1.25 

DNA-extract 
Samples: about 50 
000 cp maize DNA 

per reaction 
5 

TOTAL   25 
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importance to reduce to a minimum the variability between the replicates of each 

sample. 

6. Spin down in a micro-centrifuge. Aliquot 25 µL in each well according to the chosen 

plate setup loading order.  

7. Place an optical cover on the reaction plate and briefly centrifuge the plate. 

8. Place the reaction plate into the ABI real-time PCR equipment. 

9. Programme the real-time PCR equipment.  

10. Set up the plate layout, as in figure 1. 

 

 

Figure 1. Software layout 

 

11. Choose the number of cycles, the reaction volume and the details of each reaction step 

(Table 2). 

12. Start the run. 

 

Table 2. Amplification conditions 

Stage Time 

 

Temperature 

°C 

No 

Cycles 

Pre-PCR: decontamination (UNG) 2 min 50°C 1 

Pre-PCR: activation of DNA polymerase and denaturation 
of template DNA 

10 min 95°C 1 

Step 1 Denaturation 15 sec 95°C  
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Step 2 Annealing and elongation 60 sec 60°C  

TOTAL    45 

Data analysis and interpretation of results 

Subsequent to the real-time PCR run, the data are evaluated using the following procedure: 

- Set the threshold: display the amplification curves in logarithmic mode, place the 

threshold line in the area where the amplification profiles are parallel (exponential 

phase of PCR). 

- Set the baseline: determine the cycle number at which the threshold line crosses 

the first amplification curve and set the baseline three cycles before that value 

(e.g. earliest Ct = 25  baseline Ct = 25 – 3 = 22). 

- Save the settings and export the data. 

 

This being a qualitative method, we only need to verify that the amplification took place. 

Adding reference amplification to the plate we could get some semi-quantitative 

information.  

 

Protocol for a construct specific method for the quantitation of MON810 by real-

time PCR.  

This paragraph describes a method for the detection and quantitation of a taxon-specific 

maize gene (maize starch synthase IIb: zSSIIb) and of the specific DNA construct junction 

region between the intron sequence of maize heat shock protein 70 gene and synthetic 

cryIA(b) gene derived from Bacillus thuringiensis present in the genetically modified (GM) 

maize MON810. The method is based on real-time PCR using plasmid as a reference 

material in order to quantify the relative amount of MON810 using a conversion factor (Cf) 

that is the ratio of copy numbers between construct-specific and taxon-specific DNA 

sequences in the representative genuine MON810 seeds. 

 

Equipment and Reagents  

 ABI PRISM® 7500 Sequence Detector System (Applied Biosystems)  

 96-Well Reaction Plates 

 Optical caps/adhesion covers 
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 Micropipettes 

 Racks for reaction tubes 

 0.5 mL and 2 mL DNase free reaction tubes 

 Real-time PCR detection system and appropriate analysis software 

 Standard bench top centrifuge with rotor or standard microfuge fit for 0.5 mL reaction 

tubes, centrifuge for 96-Well reaction plates  

 Vortex mixer 

 1.5 ml microcentrifuge tubes. 

 

Characteristics of primers for the MON810 specific system (QT-CON-00-004) 

Primer forward: M810 2-5' 

Sequence TCGAAGGACGAAGGACTCTAACG 

Length  22 

Mol. weight (g/mol) 6692.4 

Melting point * (G/C) 54.8 

 

GMO target probe: M810-Taq 

Sequence FAM-AGATACCAAGCGGCCATGGACAACAA-
TAMRA 

Length  26 

 

Primer reverse: M810 2-3' 

Sequence GGATGCACTCGTTGATGTTTG 

Length  21 

Mol. weight (g/mol) 7106.3 

Melting point * (G/C) 52.4 
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Characteristics of primers for the taxon specific system (QT-CON-00-004) 

SSIIb1-5' 

Sequence CTCCCAATCCTTTGACATCTGC 

Length  22 

Mol. weight (g/mol) 7204.3 

Melting point * (G/C) 54.8 

 

Taxon probe: SSIIb1-Taq 

Sequence FAM-AGCAAAGTCAGAGCGCTGCAATGCA-TAMRA 

Length  25 

 

SSIIb1-3' 

Sequence TCGATTTCTCTCTTGGTGACAGG 

Length  23 

Mol. weight (g/mol) 7659.6 

Melting point * (G/C) 55.3 

*based on a [Na+] of 50 mM 

 

Standard curve 

The calibration curve method has been used for quantitation of copy numbers in extracted 

DNA from unknown test sample DNA extracts. Separate calibration curves with each 

primer/probe system are generated in the same analytical amplification run. The 

calibration curves are composed of five concentrations including 20, 125, 1500, 20000, 

250000 copies of DNA of plasmid pMul5. At each of the five calibration points, triplicate 

measurements are performed. Triplicate reactions using an appropriate dilution of the DNA 

extracted from the unknown sample were also measured in the ABI PRISM® 7500 SDS 

(Applied Biosystems) in the same analytical run. 

The Cq values determined for the calibration points in the zSSIIb or MON810 construct-

specific target, respectively, are plotted against the logarithm of the copy number of 

plasmid DNA of pMul5 to establish a calibration curve. The copy numbers measured for the 

test sample DNA are obtained by interpolation from the standard curves. For the 

determination of the amount of MON810 in the test sample, the copy number of the 



Real-time PCR Protocols for Qualitative and Quantitative Analysis  

Session 11                                                                                                            175 

MON810 construct is divided by the copy number of the zSSIIb gene and the construct-

specific Cf of MON810, multiplied by 100 to obtain the percentage. 

Controls 

Each test series shall include the controls as stated in Table 3; Session 6 of this manual. 

If the controls do not yield the expected results, the test results shall be rejected and the 

analysis shall be repeated. 

As a positive control/calibration reference material, at least two alternatives are available, 

as follows. 

 High quality, pure genomic DNA extracted from maize kernel may be used if the 

quantity of DNA is known, on the basis of calculating copy numbers of the target 

sequence from the genome size of MON810 maize. 

 A plasmid containing the target sequence(s) may be added in different concentrations 

with known copy numbers.  

Mastermix preparation  

1. Thaw, mix and centrifuge the components needed for the run. Keep thawed 

reagents on ice. 

2. In a 2 mL tube on ice, add the components in the order mentioned in Table 3 (except 

DNA) to prepare the reaction mix. Please prepare only the reaction mix needed for 

the run. Mix well and centrifuge briefly. 

3. Label one 0.5 mL reaction tube for each DNA sample to be tested. 

4. Add into each reaction tube the amount of reaction mix needed for 3.3 repetitions 

(66 µL). 

5. Add into each tube the proper amount of DNA for 3.3 repetitions (16.5 µL DNA). 

The additional 0.3 repetition included will ensure adequate volume when loading 

the samples.Vortex for approximately 10 sec. each tube. This step is of mandatory 

importance to reduce to a minimum the variability between the replicates of each 

sample. 

6. Spin down in a micro-centrifuge. Aliquot 25 µL in each well according to the chosen 

plate setup loading order.  

7. Place an optical cover on the reaction plate and briefly centrifuge the plate. 

8. Place the reaction plate into the ABI real-time PCR equipment. 

9. Programme the real-time equipment  

10. Set up the plate layout. 
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The length of the SSIIb PCR product is 151 bp; the length of the MON 810 PCR product is 

113 bp. 

 

Table 3. PCR reaction setup 

GM target Taxon target 

Reagent 
Final 

Concentration 
Reagent 

Final 

Concentration 

TaqMan® 
Universal  

PCR Master 

1x 
TaqMan® Universal  

PCR Master 
1x 

Primer Fw 0.50 μmol/L Primer Fw 0.50 μmol/L 

Primer Rev 0.50 μmol/L Primer Rev 0.50 μmol/L 

Probe 0.20 μmol/L Probe 0.20 μmol/L 

Template DNA 50 ng Template DNA 50 ng 

TOTAL  25 µL TOTAL  25 µL 

 

Table 4. Reaction conditions 

Stage Time 

 

Temperature 

°C 

No 
Cycles 

Pre-PCR: decontamination (UNG) 2 min 50°C 1 

Pre-PCR: activation of DNA polymerase and denaturation 
of template DNA 

10 min 95°C 1 

Step 1 Denaturation 30 sec 95°C  

Step 2 Annealing and elongation 60 sec 59°C  

   40 
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Plate setup 

 

Table 5. Plate setup 

 1 2 3 4 5 6 7 8 9 10 11 12 

a S1 S1 S1 S2 S2 S2 S3 S3 S3 S4 

 

S4 

 

S4 

 

b S5 

 

S5 

 

S5 

 

U1 

 

U1 

 

U1 U2 U2 U2 U3 U3 U3 

c U4 

 

U4 U4 U5 U5 U5 U6 U6 U6 U7 U7 U7 

 

d U8 U8 U8 

 

U9 

 

U9 U9 U10 U10 U10 C0 C0 C0 

Upper half: MON810 maize specific system 

Lower half: Reference specific system 

e S1 S1 S1 S2 S2 S2 S3 S3 S3 S4 

 

S4 

 

S4 

 

f S5 

 

S5 

 

S5 

 

U1 

 

U1 U1 U2 U2 U2 U3 U3 U3 

g U4 U4 U4 U5 U5 U5 U6 U6 U6 U7 U7 U7 

 

h U8 U8 U8 

 

U9 

 

U9 U9 U10 U10 U10 C0 C0 C0 

 

Data analysis and interpretation of results 

Subsequent to the real-time PCR run, the data are evaluated using the following procedure: 

- Set the threshold: display the amplification curves in logarithmic mode, place the 

threshold line in the area where the amplification profiles are parallel (exponential 

phase of PCR). 

- Set the baseline: determine the cycle number at which the threshold line crosses 

the first amplification curve and set the baseline three cycles before that value (e.g. 

earliest Cq = 25  baseline Cq = 25 – 3 = 22). 

- Save the settings and export the data on an excel file Opening the exported results 

file in MicrosoftExcel. 

- Calculate the Cq average of each group of replicate to calculate the Cq values. 
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For each sample, %GMO is calculated by analysing the sample’s Cq, comparing it to 

the set of log (% GMO) and Cq values obtained from the concentration standards set. 

Inhibition run  

Preparation of DNA dilution series 

The inhibition run preparation starts by bringing the extracted DNA to a level corresponding 

to the highest DNA concentration intended to be used in the subsequent PCR method, the 

so called "undiluted" sample. From this first sample, a fourfold dilution series of each DNA 

extract is prepared (1:4, 1:16, 1:64, and 1:256). 

 

40 μl of each dilution should be prepared as follows: 

 Label tubes with the number of the corresponding DNA extract plus the dilution rate 

from the working dilution. In the table below, DNA extract number 1 is taken as 

example. 

 Distribute appropriate volumes of dilution buffer, i.e. TlowE buffer, in labelled tubes 

(see table below, column named “TlowE Buffer”) 

 In the tube labelled 1 (1:4) add 10 μl of the working dilution 1 and mix by pipetting 

at least 20 times or vortex for at least 3 seconds. 

 In the tube labelled 1 (1:16) add 10 μl of the 1 (1:4) diluted sample and mix by 

pipetting at least 20 times or vortex for at least 3 seconds. 

 Proceed in this way to prepare the dilution series described in the table below. 

 

Table 6. preparation of the dilution series 

 

DNA dilutions 
Starting 

DNA 
Dilution 
factor 

Vol. DNA 

(µl) 

TlowE buffer 

(µl) 

Total  

(µl) 

1 (1:4) 
Working 

Dilution 
4 10 30 40 

1 (1:16) 1 (1:4) 4 10 30 40 

1 (1:64) 1 (1:16) 4 10 30 40 

1 (1:256) 1 (1:64) 4 10 30 40 

 

The test is conducted at least with the taxon specific reference system. To assess the 

presence of inhibitors, the Cq values of the diluted samples are plotted against the 

logarithm of the dilution factor and an equation is calculated by linear regression. Three 
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criteria have to be met: the slope of the regression line should be within -3.6 and 3.1 and 

the linearity should be above 0.98, finally the Cq value for the "undiluted" sample 

extrapolated from the linear regression is compared with the measured Cq for the same 

sample. The difference (ΔCq), average between the measured Cq and the extrapolated Cq 

value, should be within 0.5. Therefore, one of the criteria, as defined in the Minimum 

Performance Requirements for Analytical Methods of GMO Methods, is dedicated to the 

evaluation of the expected vs measured DNA content in the most concentrated sample 

which can, in case of inhibition, result in underestimation (http://gmo-

crl.jrc.ec.europa.eu/guidancedocs.htm). 

 

  

http://gmo-crl.jrc.ec.europa.eu/guidancedocs.htm
http://gmo-crl.jrc.ec.europa.eu/guidancedocs.htm
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Introduction 

Immunoassays are analytical measurement systems that use antibodies as test reagents.  

The most widely used immunological detection method is the Enzyme-Linked 

Immunosorbent Assay (ELISA) (Clark and Adams, 1977), which relies on the specific 

interaction between antibodies and antigens. As in all immunological approaches, the 

key reagents in ELISA are the antibodies, which are soluble proteins produced by the 

immune system in response to infection by a foreign substance, called an “antigen” (Querci 

et al., 2007). When applied to GMOs, the antigens are the newly synthesised proteins. 

Antibodies are specific proteins isolated from the serum of animals that physically bind only 

to the substance that elicited their production. Antibodies are made by injecting the 

substance to be detected into animals, such as rabbits and mice, where cells of the body 

recognise the substance as “foreign” and respond by producing antibodies against it. The 

antibodies are purified, attached to a detectable label and then used as reagents to detect 

the substance of interest. A prerequisite for the development of immunological detection 

methods is that highly specific antibodies directed against the new protein to be detected 

should be available (Ahmed, 2002). All immunoassays are based on the specific binding of 

antibody to antigen. 

These characteristics make specific immunology, a suitable method of detection of a novel 

protein, synthesised by a gene introduced during transformation and constitutes an 

alternative approach for the identification of genetically modified plants. It should be noted, 

however, that genetic modification is not always specifically directed at the production of 

a new protein and does not always result in protein expression levels sufficient for detection 

purposes. In addition, certain proteins may be expressed only in specific parts of the plant 

(tissue-specific promoters are already being used for specific purposes) or expressed at 

different levels in distinct parts or during different phases of physiological development. 

The sample or the proteins of interest should not be significantly degraded because 

detectability of certain proteins is linked to their level of denaturation. 

 

Antibodies properties 

Substances external to the body, such as disease-causing bacteria, viruses and other 

infectious agents known as antigens, are recognised by the body's immune system as 

invaders. The natural defences against these agents are antibodies: proteins that seek 

out the antigens and help destroy them.  
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Antibodies have two very useful characteristics. They are extremely specific meaning that 

each antibody binds to and attacks one particular antigen. Second, some antibodies, once 

activated by the occurrence of a disease, continue to confer resistance against that disease.  

Antibodies' specificity makes antibody technology very valuable not only therapeutically to 

protect against diseases, but also in the detection of drugs, allergens, viral and bacterial 

products.  

This property of antibodies can thus be exploited for the detection of proteins in laboratory 

applications, one of which is GMO detection. 

The utility of antibodies is also greatly enhanced by their relative stability in various 

chemical modification reactions, which alter antibody structure without destroying their 

capacity to bind antigens. Antibodies have been chemically tagged with fluorescent, 

magnetic, radioactive and assorted other compounds as a way of facilitating antigen 

detection or isolation under a variety of experimental conditions. 

 

Monoclonal antibody production  

Monoclonal antibody technology is mostly used for the production of large amounts of pure 

antibodies by using cells that naturally produce antibodies and a class of cells that can 

grow continuously in cell culture.  

These antibodies are called monoclonal because they come from only one type of cells, the 

hybridoma cell; on the other hand, antibodies produced by conventional methods are 

derived from preparations containing many kinds of cells and hence are called polyclonal.  
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Figure 1. Monoclonal antibody production. Picture taken from Lumen Courses Microbiology 

(https://courses.lumenlearning.com/microbiology/chapter/polyclonal-and-monoclonal-

antibody-production/ accessed 25/02/2020). 

 

Monoclonal antibodies attack the target molecule only with no or greatly diminished side 

effects on the patient compared to polyclonal antibodies, leading to higher specificity. 

The ELISA technique 

Definition 

Enzyme-Linked ImmunoSorbent Assay: any enzyme immunoassay utilising an enzyme-

labelled immunoreactant (antigen or antibody) and an immunosorbent (antigen or 

antibody bound to a solid support). A variety of methods (e.g. competitive binding between 

the labelled reactant and unlabelled unknown) may be used to measure the unknown 

concentration. 

ELISA technique has been extensively used as a tool to confirm or follow the success of 

plant transformation by allowing a direct estimate of the expression level of the protein(s) 

synthesised by the newly introduced gene. As a consequence, information regarding the 

production and use of specific antibodies can be found in many articles describing the 

developments of transgenic plants (Mohapatra et al., 1999).  However, only a few specific 

https://courses.lumenlearning.com/microbiology/chapter/polyclonal-and-monoclonal-antibody-production/
https://courses.lumenlearning.com/microbiology/chapter/polyclonal-and-monoclonal-antibody-production/
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antibodies directed against proteins that are the products of transgenes used in approved 

genetically engineered crops are commercially available: among these  the ones against 

the nptII gene product, NPTII or APH(3')II (Wood et al., 1995), against the product of the 

gus gene, against some variants of the cry genes from Bacillus thuringensis (Koziel et al., 

1993; Ermolli et al., 2006b), or against the CP4-EPSPS protein (5-enolpyruvylshikimate-

3-phosphate synthase, an enzyme from Agrobacterium spp. strain CP4) which confers 

tolerance to the herbicide RoundupTM in Roundup ReadyTM soybean (Padgette et al., 

1995). 

Among the different ELISA formats, the direct sandwich ELISA method, in which the 

analyte is ‘sandwiched’ between the capture and the detector antibodies, is the 

immunoassay most used in GMO detection (Stave, 2002). Colour development is linearly 

proportional to the concentration of antigen that is directly dependant upon the amount of 

(GM) protein originally in the sample.  

A variation to the standard ELISA is called ‘ELISA Reverse’ and is specifically designed on 

solid phase which is then immersed directly into liquid samples. It can be applied to the 

simultaneous detection and quantification of CP4-EPSPS and Cry1A(b) proteins (Ermolli et 

al., 2006a).  

 

There are 3 different methods to perform an ELISA test as shown in Figure 2. 

 

Figure 2. Schematic representation of (a) Indirect ELISA; (b) Sandwich ELISA and (c) 

Competitive ELISA. 
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Principle 

A direct sandwich Enzyme-Linked ImmunoSorbent Assay (ELISA) is used for the detection 

of the CP4 EPSPS protein as shown in Figure 3 below: 

 

 

Figure 3. Schematic representation of the steps involved in direct sandwich ELISA. 

1. The surface of a microtiter plate is coated with a specific monoclonal capture 

antibody.  

2. When the sample of interest is added, the capture antibody binds the antigen. 

Unbound components of the sample are removed by washing. 

3. After washing, a polyclonal antibody, covalently linked to horseradish peroxidase 

(HRP) is added, which is specific for a second antigenic site on the bound CP4 EPSPS 

protein. 

4. After washing, a tetramethylbenzidine chromogen for horseradish peroxidase is 

added. The horseradish peroxidase generates a colour signal, which is proportional 

to the concentration of antigen in a linear range. To stop the colour development a 

stop solution is added. The degree of colour produced is measured at a wavelength 

of 450 nm. 
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An example of an ELISA-based method for the specific detection of Roundup Ready® 

soybean was validated by Lipp et al. (2000). 

The method is based on the use of specific antibodies directed against the protein CP4-

EPSPS (5-enolpyruvylshikimate-3-phosphate synthase, enzyme from the Agrobacterium 

sp. strain CP4) (Padgette et al., 1995), which is the protein conferring tolerance against 

the herbicide Roundup in the Roundup Ready® soybean. Preliminary results indicate that 

the method (performed by using a commercialised ELISA kit) is able to detect the presence 

of GMOs in raw soybean material at concentrations ranging between 0.3% and 5%. 

Lateral flow strips 

Particular interest has been given to the so called immunochromatographic  strip test 

(lateral flow test, LFT). This variation of the ELISA technique is a testing method that 

operates in a way similar to the one of double antibody sandwich but with an advantage: 

the reaction takes place on a solid support exploiting the protein solution flow through an 

absorbent strip resulting in very quick time of analysis and cost effectiveness. A scheme of 

the structure of the strip is presented in Figure 4 below. 

 

Figure 4. Schematic representation of the strip used in lateral flow tests 

The strip test generally presents two antibody lines: the test line (specific for the 

transgenic protein) and the control line (binding the excess antibodies). The strip can be 

immersed into a previously homogenized solution. Compared to standard ELISA 

procedures, lateral flow strips have the advantage that the reaction takes place on one 

solid medium, exploiting the protein solution flux through the absorbent strip (Figure 5). 

As a consequence, results are obtained in a few minutes and the method although not 

quantitative is cheaper.  

If the sample does not contain the transgenic protein, the fluid containing the antibodies 

will freely flow up to the control line, undisturbed by the presence of the test line's 

antibodies.  
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Figure 5. Schematic representation of the protein/antibody interaction in a lateral flow 

strip. 

 

Otherwise, if the sample contains the transgenic protein, the antibodies will specifically 

bind it. Then the antibody/protein complex will only rise up to be bound by the specific 

antibodies of the test line (Figure 6). The remaining unbound antibodies, carried by the 

flow, will be caught by the control line.  

In LFT, for the test to be positive, both the control and sample line has to be visible. If the 

control line is the only visible one, the result shall be considered negative. If no lines is 

observed, then the test is invalid, as at least the control line should be present. In this 

case, the test should be repeated. 

 

Figure 6. Two LFT's results for soybean: the left one negative for GM soybean; the right 

one positive. 
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Protein approaches give quick results and are easy to use; even though the initial cost for 

the development of the method is high, the cost per sample is relatively small. For this 

reason, they can be helpful for on-site fast screening.  

 

Advantages and limitations of protein-based detection methods in routine GMO testing 

have been discussed in Session 2.  

The prerequisite for the development of ELISA and of other immunological detection 

methods is the availability of highly specific antibodies (either monoclonal, more specific, 

or polyclonal, more sensitive) directed against the new protein to be detected. Since the 

production of antibodies, either monoclonal or polyclonal, is an extremely complex and 

expensive process and requires highly specialised setting, it is almost exclusively 

conducted by specialised companies and only very seldom performed at the level of 

individual laboratories. Consequently, in practice, the application of immunological 

methods for routine GMO analysis generally relies on the use of antibodies made 

commercially available as part of ELISA kits or integrated into lateral flow strips.  

For this reason, no detailed protocols are included in this User Manual. Users are invited to 

refer to the specific instructions provided by the manufacturers. 
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Annexes 

Annex 1. Abbreviations 

CTAB Cetyltrimethyl ammonium bromide  

Da Dalton 

dATP Deoxyadenosine triphosphate 

dCTP Deoxycytidine triphosphate 

dGTP Deoxyguanosine triphosphate 

DNA Deoxyribonucleic acid 

dNTPs  Deoxynucleoside triphosphates 

dsDNA Double stranded DNA  

dTTP Deoxythymidine triphosphate 

EDTA Ethylenediamine tetraacetic acid 

ELISA Enzyme-Linked ImmunoSorbent Assay 

ENGL European Network of GMO Laboratories  

EPSPS 5-enol-pyruvylshikimate-3-phosphate synthase  

EU European Union 

EURL GMFF European Union Reference Laboratory for GM Food and Feed 

FRET Fluorescence Resonance Energy Transfer  

GMO Genetic Modified Organism  

IRMM Institute for Reference Materials and Measurements  

JRC Joint Research Centre 

LFT  Lateral Flow Strips Test  

LOD Limit of Detection  

mRNA Messenger RNA 

Na2-EDTA Ethylenediaminetetraacetic Acid, Disodium Salt  

NaCl Sodium chloride 

NaOH Sodium hydroxide 

OD Optical density  

oligo(dT)  Deoxy-thymidine nucleotides 

PCR Polymerase Chain Reaction 

poly(A)  Polyadenylic acid  

RNA Ribonucleic acid 

rpm Run per minute 

SDS Sodium dodecyl sulfate  

ssDNA Single stranded DNA  

TAE Tris-acetate  

TBE Tris-borate 

TPE Tris-phosphate 

Tris Tris[hydroxymethyl] aminomethane  

UV Ultraviolet  

V Voltage  
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