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Abstract 

Wireless communication systems require Power Amplifiers (PAs) for signal 

transmissions. The trade-off between power efficiency and nonlinear distortion in PAs 

degrades the communication performance. Thus, power efficiency and nonlinearity are two 

main concerns of operating PAs in communication systems. Nonlinear behavioral models 

are typically used to quantify and mitigate the distortion effects of PAs on communication 

systems. This dissertation presents an estimation approach for modeling and linearizing the 

PA Amplitude-to-Amplitude (AM/AM) nonlinearity using the design specifications of 

PAs, such as gain, the third-order intercept point, and 1dB compression point. Furthermore, 

an enhanced approach for modeling solid-state power amplifiers is developed by modifying 

the Saleh empirical model. 

The Envelope Tracking (ET) technique for PAs has been a popular power 

efficiency enhancement in modern cellular systems. However, the time-varying effects of 

the supply voltage impacts the PA linearity. Therefore, an accurate behavioral model for 

PA with ET has become an important research effort to characterize the effect of dynamic 

supply voltage on both the amplitude and phase nonlinearities. Furthermore, the empirical 

models of ET PAs are widely used to improve PAs linearity by using Digital Predistortion 

(DPD).  

This dissertation develops an extended modeling approaches to characterize the 

AM/AM and Amplitude-to-Phase (AM/PM) conversions as well as account for the impact 

of the time-varying supply voltage on the ET PAs.   

Memory effects, due to energy storage elements (e.g. capacitors and inductors) in 

ET PA circuits in addition to the temperature variation of integrated circuit, are modeled 
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using digital filters (finite impulse-response filters) in series with the static AM/AM and 

static AM/PM nonlinearities. A least-squares approach is mathematically derived for 

estimating the model coefficients of ET PAs.  

The model identification of many coefficients requires high computational cost in 

Float Point Operations (FLOPS), such as multipliers and adders. In addition, the 

computational cost in FLOPs of a complex number is equivalent to (2-6) times the cost of 

real numbers. The estimation complexity of the ET PAs model in this work requires around 

half the number of FLOPS compared to the state-of-the-art behavioral models. This is 

because the modeling approach in this work consists of real coefficients and a lower 

number of model parameters.  

A DPD model is derived in this dissertation to compensate for both the AM/AM 

and AM/PM nonlinear distortions in ET PAs. A dual-input single-output function 

architecture is calculated for the DPD model to compensate for the nonlinearities in the 

AM/AM and AM/PM conversions contributed by the time-varying supply voltage in the 

ET system. Both the proposed AM/AM and AM/PM DPD models exhibit lower numbers 

of coefficients, which result in reduction of the identification complexity compared to the 

state-of-the-art DPD models. The proposed behavioral models of the ET PA and DPD are 

both evaluated in the time and frequency domains, as well as compared to the state-of-the-

art models in terms of model accuracy and estimation complexity. 
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Chapter 1 

Introduction 
 
 

1.1 Motivation 

Improving power and spectral efficiencies in communication systems has become 

a major research effort to perform a reliable signal transmission. The application demand 

of high data-rate and multi-media transmissions in modern transceiver systems requires 

selecting components of energy-efficient and high linearity devices.  

High linearity devices are extremely desirable in broadband communications 

because nonlinear distortion can degrade the overall spectral efficiency. Mixers and Power 

Amplifiers (PAs) are two major nonlinear devices in typical communication systems. This 

dissertation focuses specifically on power efficiency and linearity of PAs in 

communication systems because PAs exhibit more impact on signals transmission. In 

addition, PAs are one of the most power-hungry components in transceiver systems, which 

are required to amplify bandpass wireless signals as shown in Figure 1.1.  

 

PA

Message

bits
Baseband 

Modulator

Carrier 

Generator

Antenna

 
 
 
Figure 1.1 Simplified block diagram of wireless transmitter. 
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 Low power efficiency and nonlinear distortion are the two common design 

challenges in PAs for wireless communications. Stand-alone linear PAs typically exhibit 

lower power efficiency due to the high-power dissipation in the circuit elements. For 

instance, the maximum power efficiency for a class-A RF PA is around 40%, which 

represents around 60% of the PA output power dissipated as heat. In addition, low power 

efficiency in PAs can degrade battery life in cellular hand-sets and minimize the 

transmitted power via the integrated circuit chip due to high heat dissipation [1]-[3]. 

Nonlinear distortion in RF PAs is another common problem that can significantly degrade 

signal-to-noise ratio, bit-error rate, and adjacent channel interferences in multi-band 

communication, due to both in-band and out-of-band spectral distortions [4]-[7].  

Stand-alone RF PAs normally operate at maximum power efficiency in nonlinear 

regions when driven near the 1dB compression point [8]. The trade-off between power 

efficiency and linearity motivated researchers to develop several signal techniques for 

controlling the trade-off to improve the operational performance of PAs. The evolution of 

modern wireless signals makes the trade-off between power efficiency and linearity more 

complicated because of large amplitude fluctuations in modern modulation schemes. For 

example, operating PAs on signals of high Peak-to-Average Power Ratio (PAPR) can 

increase the trade-off challenges compared to the PA operation on small signals. In fact, 

the high dynamic amplitude range of the PA input signals (e.g. about 8 dB PAPR in Long-

Term Evolution (LTE) downlink signals) causes a large fluctuation on Amplitude-to-

Amplitude (AM/AM) conversion and dynamic transition between linear region and 

compression region (i.e. nonlinear region) [9]-[11].    
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The Envelope Tracking (ET) technique has become a very popular method for 

improving the power efficiency in modern wireless communications. The ET technique 

exhibits important advantages compared to the traditional efficiency enhancement 

techniques for PAs, such as Doherty and out-phasing approaches, which often exhibit 

limitations in bandwidth as well as challenges in efficient design of RF matching 

components and effect of load impedance [12]-[14].  

Different ET systems have been developed over past decades to overcome the 

design challenges of high bandwidth and high PAPR on PAs in cellular wireless 

transmitters. The dynamic supply voltage in ET systems exhibits a significant impact on 

both the design characteristics and nonlinearity of RF PAs [15]-[16]. Therefore, various 

techniques have been developed in the literature of ET modeling to characterize the 

dynamic effect of the supply voltage on the PA nonlinearities. Empirical models are 

simplified approaches compared to circuit models for characterizing the hysteresis effects 

and nonlinear distortion in ET PAs [17]-[19]. PA empirical models can simplify modeling 

Digital Predistortions (DPDs) for efficiently mitigating the dynamic nonlinear distortion. 

For instance, Taylor and Volterra series are popular and accurate models for PAs and DPDs 

[20]-[23]. The drawbacks of high number of coefficients and high computational cost are 

extensively discussed in the state-of-the-art PA modeling.  

This dissertation introduces empirical approaches for modeling both constant-

supply PAs and ET PAs. The AM/AM behavioral model for a constant-supply voltage is 

calculated from the PA design parameters such as gain, IP3, and the 1dB compression point. 

In addition, an extension of the Saleh behavioral model is developed for ET PAs to 
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characterize both amplitude and phase nonlinearities due to time-varying amplitude of the 

PA input signal.  

The ET PA model can characterize the effect of the dynamic supply voltages on 

both amplitude and phase conversions. The memory effect due to the variation in the 

temperature of Integrated Circuit (IC) and energy storage elements in ET PA circuits (e.g. 

capacitors and inductors) have been an important aspect in wideband and multiband 

communications. Hence an approach of characterizing the impact of memory distortion on 

ET PA are presented in this work.  An approach of linearizing ET PAs is introduced for 

mitigating the nonlinear distortion in both amplitude and phase of the PA output signal.  

 

1.2 Dissertation Organization 
 

This dissertation presents several modeling techniques for constant-supply PAs and 

ET PAs. In addition, linearization techniques using DPD are developed to improve the PA 

operational performance. Hence, this dissertation is organized as follows: 

 
Chapter 1 begins with the research motivation for power efficiency and linearity 

challenges in communication systems. It is followed by research questions, the main 

contributions, and dissertation organization. Then, an overview of LTE statistical 

characteristics is demonstrated as a popular type of modern wireless signals to evaluate the 

power efficiency for typical PAs.  

Chapter 2 describes the physical causes and effects of PA nonlinear distortion. It 

also demonstrates the distortion types in PAs, such as AM/AM distortion, AM/PM 

distortion, and memory effects. The AM/AM and AM/PM conversions in PAs are 



5 
 

represented using the state-of-the art mathematical models. An approach for estimating the 

AM/AM nonlinear distortion in PAs is calculated using the Saleh empirical function, based 

on PA manufacturing parameters, such as gain, IP3, and the1dB compression point. 

Chapter 3 presents the ET technique for power efficiency enhancement in PAs. This 

include simulation results of different shaping functions. The ET system structure and 

effects of each design component is described for the required modeling task in the next 

chapter. 

 
Chapter 4 begins with an overview of the behavioral modeling approach 

comparison with circuit models. Two different ET PA modeling approaches using single-

input single-output and dual-input single-output are discussed, this examination is followed 

by examples of popular state-of-the-art behavioral modeling. Two behavioral modeling 

techniques are proposed in this chapter based on the Hammerstein theory and a new 

extension of the Saleh model. Model evaluations in both the time and the frequency 

domains are presented. 

 
Chapter 5 presents a new linearization technique for constant-supply PAs using a 

DPD model, which is derived from the Saleh behavioral model. In addition, this chapter 

describes novel linearization techniques for the ET PAs using DPD. These linearization 

techniques consist of two independent functions: one model for mitigating the AM/AM 

distortion and another model for linearizing the AM/PM conversion. In addition, DPD 

model evaluation approaches are presented. Chapter 6 summarizes the dissertation’s 

conclusions, list of publications, and future work. 
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1.3 Research Questions  

The ongoing development of high-speed DSP systems facilitates signal processing 

techniques for improving the power efficiency and linearity of PA circuit. PA circuits are 

subject to design challenges of high-power efficiency and high linearity implementation, 

as were discussed in the introduction. This dissertation focuses on employing signal 

techniques to improve power efficiency using ET system and system level DPD model to 

improve the PA linearity.  

Modeling of constant-supply and ET PAs as well as DPDs have gained significant 

interest in contemporary development of high efficiency and linearity wireless systems. 

This dissertation addresses the following important challenges:  

1. How is the AM/AM nonlinear distortion modeled in PAs using the design 

manufacturing parameters such as gain, IP3, and P1dB ? 

2. How is the AM/AM nonlinear distortion modeled in ET PA using a simple approach? 

3. How is the AM/PM nonlinear distortion modeled in ET PA using a simple approach? 

4. How are the long-term memory effects (i.e nonlinear dispersion) in both the AM/AM 

and AM/PM conversions are accurately modeled? 

5. How can AM/AM nonlinear distortion in the ET PA be mitigated? 

6. How can AM/PM nonlinear distortion in ET PA be mitigated? 

7. How can the dynamic variation of the supply voltage in ET PAs and linearization 

techniques be accurately modeled? 
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1.4 Contributions 
 

The key contributions in this dissertation are summarized as follows: 

1. An estimation approach was calculated for the Saleh empirical model using the 

third-order intercept point (IP3) and 1dB compression point [24], [25]. 

2. Model modification was developed to enhance the accuracy of the Saleh model for 

solid-state PAs. 

3. An extended modeling approach was derived for the static AM/AM nonlinearity in 

ET PAs. 

 The original Saleh AM/AM model is an empirical formula, which characterizes 

the nonlinearity for constant-supply PAs as a function of the signal input amplitude. 

In this dissertation, an extension of the Saleh AM/AM function was presented to 

model the ET dynamic supply voltage. The proposed Saleh extension increases the 

modeling accuracy, and quantifies the nonlinear distortion due to both the input 

signal and supply voltage [26]. 

4. A technique of extending the Saleh AM/PM function was developed.  

This work presents an extension to the static Saleh AM/PM function by including 

the effects of the phase variation caused by the supply voltage. The proposed model 

extension converts the behavioral modeling structure from Single-Input Single 

Output (SISO) to Dual-Input Single Output (DISO). An improvement in model 

accuracy was obtained by using this extension [27]. 

5. The dynamic modeling approach of the AM/PM conversion for long-term 

memory effects (i.e. dispersion effects) was calculated in this work. 
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Hysteresis effects in the AM/PM conversion are modeled using a simple digital 

filter, which is cascaded with the static AM/PM model. The digital filter is used to 

model hysteresis effects in the AM/PM conversion as a result of the energy-storage 

elements that cause different time-delays in the input signal [27].  

6. A modeling approach for the AM/AM DPD in ET PA was developed. 

Digital predistortion is an efficient approach for linearizing ET PAs. Thus, this 

dissertation presents a DISO function. The DISO function is calculated to 

compensate for the dynamic variation in the AM/AM nonlinearity due to the time-

varying supply voltage [27]. 

7. Finally, this dissertation illustrates AM/PM DPD for the ET PA: 

The AM/PM DPD function is typically used to compensate for the AM/PM 

distortion in an ET PA. We derived this model by inverting the PA phase function. 

In this approach, the proposed DPD model implements a ∓ 180o phase shift to the 

PA phase to obtain a theoretical linear phase conversion from the combined DPD 

and PA model. The ET PA supply voltage is included in the DPD model to 

compensate for the output transistor drain/collector phase distortion [27]. 

 

1.5 Power Efficiency Characterization 
 

Power efficiency is an important metric in the design of reliable wireless 

communications and calculating a link power budget. Power efficiency is defined as a ratio 

of the average output power delivered to the load and the DC power supplied to the PA [8] 

as:                  
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 In this equation, η is the percentage power efficiency. The DC power delivered to the PA 

(denominator of Equation 1.1) depends on conduction angle of the PA output transistor’s 

drain/collector current flow from the power supply. In fact, the conduction angle is 

controlled by the DC bias voltage on the output transistor gate/base and specifies the 

operating class of the PA. For instance, class-A model assumes a 360o conduction angle, 

which corresponds to a theoretical maximum power efficiency of 50%. In a 

complementary-symmetry class-B operating mode, the conduction angle is 180o, which 

means the drain/collector current flows during the half cycle of the PA input signal (i.e 

complementary symmetry consists of two transistors) with around 78% maximum power 

efficiency. Therefore, the power efficiency depends on the PA circuit design and DC 

biasing conditions [1], [8]. Under these conditions, optimal power efficiency can be 

obtained when operating PAs in small amplitude signals. On the other hand, the biasing 

condition and conduction angle of the PA are dynamic and difficult to control when 

operating PAs at a high PAPR, because the transistor’s gate/base is affected by the 

amplitude of the input signal [8].  

Modern wireless signals (e.g. using Orthogonal Frequency Division Multiplexing 

(OFDM) modulation scheme) exhibit high variation in amplitude and phase [9], [11]. This 

variation has impact on the instantaneous power efficiency. For example, a time series 

power of the LTE ( i.e. LTE_downlink uses OFDM modulation) signal in Figure 1.2 

illustrates that the average power is 7.40 mw whereas the peak power is 29 mw. 

        η %=
PA output power

DC power delivered to PA
∗ 100   (1.1) 



10 
 

 

Thus, a power variation of about 21.6 mw is a significant variation in the power efficiency 

according to Equation 1.1. The instantaneous power in communications is a random 

quantity, which is statistically described by the Probability Density Function (PDF) [28]. 

Therefore, this causes the power efficiency to be a non-deterministic function because of 

signal-dependency.  

 The average power efficiency (as shown in Equation 1.2) is introduced in the 

literature as an adequate metric especially when operating PAs on signals of different 

PAPR (i.e. wide-range PDF).  

                                               

  where  𝜂  is the average power efficiency, E[. ] is the expected value, Pout is the 

output power, and 𝑃  is the DC power delivered to the load. The expected value “E[.]” in 

E
η

E
out

ave
D C

P

P

  
  

 (1.2) 

 
 
Figure 1.2 Power dynamic range of the LTE_downlink signal.  
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Equation 1.2 can be re-expressed using a mathematical integral over the PDF as illustrated 

in Equation 1.3.  

 

where f (.) is the PDF of the PA output signal. The PDF has a dominant effect on the 

average power efficiency in PAs. In fact, the PDF is a complicated random function in 

communication signals. Thus, an important parameter was introduced in the literature to 

account for the signal PDF characteristics by using the PAPR as shown below: 

 

where max [Pout] is the peak output power. Substituting Equation 1.4 into Equation 1.2, 

results in the following: 

 

Equation 1.5 illustrates an inversely proportional relationship between the power efficiency 

and PAPR. Figure 1.3 shows a histogram f(Pout) of the LTE_downlink signal and the 

instantaneous power efficiency (η) for a class-A PA. This indicates a low-power efficiency 

corresponding to the low signal amplitude, and high-power efficiency corresponding to the 

peak signal amplitude. Similarly, the power efficiency at average power is lower than the 

power efficiency at peak power. Therefore, operating PAs at high PAPR signals can 
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degrade gradually the average power efficiency, such as a common challenge in designing 

high power efficiency PAs in OFDM signals [29].  

 

 

 

 

 

 

 

 
 
 
 
 
 

 
 
Figure 1.3 Histogram of LTE_downlink signal and power efficiency characteristics of a class-A 

PA.  
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Chapter 2 
 
 

Distortion Characterization of Power Amplifiers 
 
 

2.1 Overview 

 
Nonlinear distortion in PAs is an ongoing design challenge in communication 

systems. Nonlinear distortion in PAs affects the reliability of data transmission and 

increases the chance of inter-symbol interference. In addition, the effects of PA distortion 

increase bit-error-rate and degrades signal-to-noise ratio on communication receiver [30]. 

This chapter describes and analyzes the main causes of nonlinearity and distortion effects 

on communication systems. PA distortions stem from different design aspects, such as:  

1) Physical design topology (e.g. class-A, class-C, and class-D). 

2) Circuit parasitic effects (e.g. mutual inductance, capacitance, and resistance). 

3) Energy storage elements (e.g. charging and discharging of capacitors and 

inductors). 

4) Nonlinear elements in transistors’ junctions (e.g. PNP and NPN junctions). 

Classifying and simplifying nonlinear distortion in PAs have become important 

tasks for supporting the developer implementing efficient empirical models and DPD of 

PAs.  

Modeling techniques using circuit theory analysis have been used in the past. 

However, circuit approaches for modeling ET PAs are complicated due to the circuit 

complexity, as well as the challenges of quantifying the parasitic effects in circuit elements, 

such as electrical and magnetic coupling [31].                                                         
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  A signal modeling approach is used to simplify the modeling complexity. Hence, 

this work adopts a signal modeling approach for simplicity and flexibility of characterizing 

and analyzing different distortion effects in RF PAs. Various signal processing approaches 

have been developed in the modeling literature to quantify the distortion effects of PAs, 

but these models are classified into three main categories: memoryless or static, quasi-

static, and memory models, as described in the next sections.  

 
 2.2  Static Amplitude-to-Amplitude Distortion 
 

Static AM/AM distortion refers to the variation in the signal amplitude with respect 

to the instantaneous input amplitude of the PA. In other words, PAs typically output 

different scaled versions of the input amplitude, because of nonlinear gain with respect to 

the input amplitude. Memoryless models are often sufficient to characterize the static 

AM/AM conversion of the PA. Distortion effects due to the static AM/AM nonlinearity 

can be easily observed in the frequency domain (i.e. Intermodulation Distortion (IMD)) 

when the PA is excited by a two-tone signal [32], [33]. The static AM/AM distortion in the 

time domain results in signal smearing and clipping effects, as demonstrated in the 

simplified Figure 2.1. 

The AM/AM conversion causes relatively high distortion effects compared to the 

other types of nonlinear distortions. In particular, odd-order IMDs exhibit higher impacts 

on baseband signals, and require sharp filtering techniques to eliminate this IMD. 
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2.2.1   Taylor Model 

 The Taylor model is a popular empirical model for memoryless/static AM/AM 

conversion in PAs as in Equation 2.1. The Taylor coefficients are normally estimated using 

a least-squares method, or calculated directly from the specification parameters of the PA 

such as gain, intercept points, and 1dB compression points [34], [35]. The high orders of 

the Taylor model are often required in PA for optimal model accuracy, which is one of the 

model drawbacks. Thus, a low-order truncated Taylor model is commonly adopted to 

simplify the model complexity as follows:   

N
n

o i n i
n=1

v (t) = (v (t)) = c v (t)f  (2.1) 

 
where vi(t) is the input signal, vo(t) is the output signal, cn are the Taylor coefficients (real 

numbers for the AM/AM model), and N is the Taylor truncated order. The Taylor 

nonlinear order N specifies the number of the modeled IMD in the PA. 

 

 
 
Figure 2.1 Effect of PA gain compression on signal envelope shape.  
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A two-tone test is an experimental approach widely used to measure the AM/AM 

nonlinearity of the PA in the frequency domain, as illustrated below: 

where A is the signal amplitude, ω1 and ω2 are the angular frequencies. Substituting 

Equation 2.2 into Equation 2.1, we obtain: 

Equation 2.3 can be simplified using trigonometric identities to result in: 
 

2 2 3 3 3
o 2 2 1 2 1 3 1 1 3 2 3 1 2

3 2 2 2
3 2 1 2 1 2 2 1 2 2

3 3
3 1 2 3

9 9 3
v (t) = c A +c A cos (ω -ω )t +(c A+ c A )cos ω t +(c A+ c A )cos ω t c A cos (2ω -ω )t

4 4 43 1 1
+ c A cos (2ω -ω )t +c A cos (2ω +ω )t + c A cos 2ω t + c A cos 2ω t +

4 2 2
3 3

            c A cos (2ω +ω )t + c A cos (2
4 4



 3 3
2 1 3 1 3 2

1 1
ω +ω )t + c A cos 3ω t + c A cos 3ω t +.......                

4 4         
4 2.

 

Equation 2.4 characterizes the static AM/AM nonlinear distortion in PAs. In this 

expression, a mixture of the distortion harmonics is generated clearly in the PA output 

spectrum, in addition to the fundamental two tones at frequencies ω1 and ω2. The first term 

in the Taylor model (c2A) represents the DC component, which can be normally filtered-

out using a simple DC-blocking capacitor on the PA output terminal. The other harmonics 

are classified according to their frequencies into even and odd IMDs as depicted in Figure 

2.2 using a two-tone test of a narrow frequency spacing ∆𝑓.  The third-order and fifth-order 

harmonics are relatively high in amplitude compared to the other odd-order IMD, as 

observed in practice using a two-tone test on RF PAs. In addition, these harmonics are 

closer to the fundamental frequencies and main concern in RF PAs. 

i 1 2v (t) = A(cos ω t +cos ω t)  (2.2) 

2 2 3 3
o 1 1 2 2 1 2 3 1 2

N N
N 1 2

v (t) = c A(cos ω t +cos ω t) +c A (cos ω t +cos ω t) +c A (cos ω t +cos ω t) +.........+
          
          c A (cos ω t +cos ω t)

 

 
(2.3) 
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The Taylor coefficient c1 is the signal amplification factor, which is related to the 

power amplifier gain; the coefficient c3 is a function of both gain and third-order intercept 

point (IP3) [30]. Similarly, the higher-order coefficients (c5, …, ck) are functions of the 

higher order intercept points and 1dB compression point. In fact, the higher the magnitude 

of the Taylor coefficient, the stronger the nonlinearity in PAs.  

The Taylor model can be applied to a multi-tone signal for representing the cross-

modulation distortion using a frequency mixture of multi-tone harmonics. The two-tone 

and multi-tone signals are widely used in signal processing to characterize the nonlinear 

distortion in a square-shaped baseband spectrum. This is because the multi-tone harmonics 

on the PA input result in a large amount of distinct in-band and out-of-band odd-order 

harmonic distortion [6]. Thus, a spectral regrowth in wireless communications is a result 

of out-of-band odd-order IMD.    
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Figure 2.2 The two-tone intermodulation distortion due to AM/AM conversion. 
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2.2.2   Saleh Model 
 

The Saleh AM/AM model is a popular empirical function for the memoryless 

nonlinearity of PAs. The Saleh model is a function of two parameters, α and β, which are 

positive and real numbers [10] specifying the gain and saturation amplitude of the PA. The 

baseband AM/AM conversion H[.] for the PA is given by: 

where x(t) and ys(t) are the envelopes of the PA input and output baseband signals, 

respectively. Parameter α corresponds to the small signal gain of the PA, and parameter β 

adjusts the curvature smoothness of the compression region [7]. In fact, parameter β is 

mathematically related to the 1dB compression point, as demonstrated in this section [24]. 

 The 1dB compression point in PAs is defined as a power level at which the small 

signal gain drops by1dB. This can be expressed mathematically using: 

Parameter g represents the small signal gain and x1d reflects the input amplitude at the 1dB 

compression point. Substituting Equation 2.6 into Equation 2.7, and α into g, results in: 

 

 

Using linear algebra on Equation 2.8, and simplifying the expression, results in 

                                          y (t) = H[x(t)]s                              (2.5)

                                      
2

α.x(t)
H[x(t)] =

1+ β.x (t)
 (2.6)

          1d 1d20 log y (x ) = 20 log g.x -1s  
(2.7)

                                          1d
1d2

1d

α.x
20 log = 20 log α.x -1

1+β.x
  (2.8)
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Finally, the relationship between the Saleh parameter β and 1dB compression point is 

 

 

Equation (2.10) is a new derived expression for the PA, which can be used to specify the 

linear operating region of the Saleh model [24]. This is because the 1dB compression point 

is a figure-of-merit widely used in PAs. The 1dB compression point refers to the PA 

maximum input amplitude to avoid signal clipping and high nonlinear distortion in the 

saturation region. In other words, the higher the amplitude of the 1dB compression point, 

the better and wider the linear region in PA and the smaller the value of the parameter β, 

because β is inversely proportional to the 1dB compression point, as shown in Figure 2.3. 

Hence, a minor change in the 1dB compression point can cause a large variation in the 

Saleh parameter β for any point below the 0.5 V in the 1dB compression point. 

 

                                            

1d 1d
2 1

201d

α.x α.x
20 log = 20 log

1 + β.x 10           
(2.9) 

                  
(1/ 20)

1d
10 1 0 3493114 1

x
β 8 β

.
  


    (2.10) 

 
 

Figure 2.3 Estimation of the Saleh parameter β from the 1dB compression point.  
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2.2.2.1  Saleh Estimation Using IP3 
 

 A least-squares method is a classical approach for estimating the Saleh behavioral 

model using discrete data points of the AM/AM conversion. The accuracy of the least-

squares method depends on both the data number of samples and noise presented in the 

acquired data. This work presents a new estimation approach for the Saleh model using the 

design parameters of solid-state PAs. The presented approach is mathematically simpler 

than the least-squares and requires fewer measurements of the PA (gain and IP3). 

Alternatively, these parameters can be obtained easily from the manufacturing data sheets. 

The Taylor model is adopted in our derivation as follows: 

 

where x and yT are envelopes of the baseband input and output signals, respectively, n is 

odd number for the nonlinear order of Taylor model. (c1, c3, ….. ,cn) are the Taylor odd-

order coefficients. The third-order intermodulation distortion (IM3) is a major concern in 

PAs, because the power of IM3 is relatively higher than any of the other higher odd-order 

IMDs as observed in measurement of a PA two-tone test. In addition, the IM3 distortions 

fall in-band and near the fundamental frequency in the spectrum domain. The higher-order 

IMDs can be eliminated using brick-wall band-pass filter. Similarly, the even-order 

coefficients of the Taylor model quantify the even-order IMDs, which are multiple 

frequencies of the fundamental frequency and can be easily filtered out. 

The Taylor coefficients in Equation 2.11 are directly related to PA gain and intercept 

points. For simplicity, we consider only c1 and c3 coefficients as follows [30], [35]: 

 3 n
T 1 3 ny = c x + c x +......+ c x  (2.11)
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where G is the power gain in dB and IP3 is the output third-order intercept point in dBw.  

IP3 represents the input power level at which the output power of the fundamental 

frequency intercepts with the output power of the third-order intermodulation (IM3) 

frequency as depicted in Figure 2.4.  

Third-order intercept points are popular technical specifications for PA linearity. The 

higher the value of IP3, the better the gain linearity of PAs. The Saleh model is an odd-

function which consists of odd-order Taylor expansion terms. Hence, the modeling 

approach in this work is calculated by minimizing the error objective function between the 

Saleh model and the third-order Taylor model in the linear region of PAs [24]. 

 

 
G

20
1c =10

 
 
 

         
 (2.12)

                         

3-IP 3G
+

10 20
3

-2
c = 10

3

 
 
            (2.13)

 
 

Figure 2.4 Graph illustrating the intercept point between the fundamental and third-order 

intermodulation distortion.  
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The objective function is written using the following mathematical notations: 

 

 

where x1dB is the input amplitude at 1dB compression point. The square-errors function (yT 

- yS)2 is expressed as follows: 

 

For simplicity, the square-errors e2(x) is computed over the amplitude range (0 , (1 ⁄ 8β) ) 

as derived from the 1dB compression point. Hence, the total square-errors  eT
2  represents 

the integral of Equation 2.15 over the defined input amplitude range   

 
The integral computation of Equation 2.16 is:  

The minimum square-errors of Equation 2.17 occurs when gradient operation in terms of 

the coefficients (c1, c3) approaches zero, and this can be written mathematically as 

                                                         
2 2

2 T T
T

1 3

e e
e = , = (0, 0)

c c

  
     

                                                  (2.18) 

 

1 3

2
T

c c

1dB

Minimizing [(y (x) - y (x)) ]

x :  0 x x

( , )w.r.t 




    

s

  (2.14)

           

x 0   ,  

2

2 3
1 3 2

1 8

α x
e (x) = c x + c x

1 + β x
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1 8 β 2

2 3
T 1 3 2

0

αx
e = c x + c x dx

1 + βx
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The gradient computation using Equation 2.17 and Equation 2.18 results in the following 

two equations: 

 

The instantaneous solution of Equation 2.19 and Equation 2.20 is: 

 

                                               
1

-1

c
α =

1760 - 3660 2 tan (1 2 2 )
        

                                                  (2.21) 

 

                                          

-1
3

-1
1

-3c (183 2  tan (1 2 2 ) - 88)
β =

56c (129 2  tan (1 2 2 ) - 62)
        

                                               (2.22) 

 
Substituting Equation 2.12 into Equation 2.21 and simplifying both equations, results in 

the following:  

                                             

G
G20
20

-1

10
α = 1 003 10

1760-3660 2 tan (1 2 2)
        

.

 
      

                              (2.23) 

 

                                           

-1
3 3

-1
11

-3 c (183 2 tan (1 2 2) -88) c
β = 1 137

c56 c (129 2 tan (1 2 2) -62)
        

.                                   (2.24) 

 
Substituting Equation 2.12 and 2.13 into Equation 2.24, results in: 
 
 

                                                             

3-IP G
+

10 10β = 0 758 10
        

.

 
 
                                                            (2.25) 

 

 -1
31

2 3

2c2c -1280 α (tan (1 2 2) - 23 2 96)
+ = 0

640 β β 7168 β β
        

 
       (2.19) 

 

   

              

-1
3 1
2

c c + 48 α 2 (tan (1 2 2) - 2 2)
+ = 0

320 β 2β 24 β 2β
        

 

 
(2.20) 

  



24 
 

Equation 2.23 and Equation 2.25 illustrate that the parameter α is directly 

proportional to the PA gain as expected from the formula of the Saleh model [24]. 

However, the parameter β is function of both gain and IP3. In fact, the parameter β specifies 

the PA nonlinearity due to IM3.  

An experimental set-up using a commercial PA is implemented for data acquisition 

and verifying the estimation of the Saleh AM/AM model. A block diagram of the 

experiment is shown in Figure 2.5, which consists of the following measurement 

equipment:  the Keysight E4438C signal generator, the Tektronix RSA 6120A spectrum 

analyzer, and commercial PA (ZFL-1000LN) from Mini-Circuit.  A two-tone signal at 1 

GHz with 50 KHz spacing was generated from the signal generator and applied to the PA 

input port. The AM/AM measurements of the PA were obtained by sweeping the power of 

the two-tone signal and recording the corresponding output power from the signal analyzer. 

The PA small signal gain is calculated at – 40 dBm input power as {Gain= -17.5 - (-40) = 

22.5 dB}. The parameter IP3 is calculated using the following Equation [30]: 

                                                                    3 o
ΔP

IP = P +
2        

                                                                  (2.26) 

 where Po is the output power of the fundamental tone, ∆P is the power difference between 

the fundamental and the third-order IMD as shown in Figure 2.6. Substituting Po= -19.07 

dBm and (∆P = −19.07 + 69.7 = 50.63 dBm) in Equation 2.26 and including both the 

cable and attenuator losses, results in IP3=12.86 dBm.  

The AM/AM measurements using the swept two-tone amplitude and the 3rd-order Taylor 

model as well as the curve of the Saleh model using this method are overlaid in Figure 2.7. 

The compared results show that both the Saleh model and 3rd-order Taylor model reflect 
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accurately the results obtained from the measurements for the amplitude range (0, x1dB). 

However, the 3rd-order Taylor model decreases monotonically sharply after the saturation 

amplitude, because the Taylor coefficient c3 is a relatively high negative value compared 

to the Taylor coefficient c1.  On the other hand, the slope of the Saleh model decreases 

smoothly at a slower rate after the 1dB compression point. This is because the output 

amplitude in the Saleh model is typically attenuated slowly by the denominator (1+βx2). 

Another accuracy evaluation is calculated using the square-errors function in Equation 

2.27. A lower residual error can be observed in the Saleh model compared to the 3rd-order 

Taylor model in Figure 2.8. 

                                                             22
T

1

e ( ) ( )
K

md ms
n

y n y n


                                                     (2.27) 

 

where ymd(n) is the modeled output amplitude, yms(n) is the measured output amplitude, e  

is the total residual square errors, and K is the number of samples. 

Table (2.1) reports the modeling accuracy using the total square errors (e ) and Mean 

Square Errors (MSE) between the measured and the output amplitude of the Saleh model 

as well as the 3rd-order Taylor model [24]. 
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The accuracy results in Table (2.1) are calculated for model evaluation within the following 

amplitude ranges: (0) volt to the 1dB compression point, (0) volt to the saturation level of 

the Taylor model, and finally from (0) volt to the saturation region of the PA.  

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 
 

Figure 2.5 Measurement set-up for the PA experiment.  
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Figure 2.7 Measured and modeled AM/AM conversion for the PA. 

   
 

Figure 2.6 The measured two-tone intermodulation distortion on the output of the PA. 
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Figure 2.8 Residual errors between the PA measurements and the Saleh modeled amplitude. 

Table (2.1) Accuracy comparison of the static AM/AM conversion in the Saleh and 3rd-order 

Taylor model. 

 

Operating Amplitude Range 

Saleh Model Taylor Model 

Total Squares 
Error (V2) 

    MSE (dB) 
Total Squares 
Error (V2) 

  MSE (dB) 

(0) volt to the amplitude at 
1dB compression point 
(31mV). 

5.3757*10-4 -47.61 5.2889*10-4 -47.68 

(0) volt to the saturation of the 
Taylor model (52mV). 

0.0022 -43.77 0.0031 -42.26 

(0) volt to the saturation level 
of the power amplifier 
(120mV). 

0.112 -26.46 39.05 -1.07 
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2.2.2.2  Saleh Estimation Using 1dB Compression 
 

The IP3 is used to describe the IMDs contributed by the third-order nonlinear 

harmonics, which are major effects on the PA linearity. The 1dB compression point is 

another important parameter for quantifying the higher order IMDs of the static AM/AM 

nonlinearity in PAs [25]. Hence, a model estimation using both IP3 and P1dB is presented 

in this section for accuracy improvement in the Saleh AM/AM model 

zs(r)= ε r (1+μ r2⁄ ) [25]. The 5th-order Taylor model is used in this derivation to quantify 

the dominant nonlinear effects. 

 
 

 

where r and zT are the envelopes of the PA input and output signals, respectively.  (c1, c3, 

c5) are Taylor coefficients. The coefficients c1 and c3 are calculated from Equation 2.12 

and Equation 2.13, respectively. The coefficient (c5) is calculated approximately using the 

gain compression curve [34]   

                                                            4 25 3
1dB 1dB

1 1

c c5 3
r + r + 0.109 = 0

8 c 4 c

   
   
   

                                       (2.29) 

 
where c1, c3, and c5 are Taylor coefficients, r1dB is the input amplitude at the 1dB 

compression point. r1dB is related to the power level using 

                                                                 
1dBp

2 10
1dBr = 2R ×10

 
 
                                                                   (2.30) 

 

where R is the PA input resistant and P1dB is the input power in dBw unit at the 1dB 

compression point [25]. 

For the sake of simplicity, Equation (2.29) can be re-expressed   

                                  
3 5

T 1 3 5z = c  r+c  r +c  r              (2.28) 
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                                                             3 1
5 2 4

1dB 1dB

-6 c 0 .174 c
c = -

5 r r
                                                             (2.31) 

Substituting c1,  r1dB
2 , and c3 in terms of Equation 2.12, Equation 2.13, and Equation 2.30, 

results in 

                                            
1dB 3 1dB-P -IP G - 4 P3G

+ +
20 10 10 20

5c = 0.4×10 - 0.043×10
   
   
                                    (2.32)       

 

The objective error function between the 5th-order Taylor model and the Saleh model is 

expressed mathematically in the amplitude range (0 , r1dB) as follows: 

                                           1 3 5

2
T s

(c c c )

1dB

Minimizing [(z (r) - z (r)) ]

r :  0 r r

, ,w.r.t 




    

                                                   (2.33) 

 In Equation 2.33, we assume that the selected amplitude range represents the back-

off operating region in PAs. In fact, the 1dB compression point is a design target 

specification in the RF applications of wireless communication. Substituting the Saleh and 

Taylor models’ formulas into Equation 2.33, results in the following error objective 

functions [25]: 

                                

r  (0 , )

2

2 3 5
1 3 5 2

1 8μ

ε r
e (r) = (c  r +c  r +c  r ) -

1+μ r


 
  
 

                                  (2.34) 

                                      

1 8μ 2

2 3 5
T 1 3 5 2

0

ε  r
e = c  r +c  r +c  r - dr

1+μ r

 
  
 

                                                  (2.35) 

 

The integral operation in Equation 2.35 is mathematically complicated. Thus, we used 

MATLAB software to calculate this integral, as follows: 
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2 2 2 2 2
T 5 3 5 3 1 5 5 1 3

4 2 2 2 2 2
1 3 5 1

2
5 3 5 3 1

e = {(315 2c + 6160 2c c + 31680 2 (c + 2c c )μ - 227082240 2μ (c + (c μ -c ))ε -

        50462720 2μ ε +709632 2μ (c c μ -c ε) + 4730880 2μ (c μ +         

       2(c -c μ)ε) + 227082240μ ε(4c +μ(-4c +μ(4c +ε)))
 

 

-1 11 2
        
       tan (1 2 2)) / (454164480 μ )}                                                                                         2.36( ) ( ) 

 

 

The minimum square errors of Equation 2.36 occur when the gradient with respect to the 

Taylor coefficients approaches zero [25], as described in the following expression: 

                                           

2 2 2
2 T T T
T

1 3 5

e e e
e = , , = (0, 0,0)

c c c
( )

   
      

                                         (2.37) 

 

The following three equations are obtained from calculating the gradient expression [25]: 
 

          

2 2 2
5 3 1

-1 5

(630 2c + 6160 2 c  μ + 63360 2 c  μ - 218330112 2 ε μ +908328960 ε μ  

 tan (1 2 2)) / (454164480 μ μ) = 0
    (2.38) 

 

   

2 3 4 4 4
5 3 1

-1 5

(63360 2c  μ +709632 2 c  μ +9461760 2 c  μ -227082240 2 ε μ +908328960 ε μ    

  tan (1 2 2)) / (454164480 μ μ) = 0                                 
   (2.39) 

 

         

2 3 3 3
5 3 1

-1 5

(6160 2c  μ+63360 2 c  μ +709632 2 c  μ +217620480 2 ε μ -908328960 ε μ   
 
  tan (1 2 2)) / (454164480 μ μ) = 0

    (2.40) 

 

By solving Equations 2.38 to 2.40 for (c1, c3, and c5) in MATLAB, we obtain the 

following relationships: 

                              
-1

1c = 93093 -193698.75 2 tan (1 2 2) 0.99 ε                                          (2.41) 
 

                             
-1

3c = -3432912 ε μ +7142940 2 ε μ tan (1 2 2) -0.99 ε μ                          (2.42) 

 

                           
2 2 -1 2

5c = 24550310.4 ε μ 51082416 2 ε μ  tan (1 2 2) 0.82 ε μ                     (2.43) 
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We use a linear transformation on the Equations (2.41) - (2.43) to simplify these Equations 

and solve them using the least-squares method. In addition, a logarithmic transformation 

is used to form the following matrix equation [25]: 

                                                  

 
 
 

1

3

5

log 1.01c1 0 log(ε)

=1 1 log -1.01c

1 2 log(μ) log 1.21c

    
    
    
         

                                       (2.44) 

 

Substituting Equations (2.12) - (2.13) into equation 2.44, results in 

 

      

3 1dB 1dB

3

-IP -P -P3G G
+ + +

20 10 10 20 5

G1 0 log(ε) + 0.004
20

-IP 3G
=1 1 + - 0.17

10 20

1 2 log(μ) log 0.48×10 -  0.048×10{ }

   
   
   

                                                 

         (2.45) 

 
 
A matrix representation of Equation 2.45 is  
 
                                                                              KS = C                                                                  (2.46) 
 

The (2x1) column vector S is a logarithmic operation of the Saleh coefficients, the 

column vector C consists of (3x1) parameters of the PA: gain, IP3, and P1dB. K is a constants 

matrix of (3x2) elements. Using linear algebra on Equation 2.46 to separate the matrices, 

results in: 

 

                                                                     
T -1 TS = (K K) K C                                                   (2.47) 

 
By calculating the matrix pseudo-inverse on K and re-arranging the matrix as in Equation 

2.47, we obtain the following:  
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3 1dB 1dB

T

3

- IP -P - P3G G
+ + +

20 10 10 20 5

G5 6 -1 2log(ε) + 0.004
20

-IP 3G
= 1 3 0 + - 0.17

10 20

-1 6 1 2log(μ) log 0.48×10 -  0.048×10{ }

   
   
   

                                         

                (2.48) 

 
 

Finally, Equation 2.48 is simplified as shown below to obtain a vector of the Saleh 

coefficients as a function of G, IP3 and P1dB [25].  

 

 
  (2.49) 

                     
 
 
 
 

 
 

The experimental measurement shown in Figure 2.9 is used to estimate the Saleh 

AM/AM model based on GaAs power amplifier ZFL-1000LN. The measured gain, third-

order intercept, and 1dB compression point of the PA are G=22.45 dB, IP3=12.81 dBm, 

and output P1dB=2.25 dBm.  The parameter IP3 is measured using a two-tone test as 

described earlier in section 2.2.2.1. Gain and the 1dB compression point are both measured 

using a swept two-tone power on the input of PA as illustrated in Figure 2.10. Both the 5th-

order Taylor model and Saleh model are calculated from the presented model equations 

using G, IP3, and P1dB of the PAs. Figure 2.11 illustrates the AM/AM measured results of 

the two-tone test as well as the 5th-order Taylor and Saleh model results of the PA in time 

domain. The results obtained exhibit significant model improvement in both the linear 

3 3 1dB 1dB

3 1dB 1dB

-1
- IP - IP - P - P11G - 4 3G G 6+ + + +

120 75 30 20 10 10 20 5

- IP - P -P3G GG + 0.008
+ + +

20 10 10 20 540

ε 

10 0 .48 × 10 - 0 .048 × 10

=

10 0 .48 × 10 - 0 .048 × 10
μ

     
     

     

       
    

   
   
       
 
 
 
 
 
 

1

2
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region and near the compression region. The model evaluation in the frequency domain is 

illustrated in Figure 2.12 for both the PA measurement and spectrum estimation using the 

Saleh model. The Saleh model predicted the Power Spectral Density (PSD) well for both 

the in-band and spectrum regrowth regions. The model assessment using both the 

Normalized Mean Square Errors (NMSE) and Adjacent Channel Error Power Ratio 

(ACEPR) is calculated and presented in Table (2.2) for two different estimation 

approaches: gain and IP3 in one scenario, and gain, IP3, and the 1dB compression point in 

the second scenario [25].  

 
  
 

 
 

  PS2520G   
Power Supply 

 

 
 
 
 
Figure 2.9   An experiment structure used for model evaluation of the PA.  

RSA 6120A 
Signal Analyzer 
 

ZFL-1000LN 
Power Amplifier 

E4438C 
Signal Generator 
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Figure 2.10 Measured gain compression curve for the PA. 

 
 
Figure 2.11 AM/AM measured and Saleh estimation using 1dB compression of the PA. 
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Figures 2.13 and 2.14 depict significant relationships between the Saleh 

coefficients and PA specification parameters, IP3 and P1dB. These figures were obtained by 

sweeping the values of IP3 and P1dB and calculating the Saleh parameters ε and μ. A steady 

slope and increasing rate with respect to IP3 and P1dB are shown in these figures. In addition, 

the variation of the Saleh parameter μ exhibits a sharp slope with high sensitivity to the 

 
 
Figure 2.12   Power spectrum density of WCDMA signal of the PA measurement and modeled 

output signals.    

Table (2.2) Assessment comparison between two different proposed estimation 

approaches of the Saleh model. 

Estimation 
Approach 

Model 
Parameters 

     NMSE (dB) 
 

  ACEPR (dB) 

       Scenario (1)   G, IP3 -34.32 -42.52 

         Scenario (2) G, IP3, P1dB -35.85 -43.31 
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variation of the parameters IP3 and P1dB. This is because the parameter μ controls the 

nonlinear characteristics of the Saleh behavioral model [25]. 

 

 
 

 

 
 
 
Figure 2.14 2D-mesh illustrating the variation of the Saleh parameter μ versus IP3 and P1dB.     

 
 

Figure 2.13 2D-mesh representation of the Saleh parameter ε versus IP3 and P1dB.       
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2.2.2.3 Proposed Enhanced Saleh Model 
 

The Saleh behavioral model was originally derived for Traveling Wave Tube Power 

Amplifiers (TWT-PAs). Due to the ongoing developments in the semiconductor industry, 

Solid-State Power Amplifiers (SSPAs) have become more popular devices in wireless 

communications. A new model enhancement is included to the Saleh AM/AM function for 

the applications of SSPAs. In particular, this enhancement is developed to improve the 

smoothness of the Saleh model near the saturation region. The new enhanced model 

consists of a 3-parameter rational function. The Saleh AM/AM model is expressed using 

the following notation:  

                                                           2

α u(t)
F[u(t)] =

1+ ( β u(t))
                                                                   (2.50) 

 
 

where u(t) is the envelope of the PA input baseband signal. The Saleh model is an odd 

function {F[-u(t)] = -F[u(t)]}. The polynomial expansion of Equation 2.50 is 

                                                
k k (2k+1)

k=0

F[u(t)] = (-1)  α  β  u (t)


                                                       (2.51) 

 

where k is an integer number {k = 0, 1, 2, 3, …. ∞}. 
 

                                                  
3 2 5F[u(t)] = α u(t) -α β u (t) +α β  u (t) +........                                        (2.52) 

 

The polynomial expansion in Equation 2.52 consists of the nonlinear coefficients {α, α β, 

… , α βk}. These coefficients are statistically magnitude dependent. On the other hand, the 

Taylor polynomial model consists of linearly independent variables as in Equation 2.53, 

which exhibits a higher degree of freedom in the model parameters fitting.  

                                                        
3 5

1 3 5T[u(t)] = c u(t)+ c u (t)+c  u (t)+........                                      (2.53) 
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The Taylor coefficients {c1, c3, …, cn} are linear and often used independently in model 

estimation. In fact, the coefficients of the Taylor model exhibit device-related physical 

meaning, because each coefficient quantifies a specific order of IMD. In addition, the 

higher order IMDs affect the lower order IMDs in PAs, for example fifth-order 

intermodulation distortion (IM5) affects the IM3 [1], and the model coefficients are 

statistically quantified by the 1dB compression point. The model’s high nonlinear slope 

and monotonically decreasing amplitude are the two weaknesses in the Saleh function for 

modeling SSPAs. This is because both the gain and saturation level are almost constants in 

SSPAs and they are specified by the supply voltage on the drain/collector of the PA. Hence, 

we propose a simple enhancement to overcome these limitations using the following new 

expression: 

                                                            

2

es 2

α u(t) + λ u (t)
F [u(t)] =

1+β u (t)
                                                           (2.54) 

 

where λ is a real positive number introduced here as a new parameter for controlling the 

amplitude roll-over near the saturation region. Fes[.] is the enhanced Saleh model. The 

small signal gain of the enhanced Saleh model is equal to the linear gain (α) as illustrated 

in this derivation: 

                                                                         
es

u 0

(F [u])
lim  

(u)





                                                                (2.55) 

 

The new parameter λ forces Equation 2.54 to be non-monotonic and causes the model to 

become an asymptotically increasing function near saturation (the saturation level is 

approximated by λ ⁄ β) for a large signal magnitude. In addition, the polynomial expansion 
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of Equation 2.54 becomes a mixture of even and odd nonlinear IMD as illustrated below 

                                                  
k k (2k) 2

es
k=0

F [u(t)] = (-1)  β  u (t) α u(t) λ u (t){ }


                                               (2.56) 

 

                                         

2 3 4

2 5 2 6 3 7

F [u(t)] = α u(t) +λ u (t) -α β u (t) -λ β u (t) +

                 α β u (t) +λ β  u (t) -α β u (t) +........

es


                                      (2.57) 

 

The second order intermodulation distortion (IM2) is quantified by the parameter λ, and 

the higher even order terms are quantified by the nonlinear coefficients {λ, λ β, … , λ βk}. 

The proposed extension improves the model accuracy significantly [6], [7], and accounts 

for most the nonlinearity for AM/AM conversion of the PA. The enhanced Saleh model is 

numerically very stable compared to the truncated Taylor model of a high nonlinear order, 

because Equation 2.54 converges asymptotically to a constant value 𝜆 𝛽⁄ . 

A two-tone experiment was implemented on SSPA GaAs from Mini-Circuit (ZFL-

1000LN). A 100 discrete data points of the AM/AM conversion were acquired for the input 

and output amplitude measurements of the PA at 1 GHz center frequency.  

The parameters of the enhanced Saleh model are calculated using a least-squares method, 

which is derived by substituting z(t)=Fes [u(t)] in Equation 2.54 and re-arranging the 

parameters as follows: 

                                                           
2 2z(t) = α u(t)+λ u (t) z(t) β u (t)                                                     (2.58) 

 
where z(t) is the envelope of the PA baseband output signal. A matrix equation is 

formulated from the measured amplitude samples of u(t) and z(t) as illustrated below: 
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2 2

2 2

2 2

z(0) α-z(0) u (0) u (0)u(0)

u(1) -z(1) u (1) u (1)z(1) β=

λu(n) -z(n) u (n) u (n)z(n)

    
    
    
    
    
        

  
                                         (2.59) 

 
A matrix notation is used in expressing Equation 2.59 as  

 

                                                                             z = Uc                                                                                 (2.60) 
                    

where z is a column vector of ((n+1)×1) elements, c is a column vector of the model 

parameters (3×1), and U is a matrix consisting of ((n+1)×3) elements of the input and 

output samples. Finally, a vector of a model coefficients is calculated using a least-squares  

 

                                                                                 
T -1 Tc =(U U) U z                                                                  (2.61) 

 

where (.)T denotes the operator of a matrix transposition. The calculated results of both the 

Saleh and enhanced Saleh AM/AM conversions are shown in Figure 2.15. The enhanced 

Saleh model shows an accuracy improvement in the back-off and saturation regions. The 

residual square-errors between the AM/AM measurements and the model conversions are 

overlaid on the same figure over a wide range of the input amplitude. The obtained model 

enhancement in NMSE is depicted in Table (2.3). 

 

Table (2.3) The model assessment comparison between the Saleh and the enhanced Saleh 

model. 

 

Model 
Number of 
Coefficients 

Intermodulation  
Distortion 

NMSE (dB) 

Saleh  2          odd terms -28.32 

Enhanced Saleh 3     odd and even terms -31.85 
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2.2.3 Other Static Models 

 

Most published behavioral models of SSPAs exhibit limitations in characterizing 

the AM/AM nonlinearity near the saturation region. In fact, the roll-over from a linear to a 

saturation region (i.e model sharpness) is the main limitation in most behavioral models. 

For example, Rapp and Gharbani behavioral models are popular proposed models in the 

literature of SSPAs using different nonlinear functions. However, these models consist of 

complicated mathematical rational functions. This often leads to computation complexity 

in parameter calculations, such as using an iterative estimation method. In addition, these 

models are inappropriate for modeling digital predistortions in linearizing PAs. 

Polynomial-based behavioral models allow a flexible approach in parameter estimations 

and controlling the model accuracy. However, polynomial models are subject to challenges 

of under-fitting and over-fitting estimation.  

 
 

Figure 2.15 Measured and modeled AM/AM results of the PA, in addition to the residual errors of 

both Saleh and the enhanced Saleh model. 
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2.3 Static Amplitude-to-Phase Distortion 

The AM/PM distortion in PAs is a result of the nonlinear variation in time delay 

(i.e phase shift) between the PA input and output signals in terms of signal input amplitude. 

The physical origin of the AM/PM distortion is the nonlinear variation of the gate-source 

capacitance in terms of the input amplitude and drain-source capacitance in terms of the 

drain voltage magnitude. Theoretically, the AM/PM conversion is calculated 

mathematically from the in-phase and quadrature-phase components of input and output 

complex baseband signals as follows: 

 

 

where BBx (t) and BBz (t)  are the complex baseband input and output signals of the PA, 

respectively, and θ(t) is the AM/PM conversion. The static AM/AM and AM/PM 

conversions are shown in Figure 2.16. Gain compression and phase expansion at high input 

amplitude are two common nonlinear behaviors in PAs. 

 

 2.4 Quasi-Static Modeling Technique 
 

PAs are analog devices, which normally operate in RF bandpass signals (carrier up-

converted time continuous signals). A system level in a digital baseband is the most often-

used PA empirical modeling [30]-[31]. A quasi-static modeling approach is a widely used 

to characterize both the static AM/AM and static AM/PM conversions for short-term 

memory nonlinear systems. Hence, quasi-static modeling approaches are adequate for 

              
 
 

 
 

BB BB-1 -1

BB BB

z (t) x (t)
θ(t) = tan - tan

z (t) x (t)

    
          

 (2.62) 
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narrow-band wireless communications, and other applications where the long-term 

memory effect exhibits lower impact on the signal distortion.  

Quasi-static modeling approaches for PAs and DPDs are typically calculated using 

a least-squares method on a complex baseband input and output signals. The baseband 

empirical models can be converted to RF bandpass models by using carrier up-conversion. 

Carrier up-conversion is a complex multiplication, which exhibits no impact on the 

AM/AM and AM/PM nonlinear functions. Similarly, carrier down-conversion is another 

complex multiplication, which is independent of the applied modeling technique in RF 

power representation of communication signals. 

  This section describes a common computation of a quasi-static model using the first 

kernel of the Volterra series, and the conversion between the baseband and bandpass 

representation.  

   

 
 

Figure 2.16 Typical static AM/AM and AM/PM conversions in PAs. 
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 cjω t
RF BBx (t) = x (t)e  (2.63) 

 

 where xRF(t) is the PA bandpass input signal, xBB(t) is a complex baseband input signal, and 

ωc is a carrier frequency for up-conversion. The operator ℜ{} refers to the real part of a 

complex term. Substituting the magnitude and phase of xBB(t) in Equation 2.63, results in:  

 

 (2.64) 

 

  

where      2 2

BB BB BBx (t) = x (t) + x (t)  , and 
 
 

BB-1
BB

BB

x (t)
x (t) = tan

x (t)

    
  

               

 
The PA bandpass output signal yRF(t) is calculated using a simplified Volterra series in 

xRF(t)  

 c c
k-1jω t jω t

RF k BB BB
k=1

y (t) = C x (t)e x (t)e
   

  
  (2.66) 

 
where Ck denotes the complex coefficients of the Volterra series. Substituting a polar 

representation on xBB(t) using magnitude and phase notation in Equation 2.66, results in 

the following: 

c BB
k-1 j(ω t+ x (t))

RF k BB BB
k=1

y (t) = C x (t) x (t) e



   
  
  (2.67) 

 

 c BB B Bj(ω t + x (t) + ( x ))
R F BBy (t) = ( x )e  gf  (2.68) 

RF BB c BB BBy (t) = ( x )cos(ω t + x (t) + ( x ))f g  (2.69) 

          RF BB c BBx (t) = x (t) cos(ω t + x (t))  (2.65) 

 cBB jω tx (t)
RF BBx (t) = x (t) e e
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where f(.) refers to the AM/AM conversion, and g(.) refers to the AM/PM conversion. The 

f(.) and g(.) are expressed, respectively as follows: 

k-1
BB k BB BB

k=1

( x (t) ) = C x (t) x (t)f


  (2.70) 

 

 

A truncated nonlinear order can be chosen in the Volterra series instead of an 

infinite order in Equation 2.70 and Equation 2.71. The AM/AM and AM/PM nonlinear 

distortions are often represented using a signal constellation diagram of baseband input and 

output symbols. The AM/AM and AM/PM is another way of representing a complex 

signals error, which causes imbalance between the In-phase (I) and Quadrature-phase (Q) 

components of the baseband signal as shown in Figure 2.17. 

k-1
k BB BB

k=1-1
BB

k-1
k BB BB

k=1

C x (t) x (t)

( x (t) ) = tan

C x (t) x (t)

g





     
    
 

     
    




 (2.71) 

 
 
Figure 2.17 Impact of AM/AM and AM/PM distortions on baseband symbol’s magnitude and 

phase. 
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2.5. Dynamic AM/AM and AM/PM Distortion 
  
  Memory effects (i.e. time-delays) in RF PAs represent the variation of the nonlinear 

gain due to the frequencies of the PA input signal, the supply voltage, and chip temperature. 

Thus, PAs exhibit dispersion behavior in both AM/AM and AM/PM conversions (i.e. 

dynamic effect in the AM/AM and AM/PM conversions). Most of the memory effect is a 

result of many energy storage elements in the PA circuit, such as capacitors and inductors 

as simplified in Figures 2.18, 2.19.  Hysteresis effects are normally classified according to 

the physical origin into electrical memory and thermal memory effects [1], [36]. RF 

matching and DC circuit biasing are two major causes of electrical memory. The thermal 

memory effect is a result of the dynamic variation in the IC chip temperature of PAs.  

 Memory effects of short-time constants cause static AM/PM distortions. On the 

other hand, the memory effects of long-time constants cause dispersion effects in both the  

 
 

Figure 2.18 Simplified circuit illustrates the main memory components in PAs.  
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AM/AM and AM/PM distortions as shown in Figure 2.20. Therefore, the static 

AM/AM and static AM/PM conversions are one-to-one functions, and the dynamic 

AM/AM and AM/PM conversions are two-to-one functions due the effect of the memory 

distortion. The dynamic AM/AM conversion represents the combined impact of the static 

nonlinearity and memory effect as described by Equation 2.72. Similarly, the dynamic 

AM/PM conversion is described by Equation 2.73. 

                                                     out inv (t) = A v (t),Δt                                             (2.72) 

                                                      inψ(t) = θ v (t), t                                              (2.73) 

 
where vin(t) is the PA input amplitude, ∆t is the delay variation due to the memory effect, 

A(.) is the AM/AM function, and outv (t)  is the PA output amplitude. ψ(t) is the dynamic 

output phase, and θ(.) is the AM/PM function. 

   The effects of nonlinear dispersion represented by Equations 2.72 and 2.73 cause 

uncertainty and difficulty in predicting the PA output response. In other words, the PA 

output deviates from the static AM/AM and static AM/PM conversions as illustrated in 

Figure 2.20. This figure shows that the maximum nonlinear spread corresponds to the lower 

input amplitude. The memory effect can contribute to the spectral regrowth in the 

frequency domain, but it is very minor, especially in narrow-band wireless 

communications.  
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Figure 2.19 Modeling characteristics of memory effects in PAs. 
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(a) 

 
 

 

 
(b) 

 
 
Figure 2.20 Dispersion effects in AM/AM and AM/PM conversions due to memory effects. (a) 

Dynamic AM/AM conversion. (b) Dynamic AM/PM conversion. 



51 
 

Chapter 3 
 

Envelope Tracking System  
 
 

3.1 Introduction 
 

Controlling the power efficiency in PAs is a challenging task, because power 

efficiency is subject to the design aspects of PAs and applications (e.g. power efficiency 

degradation when operating the PAs on high PAPR signals). In general, the concept of 

enhancing power efficiency depends on minimizing the DC-supply power in PAs 

according to Equation 1.1. In other words, power efficiency enhancement techniques are 

developed to reduce the power losses in the PA circuit [8]. Several design approaches were 

presented in the literature for power efficiency enhancement. Examples of popular 

architectures include Doherty power amplifiers, envelope elimination and restoration 

amplifiers, and out-phasing power amplifiers [3]. Some of these techniques are 

complicated, and other techniques suffer from limitations in signal bandwidth, RF 

mismatch challenges, and high nonlinear distortion [12]-[14].  

 ET techniques gained significant interest in the recent research because of 

important advantages they perform to control the trade-off between the power efficiency 

and linearity, as well as the design flexibility in a multi-band wireless communication 

system. The implementation approach of ET is adopted in modern wireless cellular (e.g. 

Apple and Samsung electronics have used ET ICs in modern cellular handsets [37]). 

Various design improvements have been included recently to operate and linearize PAs in 

high bandwidth wireless communications and high PAPR signals for future wireless 

generations [10], [28].  
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The ET systems and digital predistortion are implemented using a combination of 

analog circuits and DSP systems. In this work, we use an ET experimental set-up consists 

of measurement equipment for evaluating both the modeling and linearization approaches. 

The typical ET PA structure, component functionality, and limitation challenges of each 

component are described in the next sections. 

   

3.2  Envelope Tracking Architecture 
 

The DC-supply voltage must be maintained close to or higher than the maximum 

required amplitude to avoid signal clipping near the saturation amplitude in normal 

operation of fixed-biased PAs. Hence, an ET system is an additional component for 

controlling the supply voltage in PAs. The supply voltage in the ET case varies dynamically 

along with the PA input amplitude.  In other words, the primary concept in an ET system 

is to operate the PA at high efficiency by driving the operating region near the compression 

region, because the power efficiency is maximum in the compression region as presented 

in Chapter 1 [8], [38], [39].  

An average ET system is another modified approach of the ET, which performs 

discrete-level ET instead of continuous tracking for wideband applications [17]. The ET 

system architecture consists of the following three main components: envelope detector, 

shaping function, and envelope modulator, as shown in Figure 3.1. 
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3.2.1 Envelope Detector 

 
Envelope detectors are simple mathematical operations to which perform the 

following signal computation on the PA baseband input as:  

2 2Env(t) = I(t) +Q(t)  (3.1) 

 
where Env(t) is the envelope signal magnitude, I(t) and Q(t) are the in-phase and 

quadrature-phase components of the PA input baseband signal. 

 
3.2.2 Envelope Shaping Model 
 

The shaping model is a mapping function between the instantaneous envelope 

amplitude and the required supply voltage to the PA drain/collector. The shaping function 

is the key element in ET system, and it controls the PA characteristics, such as power 

efficiency and linearity. Shaping functions have been recently deployed as an alternative 

 
 
 
Figure 3.1 Power loss reduction in the envelope tracking voltage supply compared to 

constant-supply voltage case. 

 

 
 
 
Figure 3.1 ET system architecture for power efficiency enhancement. 
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approach for linearizing the AM/AM characteristics of the ET PA [40]-[41]; however, 

shaping function-based linearization often leads to degradation in power efficiency, 

because of the existing trade-off between the power efficiency and linearity. Shaping 

functions are often combined with a hardware envelope modulator (e.g. Nujira ET 

commercial modulator) [8].  

Discrete-level and slew-rate shaping functions have been utilized for dual-band and 

multiband wireless communication. Iso-gain shaping functions have been developed for 

linearity enhancement in PAs [40]-[42], and detroughing shaping functions are empirical 

models for high-power efficiency as described in Chapter 4.  The detroughing is an 

exponential function consisting of two parameters, one parameter for setting the PA 

minimum supply voltage to avoid gain collapse, and the second parameter to set the 

maximum required supply voltage to the collector/drain [43].  

A linear mapping between the envelope amplitude and supply voltage is another 

simple model in the implementation of ET systems. However, a problem of gain collapse 

often occurs at a low input amplitude [21]. Figure 3.2 illustrates different detroughing and 

linear shaping functions. Figure 3.3 shows an example of the supply voltage required for a 

PA using linear and detroughing shaping function scenarios. The detroughing shaping 

functions maintain a minimum of 1 volt on the PA drain/collector at lower input 

amplitudes, whereas the linear shaping drops near zero volts for a low input signal [43]. 

This research deploys a detroughing shaping function in software to achieve high power 

efficiency in the PA.  
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Figure 3.2 Linear and detroughing supply shaping functions using different shaping ratios. 

 
 

Figure 3.3 Dynamic Power supply voltage using two different shaping functions, detroughing 

and linear in the envelope tracking system.  
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3.2.3 Envelope Modulator 
 
 Envelope Modulator (EM) is an analog circuit device that is deployed to supply 

dynamic current to the PA transistor drain/collector. The EM is used to adjust the flow of 

the DC-supply current with respect to the amplitude of the shaped envelope voltage. The 

EM devices can be more complicated in high bandwidth and power applications, therefore, 

several state-of-the-art implementation techniques of EM have been proposed in the 

literature, such as DC/DC converters, hybrid envelope amplifiers, and envelope amplifiers.  

The power efficiency of EM can affect the overall power efficiency of an ET PA. 

The overall power efficiency degrades when using low power efficiency EM devices. In 

addition, the linearity of ET systems can also be affected by the modulator distortion effects 

[17]. The high PAPR and bandwidth limitation in wireless signals are other design 

challenges in EM, because the envelope signals are normally several times higher in 

bandwidth than the baseband signal as demonstrated in the ET PA literature [42].  

 

3.3 Power Efficiency Enhancement 

Maximum power efficiency occurs near the compression region in constant-supply 

PAs [44]. Furthermore, the AM/AM conversion and compression region are affected by 

the variable-supply voltage scenario [19]. Therefore, the power efficiency is expressed as 

a function of the output amplitude and the supply voltage as depicted in Equation 3.2.  

The supply voltage in the ET case is controlled by the envelope shaping function 

and the power efficiency function changes with respect to the supply variable and the PA 

input amplitude, as shown in Figure 3.4. The maximum power efficiency is obtained for a 

certain value of the output power and the supply voltage. In other words, the efficiency 
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must be optimized over two independent variables: PA output voltage (vo) and the supply 

voltage (vs). 

( )f o, sη= E v v  (3.2) 

The power efficiency is a statistically non-deterministic function, because it 

depends on the output power, which is a random in communication signals as depicted in 

Equation 1.4. Thus, the maximum power efficiency can be derived analytically as follows: 

1) Sweeping a tow-tone amplitude on the PA input for a specific DC supply. 

2) Calculating the PA efficiency at each input amplitude. 

3) Changing the DC supply voltage on the PA drain/collector. 

4) Repeating step 1 and 2 for each supply voltage point. 

5) Interpolating the results in step 4 to obtain the power efficiency versus the output 

power for each supply voltage (see Figure 3.4). 

6) Specifying the optimal power efficiency with respect to the output power on each 

curve. 

7) Interpolating the results in step 6 to obtain mapping between the output power and 

the required supply voltage for a maximum power efficiency.  

The above approach normally results in an arbitrary function; therefore, the 

implementation using a look-up-table shaping function is a popular design structure in the 

ET system. The required dc-supply voltage is 4.5 V (black solid line in Figure 3.4) for a 

PA output peak power 25 dBm. This shows poor power efficiency corresponds to the low 

signal output power (less than 10 dBm), whereas in the ET case (dash and black line), the 

power efficiency is around 15% higher for a certain output power range.  
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  The detroughing shaping function is another alternative approach for achieving 

high power efficiency using empirical functions instead of LUTs. Detroughing shaping is 

straightforward method, which requires adjustment of the detroughing ratio according to 

the specific PA knee voltage (Vmin) and the maximum supply voltage (Vmax) for the desired 

PA output power. 

  

 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.4 Power efficiencies at different supply voltages.  
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Chapter 4 
 

Modeling Techniques for Envelope Tracking Power Amplifiers 
 
 
 

4.1 Introduction 
 

An accurate modeling of PA is required for predicting the nonlinear distortion 

effects in communication systems. PA models are used extensively to predict spectral 

distortion emissions due to nonlinear distortion. In particular, spectral emissions in wireless 

communications must comply with the telecommunication standards, such as lower 

channel interference in the adjacent channels [35]. Circuit model approaches for ET PA 

are complicated due to the complexity of ET operation. In addition to the computational 

complexity, a detailed design aspect of the circuit structure must be known before 

conducting any circuit analysis method.  

Empirical and behavioral models are other low-complexity techniques, which are 

often deployed to estimate the nonlinear distortion effects in PAs. Behavioral models are 

basically mathematical functions, which express the statistical relationship between the PA 

output signal and both the input signal and variable supply voltage [1]. Behavioral models 

are often called black-boxes with input and output ports as shown in Figure 4.1. The main 

advantages of the behavioral models include a low computational-complexity, without a 

prior knowledge of the PA circuit topology or design. Finally, behavioral models can 

simplify the PA linearization models in the areas of DPDs. 

     Behavioral models are classified according to memory effects into statics, quasi-

statics, and dynamics. Static models refer to only memoryless AM/AM conversions. The 

quasi-static models refer to modeling both memoryless AM/AM and AM/PM conversions. 
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Finally, the dynamic models consider both the memory AM/AM and memory AM/PM 

conversions. This dissertation uses the dynamic behavioral approach for better accuracy in 

modeling the ET PA. 

 

 
 
4.2 Literature Reviews on Modeling ET PAs 
 

The internal circuit structure of the PAs is very complicated, because it consists of 

many linear and nonlinear discrete elements. In addition, the circuit parasitic effect and 

transistors’ junctions pose additional challenges when operating PA under specific signals. 

As we discussed in the previous chapters, the amount of nonlinearity and memory 

effects in PAs are device and signal dependent. For example, signal bandwidth and PAPR 

have significant effects on both the circuit capacitance and inductance. Therefore, several 

different behavioral techniques have been presented in literature to address the distortion 

effects in PAs [45].  

Behavioral models based on polynomial and binomial series are the most widely 

presented and studied kernels in the modeling literature, including the Taylor series, 

binomial series, Volterra series, and other modified special cases of Volterra models. These 

 
 
 
Figure 4.1 Black-box representation for behavioral modeling of ET PAs. 
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models provide high flexibility in selecting nonlinear orders for the model optimal 

accuracy. Other PA models are calculated using a specific mathematical formula, such as 

the Cann model, the Saleh model, and the Ghorbani model. These models require fewer 

parameters when compared to the typical series expansion; however, the models’ 

accuracies are limited for a specific PA due a fixed number of coefficients and function 

structures.  

Artificial neural networks and Bayesian estimation are also presented in the 

modeling literature concerning PAs [46]. However, these models exhibit high computation 

and number of coefficients similar to the Volterra and polynomial series.  In fact, memory 

polynomial series exhibit lower computational-complexity than the neural networks. 

Furthermore, polynomial coefficients can be calculated easily using a least-squares 

method, and can be built easily in a DSP using blocks of product and summation functions. 

On the other hand, neural networks require several nonlinear functions (e.g. sigmoid 

decision) in addition to many blocks of products and summation operations.  

Most of the presented behavioral models in the literature are implemented in a time 

domain using PA measurement or simulation data. However, the recent X-parameters 

technique was proposed by Agilent technologies to model the PA circuit in a frequency 

domain [47]. The X-parameters are super-set equations of S-parameters which are widely 

used in RF circuit design for PA input and output matching.  

An overview of the state-of-the-art ET PA models’ structure and computational 

cost are presented in the next sections. 
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4.3 Dual-Input Behavioral Models 

The supply voltage exhibits significant effects on the PA characteristics, including 

gain and saturation amplitude. In addition, the variable supply voltage on the 

drain/collector can affect both the linearity and efficiency of the PAs as described earlier 

in Chapter 3.  

Figure 4.2 illustrates 2D-plot variation of the PA output amplitude versus both the 

magnitude of the input signal using two-tone signal and variable supply voltage. In other 

words, the ET technique is a special case of a stand-alone PA with a variable supply. For 

that reason, two types of behavioral models are proposed in ET PA modeling literature: 

SISO and DISO. The SISO model structure characterizes the nonlinear distortion in both 

AM/AM and AM/PM conversions as a function of one independent variable, the input 

signal.  

The DISO models characterize the nonlinear distortion in both AM/AM and 

AM/PM conversions as functions of two independent variables: input signal and supply 

voltage [8], [21], [22]. A simple architecture of ET PA in Figure 4.3 illustrates two 

reference planes describing the modeling difference between SISO and DISO architectures. 

The effect of the dynamic supply voltage on the PA nonlinearity has been widely 

discussed and investigated in the ET PA modeling literature [19], [29]. The DISO modeling 

approaches have become very popular and accurate modeling techniques account for a 

time-varying envelope signal, especially in a slew-rate ET scenario using a modified 

envelope waveform. Therefore, a DISO modeling approach is adopted in this research for 

modeling the ET PAs. The accuracy and complexity trade-off between the DISO and SISO 
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models are important properties for designing an efficient DPD technique for linearizing 

ET PAs.   

 

 

 

 

 

 

 

 

 
 
Figure 4.2 PA output voltages versus the swept amplitude of the input and supply voltages. The 

black curve represents the output voltage of ET case. 
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4.3.1 Two-Dimensional Look-up-Tables  
 
Look-up-Tables (LUTs) are extensively used in signal theory for approximating 

any arbitrary function. LUT technique is used to map data between input and output pairs 

[39], [48]. Two independent LUTs are required for quasi-static modeling: one LUT for 

static AM/AM and another LUT for static AM/PM. LUTs are typically implemented 

independently in software/hardware circuits. Although LUTs are considered simple 

modeling approaches, it is difficult to use LUTs for modeling and memory behavior effects 

in ET PA.  

 The 2D-LUT modeling approach was recently proposed for modeling the ET PA. 

In this approach, the PA’s gain and phase are modeled independently, such that the output 

signal is a function of both the input and supply voltage. In fact, this technique is based on 
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Figure 4.3 DISO and SISO output reference planes for modeling the ET PA.  
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a two-directions search method (i.e. x-y plane) in estimating the PA output values [39].  

The quasi-static LUT model representation is  

                                               
{ ( )}{ } enj θ x ,v

enz= x.G x ,v e                                                                    (4.1) 

where x and z are the ET PA complex input and output signals, respectively. G(.) and θ(.) 

are the gain and phase functions, respectively, of the instantaneous input amplitude and the 

supply voltage.  

 The 2D-LUT is a computationally less expensive approach for modeling and digital 

predistortion of ET PAs. However, LUTs often use approximation of linear interpolation, 

significantly degrading the ET PAs model smoothness and accuracy.  Figure 4.4 shows an 

implementation structure of a 2D-LUT model in both AM/AM and AM/PM conversions. 

The steps of interpolation approximation in the 2D-LUT model specify the size of the LUT 

model, which might significantly reduce the modeling accuracy. Hence, a large size 

memory chip is required to store many data samples for achieving high resolution 

interpolation.  

 
 
 

Figure 4.4 The 2D-LUT modeling structure for the ET PA using a DISO approach. 
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4.3.2 Cann Model 
 
  The Cann model is an empirical function which was proposed by A. Cann in 1980. 

It is a memoryless AM/AM behavioral function for a constant-supply SSPA. The 

expression of the Cann model is 

 
RF

RF 1
s s

RF

g.x (t)
y (t) =

g.x (t)
1+

L

       

 
(4.2) 

 
where xRF(t) is the PA input amplitude, yRF(t) is the PA output amplitude, g is the small 

signal gain, L is the saturation level, and s is the model sharpness. An extension of the 

Cann model was proposed in [21], [29] for the ET PA by expressing the model parameters 

as a function of the supply voltage 

 
RF

RF 1
(v ) (v )

RF

g(v )x (t)
y (t) =

g(v )x (t)
1 +

L(v )

d d

d

s s
d

d

       

 

(4.3) 

 
where Vd is the drain/collector voltage of the PA. The parameters of the Cann model are 

typically calculated using a two-tone test by sweeping the supply voltage. Nonlinear least-

squares method can also be used for estimating the model parameters [8]. The complexity 

for parameter estimation and the difficulty of inverting the model function are two 

disadvantages of the Cann model for ET PAs. 

 
4.3.3  Binomial Model  
 

Binomial Models (BM) are power series, sum of two independent variables [21] as 

in Equation 4.4. The expansion of the binomial series represents a sum product of one 
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variable with increasing order and another variable with decreasing order as illustrated in 

the following expansion: 

n
n n-k k

k
k=0

n n n n n
n 0 n-1 1 n-2 2 1 n-1 0 n

0 1 2 n-1 n

(x + y) =  x y

             

            = x y + x y + x y +........+ x y + x y

  
 
 

         
         
         


 (4.4) 

 

where x and y are the two independent variables, n is the order of the sum terms. The 

binomial model in Equation 4.4 is a static. Therefore, a new dimension variable (m) can 

be included to model the memory behavior effect for ET PAs [21] as in: 

 
N k M

k-j j
BB k,m ven

k=0 j=0 m=0

z (n) = a  x (n - m) v (n - m)

             
           


 

(4.5) 

 
 where x and ven are the complex baseband input and envelope signals, respectively, z is 

the PA complex baseband output, ak,m are the model coefficients, N is the maximum 

nonlinear order, and M is the memory depth. Equation 4.5 can be expressed in a matrix 

form as follows: 

                                                          z = Ba                                                               (4.6) 

where z=[z(0),z(1),……..z(L)]T  is an (L+1)×1  vector representing the (L+1) samples of 

the output signal, 00 01 0M N0 NM[a ,a ,....,a ,........,a ,......,a ]a = T is a ((N+1)(M+1))×1  vector 

of the model coefficients and B is a model matrix formulated as

N 0 N 0 N-1 1 0 N
en en en en[x (n)v (n), ...., x (n - M)v (n - M),...., x (n)v (n), ...., x (n - M)v (n - M)]B =   

The BM number of coefficients are  
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       coef
(M+1)(N+1)(N+2)

N = -M
2

 (4.7) 

 
 
 

4.3.4 Volterra Model 
 

The Volterra model is a multi-dimensional polynomial series, which can model 

complicated nonlinear system with memory effects. However, the accuracy of the Volterra 

model degrades when modeling strong nonlinear memory effects, as described in the state-

of-the-art model evaluation [20]. The Volterra kernels are combinations of the Taylor series 

and multi-dimensional convolutions. Thus, the model output is a power series expansion 

of the input sample and the time delayed input samples at different nonlinear orders, as 

illustrated  
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    (4.8) 

 

where x(n) and y(n) are the input and output signals, respectively, and h1, h3, h5 are the 

coefficients of Volterra kernels. M is the model memory depth. The number of Volterra 

coefficients grows exponentially as the model’s nonlinear order and memory depth 

increases. The high correlation among Volterra coefficients is a common problem in 

Volterra series, which causes high redundancy and numerical instability in coefficients 

estimation. Thus, Volterra series is not a practical modeling approach for PAs and DPDs. 
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4.3.5 Dual-Input Memory Polynomial Model 
 

The Memory Polynomial Model (MPM) was derived from the first order Volterra 

kernel for simplicity purposes, since Volterra models are computationally expensive. 

MPMs have become a very popular and widely deployed modeling approach for PAs. The 

Dual-Input Memory Polynomial Model (2D-MPM) is an extended version of the MPM for 

ET PAs of two independent variables. 

The 2D-MPM is similar to MBM in Equation 4.5. However, the MBM consists of 

one nonlinear order, whereas the 2D-MPM consists of two nonlinear orders. Another 

difference between the 2D-MPM and MBM is the kernel structure, which exhibits high 

impact on the model accuracy [49]. The 2D-MPM expression for ET PA is 

         

N L M
j 1 k

BB k, j,m en
j=1 k=0 m=0

z (n) =  x(n - m) x(n - m)  v (n - m)

             
           

c


 
(4.9) 

where x(n) and ven(n) are the complex baseband input and modulated supply voltage, 

respectively. zBB(n) is the PA complex baseband output, ck,j,m  are the model coefficients, 

N is the maximum nonlinear order of the variable x, L is the maximum nonlinear order of 

the variable ven, and M is the memory depth. The matrix form of Equation 4.9 is 

                                                           z = Pc                                                              (4.10) 

where z=[z(0),z(1),……..z(L)]T  is an (L+1)×1   is a vector representing the (L+1) 

samples of the output signal, 0,1,0 11 0 L,N,M[c ,c ,....,c ], ,c =  is a (L(N+1) (M+1))×1  vector of 

the model coefficients, and P is a model matrix which is formulated 

N-1 0 N-1 L
en en[x(n),...., x(n - M),...., x(n) x (n) v (n),...., x(n - M) x (n - M) v (n - M)]P =     ( 4.11) 

The 2D-MPM number of coefficients is 
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                                                               PMN = (N) (L + 1) (M + 1)     (4.12) 

4.3.5.1 Complexity of Power Series Models 

Most of the power series models consist of a kernels structure, allowing efficient 

implementation using DSP. The series number of coefficients is often used for evaluating 

the model complexity. The high number of coefficients in power series models leads to a 

higher number of Float Point Operation (FLOP) in system implementation. Furthermore, 

the required number of the model parameters depends specifically on the nonlinearity of 

PAs (e.g. weak nonlinearity normally leads to a lower number of coefficients compared to 

the strong nonlinearity PAs). The power series kernels structure, such as binomial and 

polynomial terms can also impact the model accuracy when used for the ET modeling case. 

The high PAPR in OFDM signals can increase the nonlinear distortion in PAs, because the 

high PAPR signals can derive PAs to the compression region, thus a power series of high 

order is typically needed to characterize the strong nonlinearity in PAs. The slew-rate and 

discrete shaping function in ET system can increase both the distortion effect and modeling 

complexity [48], [50].  Here we compare the accuracy and complexity using the state-of-

the-art series kernels in evaluating model accuracy with respect to the model number of 

coefficients. A dual-input static (memoryless) representation for ET PA is used for the 

model evaluation. Table (4.1) presents the model structure and the required number of 

coefficients for binomial, 2D-polynomial, and 2D-Taylor models of the state-of-the-art 

behavioral modeling of the ET PAs [49].  
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  Table (4.1) Comparison in series kernels and number of coefficients for dual-input behavioral 

models. 

 

 
 
 
 

4.3.5.2 Evaluation of Model Estimation       

Each estimation method using the least-squares exhibits bias and variance in data 

modeling. Bias and variance are two important criteria for evaluating the estimator 

performance. A model of low variance and small bias is desired for optimal accuracy. The 

estimator bias and variance are highly affected by the model kernels structure and the total 

number of data samples used in the estimation. For instance, series expansion, such as 

MPM and BM show lower model accuracy for predicting the dynamic nonlinearity at low 

number model coefficients. On the other hand, overfitting is another problem when using 

a large number of model coefficients. The noise in data modeling and memory effects 

increases the model estimation errors at high nonlinear orders.  

Model Model Formula 
Model Number of 

Coefficients 

Binomial 

N k
k- j j

BB k, j en
k=0 j=0

z (n) = c  x (n) v (n)

             
           


 

(N + 1) (N + 2)

2
 

2-D 
Polynomial 

N L
j 1 k

BB k, j en
j=1 k=0

z (n) = c  x(n) x(n)  v (n)

             
           


 

(N ) (L + 1 )  

2-D Taylor 

N L
k j

BB k, j en
k=0 j=0

z (n) = c  x (n) v (n)

             
           


 

(N +1) (L +1)  
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The underfitting is another problem in estimating MPM and MBM when the model 

prediction fails to capture all the nonlinear features of the measurement data. The 

underfitting is often occur when a low number of coefficients are used in model estimation, 

therefore, this can degrade the model performance in capturing all the nonlinear features 

of PAs. 

In the statistical theory, the problem of underfitting and overfitting is subject to the 

existing trade-off between the bias and variance in the estimator. While low variance and 

high bias is a common problem of underfitting estimation, the drawback of the overfitting 

estimation includes the high variance and low bias. Thus, it is important to adjust the trade-

off between the bias and variance for high accuracy model prediction. It was shown in the 

literature each model reaches optimal accuracy at a certain number of coefficients.  

 

4.4 Experimental Results 
 

The measurement architecture of ET system was implemented as shown in Figure 

4.5. This set-up consists of the Keysight E4438C Vector Signal Generator (VSG), which 

was fed to the ZFL-1000LN RF power amplifier, and the Keysight 33522B Arbitrary 

Waveform Generator (AWG), which was fed to the envelope modulator (THS3120). Both 

the RF signal generator and the waveform generator were connected and controlled by 

MATLAB software from a desktop computer [49].  

The PA was driven by 10,000 symbols of LTE-downlink baseband signal from a 

signal generator. A detroughing shaping function was coded in MATLAB, before it was 

fed to AWG. The output signal of the PA was demodulated using a Tektronix signal 

analyzer and exported to MATLAB in a complex discrete baseband format. The acquired 
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data of the PA input, envelope waveform, and output signals are synchronized in MATLAB 

using a cross-correlation function. 

A DC power supply with a current meter was used to feed supply voltage to both 

the main PA and the envelope amplifier. The PA supply current was 60 mA without using 

the envelope modulator, and it was dropped to 50 mA when the envelope modulator was 

applied; hence the reduction in power dissipation due to the ET system is 

                                                               enh enh DCP = I V     (4.13) 

                                                       enhP = (60-50) 15 =150 mw      

 
where Penh represents the power enhancement due to the ET system, Ienh is the drain current 

reduction, and VDC is the power supply voltage. The power efficiency enhancement using 

the ET system is  

η =
𝑃

𝑃
=

150

15 × 60
= 16% 

 
 

 
Figure 4.5  Measurement set-up used for the ET PA. 
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Three different state-of-the-art power series models, binomial, 2D-polynomial, and 

2D-Taylor series, are evaluated for accuracy and complexity using the measurement data 

acquired from the experiment on the ET PAs. The model coefficients are calculated using 

the least-squares method as in Equations (4.14) and (4.15) for binomial and 2D-polynomial 

models, respectively.  

 
                                                      H -1 Ha = (B B) B z                                                   (4.14) 

 
 

                                                        H -1 Hc = (P P) P z                                                  (4.15) 
 

 
where (.)H denotes the Hermitian matrix. The measured and modeled AM/AM conversions 

of the 2D-Taylor, binomial, and 2D-polynomial models are illustrated in Figure 4.6.  These 

results show that both 2D-Taylor and binomial models are slightly offset from the 

measurement data point at the lower input amplitude region. On the other hand, the 2D-

 
 
Figure 4.6 Measured and modeled AM/AM conversions of ET PA using different modeling 

approaches. 
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polynomial model shows better model accuracy and is symmetrical in the regions close to 

the mean of the measurement points.  

The calculated NMSE and ACEPR for different model nonlinear orders are shown 

in Table (4.2).  The optimal model accuracy in NMSE and ACEPR occurs at different 

nonlinear orders of each model as illustrated in Figure 4.7.  The calculated results show a 

round 2 dB NMSE improvement in the 2D-polynomial compared to the binomial model. 

Therefore, the kernel type of 2D-polynomial  { 𝑥[𝑛]|𝑥[𝑛]|𝑗−1[𝑛]𝑣𝑒𝑛𝑣
𝑘 [𝑛] }  reflects well with 

the nonlinear characteristics of the ET PAs, and  better accuracy than the Taylor kernel 

type { 𝑥𝑗[𝑛]𝑣𝑒𝑛𝑣
𝑘 [𝑛] } [49]. 
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4.5 Digital Predistortion Results 
 

Three different static models of DPD using 2D-Taylor, binomial, and 2D-

polynomial series are calculated using an indirect-learning approach, as depicted in Figure 

4.8. This figure shows that the DPD identification block is supplied by the same signal 

measurement from the PA input, output, and envelope signals. A least-squares method is 

used to calculate the model coefficients as follows: 

                                                    H -1 Hd = (W W) W q                                                   (4.16) 

Table (4.2) Accuracy comparison results of the behavioral modeling versus model number of 

coefficients. 

 
     

Model Nonlinear 
Order 

Number of 
Coefficients NMSE (dB) ACEPR (dB) 

     

Binomial 

Q=3 10 -31.5 -40.2 

Q=4 15 -32.2 -40.5 

Q=5 21 -33.3 -41.8 

Q=6 28 -33.7 -42.4 

2D-Polynomial 

N=5,  M=1 10 -33.5 -41.8 

N=5,  M=2 15 -34.3 -42.6 

N=7,  M=2 21 -34.6 -42.9 

N=7,  M=3 28 -35.4 -43.7 

2D-Taylor 

N=4,  M=1 10 -32.3 -41.1 

N=4,  M=2 15 -32.6 -41.4 

N=6,  M=2 21 -34.2 -42.7 

N=6,  M=3 28 -34.5 -43.2 
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where d is a column vector of the DPD coefficients, q is a column vector of the PA input 

signal, and W is the model matrix, which is formulated from the PA output and supply 

voltage. The DPD evaluation in ACPR and number of coefficients for BM, 2D-PM, and 

2D-TP are depicted in Table (4.3).  

The DPD comparison results in PSD using three-different linearization approaches 

are shown in Figure 4.9 for the same model number of coefficients. This figure shows that 

the 2D-polynomial model exhibits a better linearization capability for mitigating the 

nonlinear distortion in the ET PA than the 2D-Taylor and binomial models.  

 
 
 
 
 

 
 
Figure 4.7 Comparison of the modeling accuracies in NMSE (continuous traces) and ACEPR 

(dotted traces) versus model number of coefficients. 
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Figure 4.8 Indirect learning approach for modeling the 2D-DPD. 

 

          Table (4.3) NMSE and ACPR comparison results for different DPD models. 

 

Case Nonlinear 
Order 

Model Number  
of Coefficients 

NMSE 
(dB) 

ACPR(dB) 
-/+4MHz 

PA Input * * * -58.3/-57.2 

PA Output * * * -23.1/-24.7 

PA with BM  
DPD Q=6 28  -29.5 -43.2/-41.6 

PA with 2D-PM 
DPD N=7, M=3 28 -31.6 -48.4/-47.8 

PA with 2D-TP 
DPD N=6, M=3 28 -30.3 -45.1/-44.6 
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4.6  Dual-Input Modeling Approach 

 
An evaluation comparison for the state-of-the-art behavioral models have been 

presented in the previous section. In this section, an approach for modeling and digital 

predistortion of the ET PA is develops using behavioral modeling of a higher accuracy and 

lower number of coefficients.  

Both AM/AM and AM/PM conversions cause statistically independent nonlinear 

distortion behavior in PAs, as described earlier in Chapter 2. Hence this work proposes a 

new approach for optimizing the model accuracy of the AM/AM and AM/PM conversions 

independently and then combining these models using a complex polar representation. The 

modulated supply voltage of ET PA is another important effect which is considered in 

modeling the AM/AM and AM/PM conversions. The proposed approach in this section 

takes into account the dynamic variation in both the AM/AM and AM/PM nonlinearities 

 

Figure 4.9 Normalized power spectrum density using static 2D-DPD models.  
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due to the memory effects, as discussed earlier in Section 2.5. A complex representation of 

the ET PA output in terms of both AM/AM and AM/PM functions is 

enj( (x,v )+ x)
enz = (x, v )e PMf

AMf 
 (4.17) 

 where x is the ET PA complex input signal, ven is the modulated supply voltage, and z is 

the ET PA output signal in a complex baseband form, which is acquired from the PA after 

RF signal down-conversion as shown in Figure 4.10. fAM(.) and fPM(.) are the AM/AM and 

AM/PM functions, respectively. The operator  (.) denotes the phase of a complex variable 

x. Equation 4.17 can be expressed in terms of magnitude and phase variables, respectively 

as follows: 

 

 where 𝑦  is the magnitude of the output signal z, and θd is the ET PA phase deviation, as 

a function of x and ven. A simplified block diagram in Figure 4.11 shows a block diagram 

of the overall model architecture using independent AM/AM and AM/PM nonlinear 

functions. The AM/AM and AM/PM blocks are two independent behavioral models for 

ET PA.  

d eny = z = (x, v )AMf  (4.18) 

ed n= (x , v )θ P Mf  (4.19) 
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4.7   Extended Saleh AM/AM Model 
 

The Saleh model was proposed in 1981 to characterize the static AM/AM and 

AM/PM nonlinear conversions for TWT PA using two independent functions. The Saleh 

model is a simple empirical SISO function of two parameters [51]. The Saleh AM/AM 

model for a constant-supply PA is 

                     2

x α
y =

1+ x β
  (4.20) 

 

AM/AM

 AM/PM j(.)e

dy

x

env
z

θd

 .

 
 

 
Figure 4.11 System architecture of the proposed model for the ET PA. 

PAUp-
converter

                 Envelope 

                  Modulator

ven 

Down-
converter

x zzRF

 
 

 

Figure 4.10 Block diagram of the baseband equivalent three-port representation for PA.  
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where x is the complex baseband input signal, y is the equivalent-baseband output 

amplitude, α and β are the model parameters, which can be calculated using a linear 

regression or nonlinear estimation on x and y data obtained from PA simulation or 

measurements.  The Saleh model parameters α and β specify the PA’s gain and saturation 

level. 

The saturation voltage of the Saleh model is calculated by taking the derivative of Equation 

4.20  

                                                 2 2

αx d αx
= 0

dx1+ βx 1+ βx
argmax

x

         
      

                                                     (4.21) 

 
 
Solving Equation 4.21, results in the maximum input amplitude as 
 

                                                                                 max
1

x =
β

                                                                        (4.22) 

 
Substituting Equation 4.22 into Equation 4.20, results in 
 

                                                                              max
α

y =
2 β

                                                                         (4.23) 

 
 
where ymax is the output saturation amplitude. The parameter α is proportional to the PA 

small signal gain, and the parameter β is inversely proportional to the PA saturation level.  

The accuracy limitation of the Saleh model near the saturation region and SISO 

model structure makes the model inappropriate for ET PAs. Hence, this dissertation 

presents two extensions to optimize the accuracy of the Saleh model for modeling ET PAs 

while maintaining the model simplicity. The first proposed extension consists of model 

conversion from SISO to DISO structure. The hysteresis effects in amplitude and phase 
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conversions are modeled using the second extension. [27].  

The coefficients of the Saleh model control the shape of a static AM/AM curve, 

which depends on the PA specifications, such as gain, saturation level, and supply voltage, 

and other factors, including the PA topology, transistor type, and operating frequency 

range. The coefficients of the Saleh model are used in the literature as a function of two 

independent variables, input amplitude and operating frequency for modeling a frequency 

dependent nonlinearity [51].  

The PA characteristics in the AM/AM and AM/PM nonlinearities change 

significantly with respect to the supply voltage, causing a significant variation in the 

magnitude of the Saleh coefficients. Hence, a new relationship of the Saleh coefficients 

with respect to the supply voltage is described in this chapter. 

A two-tone test was implemented by sweeping the amplitude of the two-tone for 

each supply voltage. The AM/AM and AM/PM Saleh functions are calculated using the 

nonlinear least-squares method in MATLAB. Figure 4.12 and Figure 4.13 show the 

variations in the slope and saturation level of the Saleh model for different supply voltage. 

Therefore, the Saleh parameters are supply voltage- and input signal amplitude- dependent. 

Thus, the Saleh parameters are functions of the modulated supply voltage for the ET PA 

case [27].  



84 
 

 

 

 

 

 
 
Figure 4.13 PA measured and modeled results of the AM/PM conversion for different supply 

voltages. 

 

 
 
Figure 4.12 PA measured and modeled results of the AM/AM conversion for different supply 

voltages. 
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The extended static Saleh model is proposed by using Equation 4.20, with the 

parameters α and β replaced in terms of the supply voltage for the envelope tracking case 

as  

en
2

en

x α(v )
y =

1 + x β(v )
 (4.24) 

 
where α(ven) and β(ven) are the Saleh model coefficients as functions of the EM input 

voltage ven. A truncated Taylor series is used to model the coefficients α(ven) and β(ven) 

with respect to the supply voltage [26], [27]  

 

1

( )
AN

i
en i en

i

v v


    

 

 
(4.25) 
 

1

( )
BN

i
en i en

i

v v


    (4.26) 

 

where NA and NB are the maximum orders of the truncated Taylor series. By substituting 

Equation 4.25 and Equation 4.26 into Equation 4.24, results in a static dual-input single-

output AM/AM function that can be expressed [26]  

                                                                1

2

1

,

1
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B

N
i

i en
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en N
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i en
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x v

y x v
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 (4.27) 

 
Equation 4.27 can be represented in a matrix form to simplify the calculation  

 

 
T

2T1

α

β

αv

βv
en

x
y x,v

x



 (4.28) 
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where 𝜶 = 𝛼 , 𝛼 , … . , 𝛼   and β= 𝛽 , 𝛽 , … . , 𝛽  are vectors of the ET PA model 

coefficients. vα and vβ are vectors of the variable supply voltage  

     1[ ] ...αv AN2
s en s en s en sN v N v N v N     (4.29) 

 

     [ ] ...βv BN1 2
s en s en s en sN v N v N v N     (4.30) 

 

The extended model in Equation 4.28 can be deployed with any ET PA topology, 

because the Taylor series is a generic form of any analytical function. Furthermore, the 

Taylor series theoretically converges to the optimal accuracy when the nonlinear order 

approaches infinity. The extended static Saleh model consists of (NA+NB) total number of 

coefficients.  

 
4.7.1 Estimation of Saleh Coefficients 

 
The coefficients of the extended Saleh model in Equation 4.28 can be calculated 

using a surface fitting on the data set x, y, and ven. A new method to extract the model 

coefficients is proposed by using linear algebra on Equation 4.28 to yield 

2T Ty α βα v β vy x x   (4.31) 

 By substituting time index of all the variables in Equation 4.31, and re-formulating the 

following matrix [26]:   

2

1
2

1

2

(1) [1] (1) (1) [1](1)

(2) (2) [2] (2) (2) [2]

( ) ( ) [ ] ( ) ( ) [ ]

α β

α β

α β

v v

v v

v v

A

B

N

Ns s s s s s

x y xy

y x y x

y N x N N y N x N N



 
 

 

                                            

 (4.32) 
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The matrix equation 4.32 can be re-written as  

Y=UC (4.33) 

where Y is ( ×1)sN a column vector of the ET PA output magnitude samples, U is 

( ( ))s A BN × N + N  model matrix, and C is a (( + ) 1)A BN N   column vector of the model 

coefficients. The extended Saleh coefficients are calculated by inverting Equation 4.33 in 

the sense of a minimum square errors 

  
T -1 TC=(U U) U Y

    (4.34) 

 
Matrix decomposition techniques, such as Singular Value Decomposition (SVD) 

and Cholesky decomposition, can be applied to calculate the pseudo-inverse of the matrix 

U in Equation 4.34. However, the pseudo-matrix inverse in Equation 4.34 is 

computationally efficient compared to SVD and Cholesky decomposition, because the 

model matrix U has a larger number of rows than the number of columns. 

 The simulation results of the dynamic AM/AM conversion in Figure 4.14 show 

accuracy improvement in the extended Saleh model compared to the original Saleh model. 

The curve of the extended Saleh model is close to the statistical mean of the dynamic 

simulated data in the region of a lower input power compared to the Saleh curve. 

 

4.8. Hammerstein Theory 

The Hammerstein approach is a simplified mathematical structure and a special 

modeling approach of a Volterra series. It is a widely used technique to approximate the 

nonlinear functions exhibiting memory effects. The Hammerstein model structure consists 

of cascading two models, memoryless nonlinear model (to account for static nonlinearity) 
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followed by a linear filter (to account for memory effect) as shown in Figure 4.15. In the 

Hammerstein approach, the static nonlinearity and memory system are independently 

calculated. The Hammerstein technique reduces the parameters’ redundancy compared to 

the Volterra model. This advantage is important for adjusting the model complexity and 

accuracy.  

  

 

 

 

 
 
 
Figure 4.14 PA simulated and modeled gain using both the Saleh model and the extended Saleh 

approaches. 

 

 

Nonlinear 
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Figure 4.15 The Hammerstein modeling structure for nonlinear system with memory effects.  
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4.9. Dynamic Saleh AM/AM Model 

Energy-storage elements in the ET PA circuit and variation level of the supply 

voltage cause major nonlinear dispersion effect (i.e. model uncertainty) in the PA model. 

Therefore, static nonlinear models are not capable of characterizing memory effect in the 

ET circuit. Dynamic nonlinear models are often required for accurately predicting circuit 

response [27], [52]-[54]. This phenomenon of hysteresis effect is a well-studied and 

described in the literature of behavioral models.  

The hysteresis effect in ET PA is often modeled using the Hammerstein approach. 

Therefore, the residuals (i.e memory effect) between the output of the static extended Saleh 

model and the actual output of the PA are modeled in this work using a Finite Impulse 

Response (FIR) filter [26].  

The FIR filter is cascaded in series with the static nonlinear model to make the 

model time-dependent as well. The output of the complete dynamic Saleh AM/AM model 

can be expressed as: 

     
0

AMM

d
k

y n h k y n k


   (4.35) 

where y(n) is the output of the extended Saleh model, h(k) is the filter impulse response, 

MAM is the AM/AM memory depth, and 𝑦𝑑(𝑛) is the dynamic AM/AM model output.              

A least-squares method is a simple approach for calculating the FIR filter’s coefficients 

using 

               s s s
T -1 T

dh=(Y Y ) Y y  (4.36) 
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where h is a vector of the FIR filter coefficients, yd is a vector of the dynamic ET PA 

magnitude output samples, and Ys is a matrix generated from the extended Saleh AM/AM 

output [26], [27].  

 
4.10  Modeling of AM/PM using 2D-Polynomial. 
 

The AM/PM conversion is a nonlinear time-dependent function as described earlier 

in Section 2.5. Therefore, the 2D-MPM is used here to model the dynamic AM/PM 

conversion in ET PA. The 2D-MPM uses the input signal and supply voltage as two 

independent variables  

 

 , ,
0 0 0

( ) ( ) ( )
L N M

j k
enk j m

k j m

q n P x n m v n m
  

    (4.37) 

 

where L and N are the maximum orders of the baseband input and envelope variables, 

respectively, M is the memory depth and, q(n) is a complex output of the dynamic AM/PM 

conversion. P(k,j,m) are the model coefficients, which can be calculated from the ET PA 

input and output data using the following least-squares equation: 

T -1 TP=(A A) A Q (4.38) 

where A is a matrix, which is generated from the polynomial terms in Equation 4.37, Q is 

a vector of a complex output samples, and P is a vector consists of the MPM coefficients. 

The dynamic AM/PM conversion (ψ) can be calculated as shown in Equation 4.39. Finally, 

the complete model architecture based on the presented extensions is shown in Figure 4.16. 
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1 ( ( ))
( ) tan

( ( ))

q n
n

q n
  

    
 (4.39) 

 
 
 

 
 
4.11 Model Evaluation of ET PA 
 

The modeling accuracy is typically evaluated in the time domain using the NMSE, 

and in the frequency domain using the ACEPR, figures-of-merit widely used in the state-

of-the-art assessment of the PA behavioral models [55]-[57]. Both the NMSE and ACERP 

are expressed as follows: 
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Figure 4.16 The proposed extended Saleh model architecture used for the envelope tracking 

power amplifier. 
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where ymeas(n) and ymodel(n) are the complex baseband output measured and modeled 

signals, respectively. N is the signal number of symbols. ACEPR refers to the model 

accuracy in the frequency domain, which is defined as: 
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 (4.41) 

 
 

where E(f) is the frequency domain error signal of (ymeas - ymodel), Zs(f) is the Fourier 

transform of the measured ET PA output signal. fs,L and fp,L are the start and stop 

frequencies, respectively, of the lower adjacent channel. fs,U and fp,U are the start and stop 

frequencies, respectively, of the upper adjacent channel. fs,ch and fp,ch are the start and stop 

frequencies, respectively, of the desired  channel.  

 

4.11.1 Simulation Set-up 
 

A simulation circuit of the ET PA was designed using Advanced Design System 

(ADS) software. The circuit schematic is shown in Figure 4.17. The ET PA in this 

simulation was designed using GaAs field-effect transistor from the ADS library, RF input 

and output matching circuits, and mathematical components for the shaping and envelope 

models. The PA was excited by LTE-downlink signal, which was acquired from the 

Keysight signal generator. The envelope tracking branch in Figure 4.17 consists of an 

envelope detector and shaping function to perform the following calculations: 
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2 2( ) = I( ) +Q( )Env n n n  (4.42) 

 
 

( )

,max( ) ( ) .

Env n

k
en ddv n v Env n k e

 
   

 
   
 
 

 (4.43) 

 

where I(n) and Q(n) are the in-phase and quadrature-phase baseband components of LTE 

signal, Env(n) is the envelope waveform, 𝑣 ,  is the maximum supply voltage, k is the 

detroughing ratio, which is equal to  ,

,
,  and 𝑣 ,  is the minimum voltage required 

to operate the RF PA. The time series data of the ET PA signal, output signal, and envelope 

voltage are exported to MATLAB for model computation and validation [26].  

 

 

 

 

 
 

 

Figure 4.17 Circuit schematic used for the ET PA simulations in the ADS. 
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4.11.2 Modeling Results 

 
The coefficients of the extended Saleh model are calculated using a least-squares 

as described earlier in Section 4.7, based on data acquired from ADS simulation. Figure 

4.18 illustrates the results of both the ADS simulation and extended Saleh model in the 

AM/AM and AM/PM conversions [26].  

 
(a) 

 

 
(b) 

 

Figure 4.18 Gain and phase deviation of the ET PA simulated in the ADS and the proposed 

extended Saleh model. (a) Gain. (b) Phase. 
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The obtained simulation results show that the modeled data points matched well 

with the dynamic nonlinearity in both amplitude and phase conversions. In addition, the 

PSD in Figure 4.19 shows an adequate modeled spectrum for both in-band and out-of-band 

regions of the simulated signal in the frequency domain [26].  

Figure 4.20 illustrates the performance of the model accuracy in NMSE and 

ACEPR versus the swept values of nonlinear orders and memory depth. The calculated 

NMSE and ACEPR of the extended Saleh model are shown in Table (4.4), for different 

nonlinear orders NA and NB [26].  

 

The NMSE and ACEPR are calculated for the swept memory depth of the H(f) filter 

from 1 to 60 coefficients as shown in Figure 4.20. The optimal model accuracy is -44.6 dB 

in NMSE and -53.7 dB in ACEPR, which occurs at the maximum modeled nonlinear order. 

Finally, NMSE and ACEPR results for different nonlinear order (N) and (Q) of the Taylor 

polynomial are depicted in Figure 4.21 [26]. 

 
 

Figure 4.19 Power spectral density of the ET PA simulated in the ADS and the proposed extended 

Saleh model.  
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Figure 4.20 Modeling accuracy results in NMSE and ACEPR versus the AM/AM model 

memory depth.  

Table (4.4) Accuracy evaluation of the extended Saleh model using NMSE and ACEPR. 
 
 

Nonlinear Orders 
Number of Static 

AM/AM Coefficients 
NMSE (dB) ACEPR (dB) 

NA=1,   NB=1 2 -32.56 -41.32 

NA=2,   NB=1 3 -36.19 -45.31 

NA=3,   NB=1 4 -36.24 -45.62 

NA=3,   NB=2 5 -36.31 -46.01 
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(a) 
 
 

 
 

  (b) 
 

 
Figure 4.21 NMSE and ACEPR in terms of the nonlinear orders N and Q of the AM/PM Taylor 

model. (a) NMSE.    (b) ACEPR.  
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4.12 Proposed Model for ET PAs 

The 2D-Taylor polynomial model for the AM/PM conversion in Section 4.10 

exhibits a high modeling accuracy; however, the 2D-polynomial model is computationally 

expensive due to a high number of coefficients. Therefore, an approach for modeling the 

AM/PM conversion using the Hammerstein structure is proposed in this section. The 

Hammerstein approach for the AM/PM modeling consists of a static dual-input Saleh 

model in cascade with a simple digital filer (FIR filter) to account for a long-memory effect 

in the dynamic AM/PM nonlinearity modeling [27]. The dual-input Saleh model is an 

extended version of a constant-supply Saleh AM/PM model as described in Section 4.12.1. 

The IIR filter can also be used to model the memory effect in PAs. However, the FIR filter 

exhibits advantages over the IIR filter such as the stability and simplicity of the filter 

implementation. 

A complete structure of the proposed model is shown in Figure 4.22, the upper 

block branch represents the dynamic effect of the AM/AM conversion, and the lower block 

branch represents the dynamic AM/PM conversion. A complex exponential operator is 

used to combine these two branches using a mathematical complex multiplier block [27].  
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4.12.1 Extended Saleh AM/PM Model 
 

The extended Saleh AM/PM model is proposed to model the AM/PM conversion 

as described in variable supply PA. The advantage of this approach is to reduce the 

complexity of the AM/PM model compared to the 2D-MPM model in the previous 

approach. This modeling approach is derived from the original Saleh AM/PM model for 

the constant-supply case [51]                                 

 
         

2

2
1

x

x


 

   
 (4.44)

 
 where λ and γ are the Saleh model AM/PM parameters, x is the complex baseband input 

signal, and θ is the output phase. The phase of the ET PA varies dynamically along the 

supply voltage as demonstrated in Figure 4.13. Therefore, the dependency of the ET PA 

phase with respect to the supply voltage is modeled by expressing the Saleh parameters as 

function of the modulated supply voltage using a Taylor polynomial [27]. 
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Figure 4.22 Block diagram of the three-port dynamic Saleh model architecture.  
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where λ(ven) and γ(ven) are the Saleh coefficients as functions of the envelope modulator 

voltage ven. Polynomial functions are used to model these coefficients with respect to the 

supply voltage [27] 
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where Pa and Pb are the maximum polynomial orders in the envelope amplitude variable 

ven.  By substituting Equation (4.46) and (4.47) into Equation (4.45), results in a static 

DISO Saleh AM/PM function as [27] 
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(4.48)

 
The polynomial functions in Equation (4.48) can be expressed in vector forms as 
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(4.49) 

 
where 𝛌 = λ  , λ , … . , λ  and  𝛄= γ  , γ , … . , γ  are model coefficients, vλ and vγ are 

vectors of the envelope amplitude using different polynomial orders 

                                          
1 2[ , ,......, ]v aP
en en env v v     (4.50)
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                                          1 2, , .....,v bP
en en env v v

     (4.51)
 
 

The simulation results showed that the proposed extension results in an adequate 

accuracy and matched well with the PA AM/PM conversion, as compared to the original 

Saleh model, which is depicted in Figure 4.23. 

 

 
 
 
4.12.1.1. Estimation of Model Coefficients 

The extended Saleh AM/PM model in Equation 4.49 can be re-expressed as: 
 

 
2 2T T

λ γλv γvx x     (4.52)
 
Applying the signal time samples on Equation 4.52, results in the following matrix equation 

[27]: 

 

 
 
 
Figure 4.23 Simulated and modeled phase deviation of ET PA. 
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where k is the signal number of samples, vλ and vγ are row vectors that are expressed as 
 

 

Equation (4.53) is expressed using a matrix notation form  
 
 

          θ = QL   (4.56)

 

where θ is a ( ×1k ) column vector of the ET PA output phase samples, Q is a matrix of 

×( )a bk P + P samples, and L is a vector of ( + ) 1a bP P   model coefficients. The vector L is 

calculated by inverting (4.56) in the sense of a least-squares error 

        
T -1 TL=(Q Q) Q θ  (4.57)

  

The residuals from the extended Saleh model in Equation 4.49 is modeled using the 

FIR filter in series with the static model based on the Hammerstein approach. The FIR 

filter is used to model the spreading effects in the AM/PM due to the long-memory effect. 

FIR is a simple digital filter, which is always stable [27]. The FIR filter output is a 

convolution operation between the static model and the filter impulse response  

            1[ ] , , ...v aP2
en en enk v k v k ,v k

     (4.54) 

      [ ] , , ...v bP1 2
en en enk v k v k ,v k

     (4.55) 



103 
 

     
0

PMM

d
k

n f k n k


     (4.58) 

 

where θd(n) is the dynamic AM/PM conversion, MPM is the memory depth, and f(k) is the 

AM/PM filter impulse response. A least-squares method is used to calculate the FIR filter 

coefficients 

T -1 Tf =( ) d     (4.59) 

 
where f is a vector of the FIR filter coefficients, θd is a vector of the measured ET PA 

phase, and ψ is a matrix composed from the extended Saleh model output phase. The total 

number of model coefficients (NPAR) for the overall proposed model with all the extensions 

are as follows: 

   1 1PAR A B a b AM PMN N N P P M M        (4.60) 

 
The parameters N , N , 𝑎𝑛𝑑 M   are the orders of the dynamic extended Saleh AM/AM 

model, and the parameters P , P  and M  are the orders of the dynamic extended Saleh 

AM/PM model [27]. 

 

4.12.2 Model Evaluation 

The experimental results for data acquisition is shown in Figure 4.24. The ET PA 

was built using OPA267 envelope modulator and RFPA380 RF main PA [27]. The rest of 

the experiment consist of two signal generators at the ET PA input and one signal analyzer 

on the ET PA output. The gain and phase conversions of the measured, the original Saleh 

model, and the proposed ET PA dynamic modeling results are shown in Figure 4.25. Clear 
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accuracy modeling improvements in both the AM/AM and AM/PM conversions are 

obtained when comparing the results with respect to the original Saleh model.  

The modeling accuracy was evaluated in the time domain using NMSE and in the 

frequency domain using ACEPR. The model accuracy using NMSE results shown in 

Figure 4.26 are calculated for different maximum nonlinear orders NA, NB, Pa, and Pb. The 

model NMSE for a swept memory depth MAM in AM/AM and MPM in AM/PM are shown 

in Figure 4.27. Finally, the accuracy results of the dynamic Saleh model are compared to 

the state-of-the-art 2D-MPM and MBM for different number of model coefficients as 

shown in Table (4.5).  The compared accuracy results of the ET PA models are depicted in 

Figure 4.28. These results show that the dynamic Saleh model achieves NMSE and ACEPR 

performance values below -42 dB and -51 dB ACEPR, respectively, at the maximum model 

accuracy using 20 coefficients, whereas the 2D-MPM and MBM require about 30 

coefficients to reach the same accuracy in terms of NMSE and ACEPR results. 

 

 
 
 
Figure 4.24 Measurement set-up used for the envelope tracking power amplifier. 
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                     (a) 
 

  

 

                     (b) 
 
 

Figure 4.25  Gain and phase results of the Saleh model and dynamic Saleh model. (a) Gain. (b) 
Phase deviation.  
  



106 
 

 

 
 
 
 
 
 
 
 

 
(a) 

 
 
 

 
       (b) 

 

Figure 4.26  Accuracy evaluation in NMSE of the extended Saleh model for different nonlinear 
orders NA, NB, Pa, and Pb. (a) NMSE versus NA and NB. (b) NMSE versus Pa and Pb. 
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                                                                   (a) 
 
 

 
                                                                  (b) 

 
 
Figure 4.27 NMSE and ACEPR accuracy performance of the extended Saleh model versus a 
swept memory depth. (a) NMSE and ACEPR in terms of memory depth, MAM and MPM are set to 
5. (b) NMSE and ACEPR in terms of memory depth, MPM and MAM is set to 5. 
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Figure 4.28 Comparison of models’ accuracies in NMSE and ACEPR versus a swept model 
number of coefficients.  
 

  Table (4.5) Comparison results of different 2D-behavioral models for envelope tracking power  

   amplifiers. 

 

Model 
Number of 
Coefficients 

Nonlinear  
Order 

Memory  
Depth 

NMSE 
(dB) 

ACEPR 
(dB) 

    Dynamic   
Saleh Model 

12 
NA=2, NB=1, Pa=2, 

Pb=1 
MAM=2, MPM=2 -38.75 -49.23 

20 
NA=3, NB=2, Pa=2, 

Pb=3 
MAM=4, MPM=4 -42.48 -51.80 

2D-MPM 
 

27 K=2, N=3 M=2 -42.81 -52.63 

36 K=2, N=3 M=3 -43.28 -53.22 

72 K=3, N=3 M=5 -43.52 -53.91 

 
MBM 

 

28 N=3 M=2 -43.23 -52.67 

57 N=4 M=3 -43.55 -53.94 

121 N=5 M=5 -43.56 -54.02 
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4.12.3 Evaluation of Model Complexity 

Model properties in terms of accuracy and computational complexity are two main 

criteria for evaluating the model performance [58]. Model accuracy in terms of NMSE and 

ACEPR for different model nonlinear orders is presented in the previous sections. The 

model accuracy can also have an impact on the model complexity in terms of the 

computational cost. This is because the model number of coefficients controls the model 

computational cost. The required number of coefficients in the behavioral model varies 

from one PA to another depending on the nonlinearity effect [59]. The complexity of ET 

PAs depends on the PA circuit design, IC chip temperature variation, load, and the memory 

depth as a circuit dependent, as well as the ET design, such as the variation in the shaping 

function or ET system.   

A model of many coefficients often requires a high number of mathematical 

operations, such as multipliers and summer blocks, when implementing the ET PA model 

in DSP. For example, the number of multiplier operations in Volterra-based models are 

equal to the model number of coefficients; therefore, the Volterra model is computationally 

expensive.     

Various measures of model complexity are presented in the literature of complexity 

theory, such as implementation complexity, time complexity, and size complexity. The big 

O(.) (order of function) and Float Point Operation (FLOP) is a widely used measure in 

numerical analysis for algorithm computational complexity.  The big O(.) is a simple 

notation that describes the growth rate of the function in terms of its arguments. 

Furthermore, the big O(.) is an indirect measure of the algorithm time-complexity in terms 
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of the number of input elements. The FLOP is a measure of the floating-point computation 

per second.  

 

4.12.3.1 Models Size Complexity  

The complexity in model size denotes the storage space (memory size) for model 

computation. The complexity of a model size is not a major implementation challenges in 

a small size model structure, but it consumes additional resources. The Volterra series and 

MPMs require a large memory size to store all the model coefficients, in addition to the 

memory units for the delayed polynomial terms, such as {

N N N
x(n -1) x(n -1) ,x(n - 2) x(n - 2) ,..., x(n - M) x(n - M) } in the subsequent iterative 

calculations.  

The Dynamic Saleh model exhibits lower model size complexity, because of a 

lower number of model coefficients as discussed in the results section. In addition, the 

Hammerstein approach for both the AM/AM and AM/PM conversions reduces the required 

memory coefficients in the memory part (i.e. lower order FIR filler in the proposed model). 

This is because the MPM requires (M×N) delay terms, while the proposed model requires 

only (MAM+MPM) delay terms. 

 

4.12.3.2 Complexity of Model Estimation 

The least-squares is a commonly used approach in model estimation for ET PAs. 

The least-squares method is considered a simpler approach in estimating the polynomial 

models. The other models such as Cann and Rapp require complicated iterative estimation 



111 
 

approaches [29]. The high computational cost and the problem of convergence are two 

main drawbacks of the iterative methods. 

The type of model coefficients (e.g. real or complex) is another important aspect in 

the model computational cost. The type of the model coefficients depends on the model 

structure and applications (e.g. memoryless polynomial models use real numbers and 

quasi-memory polynomial models use complex numbers). In addition, this also depends 

on the applied approximated functions for the PA circuit characteristics. For instance, the 

Taylor model of real coefficients is widely used to model only the AM/AM conversion 

under assumption that the impact of the AM/PM conversion is negligible, because it is 

minor for a low memory model.  

The Taylor model of complex-type coefficients is used to model both the AM/AM 

and AM/PM conversions, simultaneously. Similarly, the state-of-the-art binomial and 2D-

Polynomial models for ET PA have complex-type coefficients, as described in the previous 

sections. Thus, a least-squares calculation on a complex number is required when 

estimating the model parameters.  

The computational cost of a complex mathematical operation is double or higher 

than the computational cost of a real operation [58]. For instance, the mathematical 

operation of multiplying any two real numbers costs 2 FLOPs, whereas the product of 

multiplying two complex numbers costs 6 FLOPs as illustrated  

                            ( ) ( )a jb c jd ac bd jbc jad                                   (4.61)    

where (a, b, c, d) is a set of any integer numbers. This shows that four multipliers 

( ), ( ), ( ), ( )a c b d b c a d    , and two sum operations ( ), ( )ac bd jbc jad   are required 
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when calculating the multiplication of any complex numbers. Hence, a total number of 6 

operations (i.e. 6 FLOPs) is the model implementational cost. 

  Dimensions of the model matrix in least-squares is another factor that controls the 

model complexity, because matrix inversion exhibits higher computational cost (i.e. 

multiplication, addition, and division operations).  

The advantage of the dynamic Saleh model is that all the coefficients are real. 

Hence, this property can simplify the model computational cost when identifying the model 

coefficients. On the other hand, the Hammerstein approach in the proposed model reduces 

the required number of coefficients for modeling the ET PA, since the static nonlinearity 

and memory effect are both modeled independently.  

The estimation complexity of the proposed model in terms of O(.) is an adequate 

and important measure for the model computational cost. Different model structures can 

be evaluated using the O(.) as follows:  

1. BM and 2D-MPM models: 

The calculation of the least-squares for estimating the BM and 2D-MPM is described 

using the following matrix operations: 

                                                              H H-1j = (Z Z) Z y                                                 (4.62) 

where Z is the model matrix of ( )n k complex elements, y is a vector of complex output 

measured data, and j is a vector of 1( )k   model coefficients.   
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Equation 4.62 can be re-written using matrix dimensions 

                                              
*( ) ( ) ( ) ( 1)-1j=(Z Z ) Z yk n n k k n n   

                                            (4.63) 

where Z* denotes the complex conjugate operation on Z. The complexity of each 

operation in Equation 4.63 are calculated as in Table (4.6). 

The total complexity of Equation 4.63 is a summation of the sub-operations in Table (4.6)  

                                  2 2 38 8 8 8( ) ( ) ( ) ( )TO O nk O nk O k O nk                                 (4.64) 

where OT is the total model complexity. Equation 4.64 can be simplified using the big 

O(.) notation property O(g1) + O(g2) = O(g1+ g2). Hence, this leads to 

                                                 2 316 8 8( )TO O nk k nk                                           (4.65) 

Equation 4.65 shows that complexity grows at very high rate (8 k3) in terms of the model 

number of coefficients specified by the matrix dimension (k). Therefore, reducing the 

model number of coefficients can significantly reduce the identification complexity as 

   Table (4.6) Computational cost of the least-squares calculation on complex numbers. 
 

Matrix Operation        Complexity in big O(.) 

*( ) ( )A = Z Zk n n k   
28( )O nk  

-1B = (A )  38( )O k  

( ) ( )C = B Zk k k n   28( )O nk  

( ) ( 1)j C yk n n   8( )O nk  
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verified by Equation 4.65. This also illustrates that complexity grows linearly in terms of 

the data sample size (n). 

 

2. Dynamic Saleh Model 

The extended dynamic Saleh model consists of the following 4 modeling blocks: 

extended Saleh AM/AM model, extended Saleh AM/PM model, and two FIR filters. Thus, 

a least-squares method is used to identify each modeling block. Since the model 

coefficients are real, the computational cost of the matrix pseudo-inverse is lower than the 

presented complexity for the complex numbers. Table (4.7) shows that the order of each 

operation and the total complexity is  

                 

2 3 2 3

2 3 2 3

4 2 2 4 2 2

4 2 2 4 2 2

_ _

_ _

( ) ( )

( ) ( )

T Ex AM s s s Ex PM s s s

FIR AM s s s FIR PM s s s

O O nk k nk O nk k nk

O nk k nk O nk k nk

      

    

             (4.66) 

where OEX_AM (.) is the operation order of the extended Saleh AM/AM model, OEX_PM (.) is 

the operation order of the extended Saleh AM/PM model, OFIR_AM (.) is the operation order 

for the AM/AM FIR filter, and OFIR_PM (.) is the operation order for the AM/PM FIR filter. 

Equation 4.66 can be simplified as 

                                            2 316 8 8( )T s s sO O nk k nk                                               (4.67) 

The variable ks denotes the total number of coefficients in the dynamic Saleh model. The 

estimation complexity in Equation 4.67 shows a sharp increasing rate in terms of the model 

number of coefficients, and a lower increasing rate in terms of the data size as shown in 

Figure 4.29. When comparing Equation 4.65 and Equation 4.67, the complexity is 

equivalent for the same parameters n and ks.  
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However, the estimation complexity of the dynamic Saleh model is lower than the 

complexity of MPM and MBM under the same accuracy in NMSE, due to the lower 

number of model coefficients. The complexity comparison in the number of FLOPs is 

illustrated in Table (4.8) for a model accuracy of around -42.81dB in NMSE and the 

number of data samples is 10,000. The compared complexity results in Table (4.8) illustrate 

that the identification complexity of the dynamic Saleh model is a round half the 

identification complexity of MPM and MBM. In addition to the obtained enhancement in 

the computational cost, the Saleh dynamic model can be implemented efficiently using 

parallel computational approach when estimating the model coefficients. 

 

 

 

 

 

 

Table (4.7) Computational cost of the least-squares’ calculations on real numbers 
 

Operation No. Matrix Operation       Order of Operation 

1 *( ) ( )A = Z .Zk n n k   22( )O nk  

2 -1B = (A)  32( )O k  

3 ( ) ( )C = B .Zk k k n   ( )2O 2nk  

4 ( ) ( 1)j C yk n n   2( )O nk  

 

Table (4.8) Complexity comparison in FLOPs for different behavioral models. 
 

Model Type Number of FLOPs 

Dynamic Saleh Model 65,664,000 

2D-MPM 118,957,464 

Memory Binomial 127,855,616 

 



116 
 

 Inversion instability is another common issue in a matrix of a large number of elements. 

This is another drawback in estimating the MPM and MBM, which require inversion and 

multiplying large size matrices. 

 

 

 

 

 

 

 
 

Figure 4.29 Complexity of models’ estimation in terms of coefficients and modeling data size in 

number of samples. 

 



117 
 

Chapter 5 
 

Power Amplifiers Linearization Techniques 
 

 
5.1 Introduction 

 
Signal approaches in linearizing PAs have become important aspects in modern 

wireless communications for improving the overall system signal-to-noise ratio and bit-

error-rate [31]. Circuit-based linearization techniques such as analog feedback linearizers 

were developed in the literature to cancel-out a specific order of nonlinear distortion in RF 

PAs [60]-[78]. However, analog-based approaches are often insufficient because analog 

linearizers exhibit several drawbacks, such as high sensitivity to the variation of frequency 

and signal bandwidth. In addition, most of the PA design elements are frequency-

dependent components. System level linearizers using digital signal processing techniques 

(e.g. DPD or shaping functions in ET PAs) exhibit more accuracy and implementation 

flexibility for wideband and multi-band wireless communications [80]-[85].  

   DPD models can be identified using either open-loop or closed-loop approaches. 

Adaptive modeling of DPD is a common example of a close-loop approach because the 

PA output signal is continuously acquired in the feedback branch for DPD model 

identification [65]. In other words, closed-loop DPDs are time-varying approaches, which 

exhibit better linearization performance, but the implementation complexity, bandwidth 

limitations, and stability are common design drawbacks [85]. However, open-loop DPD 

systems exhibit lower complexity and simpler implementation structure. In addition, open-

loop DPDs are simpler nonlinear functions, which are placed on the baseband branch of 

the PA [70].  
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Open-loop DPD models are typically calculated from the PA behavioral model, 

because DPD models are mathematical inverse operations of the PA nonlinearity as 

depicted in Figure 5.1. Open-loop DPD model exhibits gain expansion property to 

compensate for the gain compression effect in PAs. 

Two different modeling structures of the DPD approaches are presented in this 

chapter, the first approach is a SISO model that uses the PA manufacturing parameters, 

gain and third-order intercept point. Furthermore, a novel open-loop DISO digital 

predistortion is calculated for the PA with the ET system using a least-squares method. The 

linearity evaluation of the DPD models are compared with both the 2D-polynomial and 

binomial models.  

 

 

 

 

 
 

 
 

Figure 5.1 Block diagram illustrating the operation concept of DPD technique for PA 

linearization. 
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5.2 SISO-DPD Modeling Using IP3 

SISO-DPD models are extensively used approaches for linearizing constant-supply 

PAs in the signal digital baseband path, as illustrated in Figure 5.2. In addition, SISO-DPDs 

are deployed for ET PA, when the effect of dynamic supply is considered minor and 

negligible.  The least-squares method is the typical modeling technique widely employed 

in the literature for PA modeling. Although the least-squares method is mathematically 

straightforward, an extensive data measurement is often required for model estimation, in 

addition to the complexity of inverting a large size matrix for coefficients computation. In 

this section, we derive a new approach for modeling DPD using gain and IP3 parameters 

of the PA [78]. The DPD model can be mathematically written                                

                                                                                                                                      (5.1) 

 
where u(t) and x(t) are the DPD input and output signals, respectively. The inverse function 

is calculated by exchanging the input and output variables in the Saleh AM/AM model 

H[.], and re-arranging the equation as  

                                                                                                            (5.2) 
 
where α and β are the same parameters of the Saleh model. The inversion of the Saleh 

model is calculated by solving the quadratic Equation 5.2 with respect to the variable x. 

-1x(t) = H [u(t)]

2u β x -α x +u = 0
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2 2

1 - - 4  u
H [u] =

2  u
   


                                                          (5.3) 

 
The output of Equation 5.3 must be a real value for modeling the AM/AM DPD. Thus, the 

signal magnitude (u) should satisfy the following constraint:                             

                                                                           
2

0 u
4


 


                                                                 (5.4) 

 

The parameters α and β are calculated from the PA gain and IP3, as derived in Section 

2.2.2. Substituting Equation 2.23 and Equation 2.25 into Equation 5.3, results in the 

following SISO-DPD model [24]: 

                                                                                                               
 

                                        (5.5)                      

 

Equation 5.5 is a simple expression of two parameters (G and IP3) for a specific PA device. 

The DPD input amplitude u must be limited by the condition in Equation 5.6 to satisfy a 

real value of the DPD output signal [24]. 

 
 
Figure 5.2  Block diagram of a transmitter system with DPD in the baseband branch.  

3

3
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3IP

100 u 0.331 10

 
 
                                                      (5.6) 

 

Equation 5.6 represents a signal limiter function, which is required to maintain a 

specific signal level on the input port of the predistortion as shown in Figure 5.3 [24]. This 

equation shows that, the higher the IP3, the larger the amplitude range of the DPD input 

signal. In fact, the DPD input amplitude range is significantly large, because IP3 is a 

fictional point in PAs (e.g. around 10 dB higher than the 1dB compression point). A 

baseband WCDMA signal of 3.84 MHz bandwidth is used for evaluating the presented 

DPD model in the frequency and time domains. The results of the power spectrum density 

in Figure 5.4 illustrates a clear improvement in the upper and lower adjacent channels due 

to DPD linearization. The obtained spectrum enhancement in the ACPR is around 13.01 

dBc. The time domain evaluation of the DPD model is shown in Figure 5.5 using the 16-

QAM baseband signal, which illustrates a significant improvement in mapping the 

symbols’ constellation on the output of PA. Finally, the results of both ACPR and NMSE 

between the PA input signal and PA output with DPD are illustrated in Table (5.1). The 

ACPR is calculated in the upper and lower adjacent channels (+/-2 MHz) of the WCDMA 

signal. 

 

 
 
 

Figure 5.3 Block diagram of the AM/AM DPD model with magnitude limiter operation.  
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     Table (5.1) DPD model performance in ACPR and NMSE results for power amplifier 

linearization. 

Case 
ACPR (dBc) 

+/- 2 MHz 
NMSE (dB) 

PA input -36.05 / -36.55 * 

PA output without linearization -20.04 / -21.85 * 

PA output with linearization -33.05 / -33.97 -13.27 

 

 
 

Figure 5.4 Spectrum of WCDMA signals at the input and output of the PA with and 

without DPD model.  
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5.3 SISO-DPD Modeling Using 1dB Compression 

 

DPD modeling using the 1dB compression point is extended from the previous 

approach of the DPD modeling using the IP3 in Section 5.2 [25]. In this section, an 

additional linearization improvement is obtained compared to the previous modeling 

approach using the IP3. This approach is derived directly from modeling the PA using the 

1dB compression point in Section 2.2.2.2. By substituting the model parameters ε and μ in 

terms of gain, IP3, and 1dB compression point in Equation 5.7, results in an expression of 

the derived DPD model as depicted in Equation 5.8. The dynamic range of the DPD 

amplitude is expressed as in Equation 5.9 [25]. Finally, the DPD model assessment in a 

frequency domain is shown in Figure 5.6 in terms of power spectral density. In addition, 

Table (5.2) reports the numerical results in ACPR evaluation of the linearization technique 

[25]. 

       
(a)                                                                            (b) 

 

Figure 5.5 Constellation diagram of the 16-QAM signal on the output of the PA. (a) without 

DPD. (b) with DPD.  
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2 2ε - ε - 4 μ h

D[h] =
2 μ h

                                                              (5.7) 
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(5.9) 
 

 
 

Figure 5.6 Input and output power spectrum for the cases of a PA without DPD and a PA with 

DPD.   
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5.4 Enhanced SISO-DPD Modeling 

Polynomial-based DPD models are popular linearization techniques widely used to 

compensate for a weak-nonlinear distortion in PAs [1]. However, model dynamic range 

and system stability are common drawbacks of high order polynomials. In this section, a 

new linearization approach is derived for PAs from the enhanced Saleh model for SSPAs 

(Enhanced Saleh model is presented in 2.2.2.3). The DPD model in this work consists of 3 

parameters and can be deployed for strong-nonlinearity PAs. The mathematical 

representation of the DPD model is 

                                                                            
1

esu(t) = F (d(t))
                                                                    (5.10) 

 

where d(t) and u(t) are the envelope signals of the DPD model input and output, 

respectively. Fes
-1[.] denotes the DPD model. The inverse function of the enhanced Saleh 

model can be expressed as  

                                                                             
2

2

α u + λ u
d =

1 + β u
                                                                     (5.11) 

 
The quadratic form of Equation 5.11 is  
 

                                                                      
2(d β-λ)u -α u +d = 0                                                                 (5.12) 

Table (5.2) The linearization capability in ACPR of the digital predistortion model.  
 

     WCDMA Band 
                   Without 

Linearization 
(dBc) 

With Linearization 
(dBc) 

Upper Band -18.42 -31.23 

Lower Band -19.59 -32.12 
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The solution of Equation 5.12 is computed using the following quadratic formula, and by 

considering the negative sign in the root term for real and normalized output amplitude  

 

                                                             
2 2

1
es

α - α - 4 β d + 4 d λ
F (d) =

2 d β - λ
                                                      (5.13) 

 

The following constraint on the DPD input amplitude is required to meet the condition of 

real amplitude value. 

                                                                           
2 2λ + λ + β α

d
2β

                                                                (5.14) 

The signal clipping constraint in Equation 5.14 can be used in a combination with 

other clipping approaches for power efficiency enhancement in OFDM signals. This is 

because OFDM signals exhibit high-peak to average power ratio. 

The evaluation results of the DPD model are illustrated using the AM/AM conversion for 

the PA and DPD model as depicted in Figure 5.7.  

The DPD model evaluation using a 16-QAM OFDM signal is depicted in Figure 

5.8, which shows a signal constellation diagram consisting of the reference symbols as well 

as the amplified symbols.  The presented DPD model in this work is numerically more 

stable than the higher-order Taylor model, and it can be deployed for strong nonlinearity 

PAs over an adequate amplitude range.  
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Figure 5.7 The AM/AM characteristics of the PA and DPD model.  

 
(a)                                                                                     (b) 

 

Figure 5.8 Constellation of 16-QAM OFDM baseband output signal. (a) PA with DPD. (b) PA 

without DPD.  
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5.5 DISO-DPD Modeling for ET PA 

 

The time-varying supply voltage exhibits significant effects on the model accuracy 

and nonlinear distortion of ET PAs as discussed in the literature [18], [19], [27]. A dual-

input open-loop digital predistorter model is derived in this work by inverting the extended 

Saleh model [27]. The DPD model based on the extension of the Saleh model considers 

the supply voltage as an additional independent input variable to account for the dynamic 

nonlinear distortion in both AM/AM and AM/PM conversions.  

The extended AM/AM and AM/PM models of DPD are combined using complex 

polar operation, as illustrated in Equation 5.15. The amplitude linearizer (AM/AM DPD) 

is calculated by inverting the ET PA AM/AM function, and the phase linearizer (AM/PM 

DPD) is calculated by inverting the ET PA AM/PM function [27]. The estimation of the 

PAAM(.) and PAPM(.) functions are described in Chapter 4 to model the ET PA  

                ( , ) PM enj PA x,v
en AM enz x v PA x,v e  (5.15) 

 
where z is the ET PA complex baseband output signal, x and ven are the ET PA complex 

baseband input and the dynamic supply voltage, respectively. 

 

5.5.1 Predistortion of the AM/AM Conversion 

 
The AM/AM digital predistortion function DA(.) is expressed as 
 

                                                      1
A en AM enD u,v PA x,v                                                (5.16) 

 

where u is the DPD complex baseband input signal and PAAM(.) is the ET PA static AM/AM 

function, which was derived in Section 4.7, and can be re-expressed [27]  
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x



                                                           (5.17) 

 

where 𝜶 = 𝛼  , 𝛼 , … .  𝛼  𝑎𝑛𝑑 β= 𝛽  , 𝛽 , … . 𝛽  are two vectors consisting of the ET 

PA model coefficients. vα and vβ are the vectors of the envelope voltages as expressed in 

 Equation 4.32 and Equation 4.33, respectively. The output signal of the AM/AM-DPD 

function represents the input signal of the ET PA, because the PA and DPD are connected 

in-series as shown in Figure 5.1. Thus, the DAM (.) function is 

 The modeling objective of the DAM(.) function is to compensate for static AM/AM 

nonlinear distortion in the ET PA. Therefore, the condition to be satisfied by a linearized 

ET PA AM/AM is expressed  

       ( ( , ))AM AM enPA D u v u  (5.19) 

 
Substituting Equation 5.18 and Equation 5.19 into Equation 5.20, results in the following:  
 
 

T

2T1

αv

βv

x
u

x








 (5.20) 

 

      
2T T 0βv αvu x x u     (5.21) 

 
The solution of the quadratic formula in Equation 5.21 is [27] 
 
 

2T T 2 T( ) 4

2

αv αv βv

βvT

u
x

u

  



 
  (5.22) 

 

                                                                                                                     ( , )AM enD u v x  (5.18) 
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 A negative sign is considered in the root-square term, because the variable |𝑥| is real and 

normalized in this work. Equation 5.22 is valid on the following magnitude interval [27] 

 

  The DPD coefficients α and β in Equation 5.22 are calculated from the ET PA 

modeling described earlier in Section 4.7.1. A simulation result of Equation 5.22 is shown 

in Figure 5.9 of the output amplitude |𝑥| with respect to the input amplitude |𝑢| and the 

envelope signal (ven). The implementation of the AM/AM-DPD model in Equation 5.22 is 

represented in a simplified block diagram consisting of mathematical operations as in 

Figure 5.10. 
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                                                Supply Voltage 

 
 

Figure 5.9   AM/AM DPD model versus the input amplitude and supply voltage. 
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5.5.2 Predistortion of the AM/PM Conversion  
 

The AM/PM modeling of the DPD is calculated from the PA phase function using 

a complex system domain. In general, the overall phase of two complex systems in series 

represents a sum operation of the two functions. Hence, the AM/PM DPD model is 

calculated directly from the ET PA AM/PM function, because the DPD model is typically 

followed by the ET PA.  

The AM/PM DPD function DP(.) is used in this dissertation to eliminate the ET PA AM/PM 

nonlinearity [27], which is mathematically satisfied by the following condition: 

 

                                                                      
( ( , )) ( ( , )) 1P en enj D u v j x ve e                                                                              (5.24) 

 
 

where θ(.) is the ET PA AM/PM function, which was derived earlier in Section 4.12 and 

 
 

 

Figure 5.10  Mathematical operation structure of the AM/AM DPD. 
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is expressed  
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  (5.25)

 

 Substituting Equation 5.17 into Equation 5.24, results in the following DP(.) function [27]. 
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 (5.26)

 

where 𝝀 𝑎𝑛𝑑  𝛄 are the ET PA coefficient vectors, which were derived earlier in Section 

4.12.1. Figure 5.11 depicts the expansion curvature of the Dp(.) phase function with respect 

to the magnitude of the input amplitude |𝑢| and envelope signal (ven) using the same ET 

PA coefficients estimated from the least-squares method [27].  

Finally, the combined DPD model of the AM/AM function DA (.) and the AM/PM 

function DP (.) in a complex notation are represented as follows: 

 

 
                 

 ( , )( , ) ( , ) P enj D u v u
en A enx u v = D u v e 

   (5.27) 

 

A block diagram of a complete DPD architecture in Equation 5.27 with the ET PA is shown 

in Figure 5.12 using two independent blocks of magnitude and a phase linearizer model.  

The calculated DPD expressions in Equations 5.22 and Equation 5.26 exhibit 

simple AM/AM and AM/PM DPD models. Furthermore, the proposed DPD model uses 

the same coefficients of the proposed ET PA model. This is another advantage that can 

significantly reduce the computational cost of the DPD identification [27].  
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Figure 5.11   The AM/PM predistortion function in terms of the input amplitude and supply voltage 
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Figure 5.12  Block diagram of the AM/AM and AM/PM DPD functions in cascade with the 

envelope tracking power amplifier. 
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5.6 Evaluation of the DPD Model  

All DPD models exhibit limitations in practical applications for mitigating the 

nonlinear distortion of PAs. This is because the hysteresis nonlinearity in PAs is difficult 

to characterize and it results from many different independent and dependent sources. In 

addition, phase and memory effect in PAs are changeable and difficult to quantify 

precisely. Therefore, DPD performance is often limited to cancel-out all the nonlinear 

distortions in RF PAs. The DPD linearization capability is evaluated in time domain and 

frequency domain. The NMSE evaluation in time domain and ACPR evaluation in 

frequency domain are two most widely used figures-of-merit for evaluating the 

linearization performance [55]. NMSE and ACPR are defined, respectively as follows: 
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u n





 
 

 
  

 
 
 




                                                      (5.28) 

 
where u is the DPD input signal and z is the PA output signal with DPD model in-series.  

N is total number of symbols in each signal. ACPR is a figure-of-merit specifying the power 

spectral emission in the nearby channels of the baseband signal due to the RF PA nonlinear 

distortion. ACPR is a power ratio in a frequency domain between the adjacent channel 

power and the desired channel power, which is calculated using [27] 
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    (5.29) 

 
where Po(f) is the output power spectral density, fc is the center frequency, Bds is the 

bandwidth of the desired signal, Badj is the bandwidth of the adjacent channel, and fofs is the 

offset frequency. The parameters of the ACPR (fc , Badj , fofs ) are clearly illustrated in Figure 

5.13 on the graphical baseband PSD wireless baseband signal. 
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Figure 5.13 ACPR parameters representation depicted on the spectrum of baseband signal. 
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5.6.1 Modeling Results of the Digital Predistortion  

The DPD model in this work is evaluated using the baseband WCDMA signal. The 

DPD evaluation in a time domain using both the AM/AM and AM/PM conversions of the 

PA is depicted in Figure 5.14 for the RF PA with and without DPD model [27]. This 

illustrates a clear linearity improvement in the AM/AM conversion as depicted in Figure 

5.14 (a), in addition to phase enhancement in Figure 5.14 (b).  

The performance of the DPD linearization in a frequency domain using the PSD is 

illustrated in Figure 5.15 [27]. A spectrum improvement of -17.11/-16.75 dB in ACPR is 

obtained due to the DPD linearization [47]. 

The model complexity in number of coefficients and linearization efficiency in 

ACPR are illustrated in Table (5.3), as compared with the state-of-the-art dual-input 

polynomial and binomial DPD models [27]. Finally, the ET PA with DPD is evaluated 

using the 16-QAM signal as shown in the signal constellation diagram of Figure 5.16. The 

scattering effect due to the nonlinear distortion of the ET PA without DPD is depicted in 

Figure 5.16 (a) and the improvement in symbols constellation diagram is in Figure 5.16 

(b). 
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Figure 5.14  Nonlinear memory conversions of the ET PA, before and after linearization (a) 

AM/AM conversion (b) AM/PM conversion.   
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Table (5.3) Model evaluation of the ET PA linearization using different digital predistortion 
models. 

 

Case Nonlinear Order Number of 
Coefficients 

ACPR (dBc) 
-/+4 MHz 

PA Input * * -65.85/-64.32 

PA Output * * -35.22/-34.56 

Classical Saleh DPD * 4 -38.03/-36.82 

Extended Saleh DPD 
NA=2, NB=4, Pa=2, Pb=3 11 -51.28/-50.25 

NA=6, NB=5, Pa=5, Pb=2 18 -52.33/-51.31 

Dual-Input DPD 
Polynomial 

 

K=2, N=5 15 -51.15/-50.20 

K=3, N=9 36 -52.78/-51.69 

Binomial DPD 
Q=5 21 -50.81/-49.78 

Q=7 36 -52.35/-51.37 

 

 
 

Figure 5.15  Power spectrum density of the ET PA output with and without digital predistortion. 
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5.6.2 Complexity of the Digital Predistortion 
 

Two popular approaches are typically employed for modeling DPDs, direct-

learning and indirect-learning. In the indirect-learning approach, the PA and DPD are 

modeled independently. On the other hand, the direct-learning approach requires a direct 

mathematical operation (e.g. P-inverse) when inverting the ET PA function, using the same 

 
(a) 

 

 
(b) 

 

Figure 5.16 Measured 16-QAM signal constellation on the output of the PA. 
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model coefficients of the ET PA [50]. Most of the DPD models for ET PA are estimated 

using the indirect-learning approach, because it is mathematically difficult to invert dual-

input behavioral models of ET PAs, especially when the model consists of many 

coefficients.  

The modeling complexity of the DPD model using the inversion of the extended 

Saleh model is lower than the modeling complexity of MPM and MBM. This is because 

the parameters’ extraction of the dynamic Saleh model requires around half the 

computational cost of the 2D-MPM and MBM models, as demonstrated in Section 4.12.3, 

and the 2D-DPD model uses the same coefficients of the ET PA model. The proposed DPD 

functions can be used with any ET system.  
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Chapter 6 
 

Conclusions and Future Work 
 
6.1 Conclusions 

 
This dissertation has presented new behavioral modeling and linearization 

techniques for ET PAs and constant-supply RF PAs in communication systems. The static 

nonlinearity in the RF PA was estimated in this work using the technical design parameters 

of the constant-supply PA such as gain, IP3 and P1dB. In addition, a DPD model was 

calculated by using the inversion of the Saleh behavioral model from the PA parameters, 

gain, IP3, and P1dB. This approach facilitates both the modeling and DPD of RF PAs, since 

the gain, IP3, and P1dB are easily provided from the manufacturing data sheets. 

The Hammerstein model was used in this dissertation to quantify the dynamic 

nonlinearity in the AM/AM conversion of ET PAs. In addition, two different approaches 

were used to model the dynamic nonlinearity in the AM/PM conversion, the 2D-MPM and 

the Hammerstein model architecture. In the Hammerstein approach, the dynamic 

nonlinearity was decomposed into a static model in series with a FIR digital filter. 

The static nonlinearities in AM/AM and AM/PM modeling were calculated using 

the proposed extensions of the Saleh model for dynamic-supply PAs. The evaluation results 

showed that the accuracy of the Saleh empirical model is significantly improved when 

including the effect of the dynamic supply voltage.  

The dynamic Saleh model was developed to predict with adequate accuracy the 

AM/AM, AM/PM, and long-term memory effects in the ET PA. The long-term memory 

effect in AM/AM and AM/PM conversions is a specific challenge in the ET PA because 

of time-varying supply voltages, in addition to the effect of the energy storage elements 
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(e.g. capacitors and inductors) in ET PA circuits. The long-term memory effect was 

modeled using two digital FIR filters, one filter for the AM/AM conversion and another 

filter for the AM/PM conversion.  

All the model coefficients (static and memory models) were calculated by solving 

normal equations using the least-squares method. Distortion effects in the ET PAs were 

mathematically analyzed using the proposed model and compared to the state-of-the-art 

ET PA models, such as the memory binomial and memory polynomial models.  

The modeling accuracy performance was evaluated in the time and frequency 

domains using NMSE and ACEPR. The optimal NMSE and ACEPR were calculated by 

sweeping the model parameters such as the nonlinear orders of the extended Saleh model 

and the memory-depth of the FIR filters. The optimal accuracy obtained for the proposed 

behavioral model is -42.48 dB in NMSE and -51.80 in ACEPR using 20 coefficients. All 

the model coefficients are real numbers. Therefore, a reduction in the complexity (number 

of FLOPs) of the model estimation was observed and compared to the state-of-the-art 

models of complex type coefficients.  

DPD models for linearizing ET PAs were calculated mathematically by inverting 

the extended static AM/AM and AM/PM conversions. Hence, this approach compensated 

for nonlinear distortion due to both amplitude variation and phase deviation. 

The capability to improve the linearity of the PA was evaluated using NMSE and 

ACPR with respect to the swept model’s nonlinear orders. The optimal results of the DPD 

model with the ET PA in NMSE and ACPR are -30.58 dB and -52.33/-51.31 dBc, 

respectively, using a WCDMA signal. The DPD model results showed a significant 
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reduction of the spectrum regrowth in the power spectrum density and time domain 

AM/AM and AM/PM distortions. 
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6.3 Future Work 

 
The performance of RF PAs exhibits a dominant impact on the overall 

communication transceivers, in particular for massive Multi-Input Multi-Output (MIMO) 

systems and fifth-generation (5G) wireless communications. The 5G systems will require 

more integrated PAs in RF chains. Thus, the power efficiency and linearity of multiple 
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PAs have become more challenging and critical than 3G/4G systems. The ET and DPDs 

are more attractive approaches for power efficiency and linearity enhancements to 

overcome the challenges and reliability of MIMO and beamforming systems. In addition, 

the higher bandwidth, data rate and the complex modulation schemes in future 

communications will require a complicated modeling and linearization approach to 

address such effects on ET PAs. Hence, we suggest the following future work: 

1.   Implementing and evaluating the proposed model using multi-band wireless 

signals. 

2.   Compensating for the long-term memory distortion effect in the ET PA. 

3.  Using an IIR filter instead of a FIR filter for the dynamic AM/AM and AM/PM 

conversion which might lower the number of coefficients and computational costs. 

4. Implementing an adaptive DPD using the extended Saleh model. 
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