
 Procedia Computer Science 96 (2016) 485 – 494

Available online at www.sciencedirect.com

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International
doi: 10.1016/j.procs.2016.08.110

ScienceDirect

20th International Conference on Knowledge Based and Intelligent Information and Engineering
Systems

Growing Neural Gas as a memory mechanism of a heuristic to solve

a community detection problem in networks

Camila Pereira Santosa, Mariá C. V. Nascimentoa,∗
aInstituto de Ciência e Tecnologia, Universidade Federal de São Paulo (UNIFESP)

Av. Cesare M. G. Lattes, 1201, Eugênio de Mello, São José dos Campos-SP, CEP: 12247-014, Brasil

Abstract

Iterative heuristics are commonly used to address combinatorial optimization problems. However, to meet both robustness and

efficiency with these methods when their iterations are independent, it is necessary to consider a high number of iterations or

to include local search-based strategies in them. Both approaches are very time-consuming and, consequently, not efficient for

medium and large-scale instances of combinatorial optimization problems. In particular, the community detection problem in

networks is well-known due to the instances with hundreds to thousands of vertices. In the literature, the heuristics to detect

communities in networks that use a local search are those that achieve the partitions with the best solution values. Nevertheless,

they are not suitable to tackle medium to large scale networks. This paper presents an adaptive heuristic, named GNGClus, that

uses the neural network Growing Neural Gas to play the role of memory mechanism. The computational experiment with LFR

networks indicates that the proposed strategy significantly outperformed the same solution method with no memory mechanism. In

addition, GNGClus was very competitive with a version of the heuristic that employs an elite set of solutions to guide the solution

search.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of KES International.

Keywords: Growing Neural Gas; Community Detection in Networks; Heuristic Methods

1. Introduction

Many real networks, commonly represented by graphs, are characterized by groups of highly related vertices.

To detect communities in these networks, one may employ strategies based on the optimization of the well-known

modularity measure1. The modularity maximization problem is NP-Complete2, mostly approached by heuristics.

The primary reason is that a lot of instance problems are intractable by optimization solvers that aim at proving their

optimality.

Strategies optimizing modularity are widely employed achieving effective community structures in networks. The

existing modularity maximization-based heuristics, besides aiming to find good heuristic solutions, usually tackle the

issue of overcoming some unexpected partitions achieved by solving this problem. One reason is that, in spite of

∗ Corresponding author. Tel.: +55-12-3924-9500

E-mail address: mcv.nascimento@unifesp.br.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional UNIFESP

https://core.ac.uk/display/294813096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.08.110&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.08.110&domain=pdf

486 Camila Pereira Santos and Mariá C.V. Nascimento / Procedia Computer Science 96 (2016) 485 – 494

the good quality of solutions found through this approach, maximizing modularity may be a bad choice to detect

communities in networks. The drawbacks in modularity appear in networks whose scale of the community structures

with regard to the size of the networks reaches a limit3. There are a few attempts to address this issue by adjusting the

modularity in the literature.

This paper proposes an adaptive strategy that employs the neural network Growing Neural Gas (GNG) to optimize

the adjusted modularity. The mapping of the search space by GNG to guide the solution method is a form of avoiding a

local search strategy that is too costly. The computational experiment carried in this paper indicates that the introduced

strategy outperformed the same strategy without memory mechanism. Moreover, it was very competitive with a

version guided by the elite set of solutions, suggested in4. The performance analysis was in accordance with the

performance profiles introduced in5.

2. The modularity maximization problem

The community detection problem in networks can be defined as a combinatorial optimization problem, whose goal

is to find a partition with the largest possible value for a quality measure. Among the existing measures to perform

this task found the literature, it is worth mentioning the modularity1 and the map equation6.

Let G = (V,E,φ) be a weighted simple graph, where V (G) is its set of vertices and E(G) its set of edges. An

element from E(G) is represented by a tuple (u,v), where u,v ∈V (G). The function φ : E(G)→ ℜ is a function that

assigns a weigh to each edge of E(G). The neighborhood of a vertex v, denoted by N (v), is composed of all vertices

z such that (v,z) ∈ E(G). Therefore, if y ∈ N (v), then y is a neighbor of v. A modularity formulation is presented in

Equation (1).

q(C) =
1

2m ∑
C∈C

∑
i, j∈C

(
φ(i, j)−λ

dG(i)dG(j)
2m

)
(1)

where m is the total weight on the edges of the graph, C is a vertex partition and dG(i) is the degree of vertex i, defined

as dG(i) = ∑|V (G)|
j=1 φ(i, j) and λ is a parameter to be adjusted according to the graph topology (considering the original

modularity formulation, it is set as 1). In unweighted graphs, the weight of each edge is unitary and null, if there is no

edge between a pair of vertices. The expected weight between a pair of vertices i and j according to the null model is
dG(i)dG(j)

2m . Then, the measure evaluates if a pair of vertices in the same community has a high clustering tendency if

in a random graph with the same degree sequence as G this pair has a low expected number of edges between them.

The parameter λ aims at controlling the resolution limit pointed out in3. Reichardt et al. 7 proposed this parameter

adjustment and, roughly, the lower its value, the better the measure for larger communities. Among the few attempts

to automatically adjusting this measure is that proposed in8. The authors proposed the use of a multi-layer perceptron

to adjust λ depending on the graph topology.

3. Proposed Solution Method

The Growing Neural Gas (GNG) network, proposed in9, is a Self Organizing Map (SOM) network that combines

characteristics of the Neural Gas (NG)10 and the Competitive Hebbian Learning (CHL)11. According to12, the

network grows and self-adapts as the data are presented to it.

In this paper, the neural network will be modeled as a graph H = (A,F), where A represents the nodes of the neural

network, and F represents the edges between the nodes of the network. Each node a ∈ A from the neural network

stores a partition of the network G under consideration. The age of an edge c of the neural network is denoted by agec.

To address the community detection problem, the proposed strategy considers the pairwise relationship between

vertices in a partition the weights on the GNG network nodes. Each node of the GNG network is represented by a

n×n matrix of weights wa. An element in row i and column k in this matrix is denoted by wi,k
a and is valued equal of

greater than 0.5 if vertices i and k are in the same community, and less than 0.5, otherwise. It is noteworthy that wa

is symmetric. Therefore, we can just consider the superior triangular matrix resulting in
|V |2

2 −|V | memory positions.

The structure nodes is a vector of pointer to matrices of weights of the partitions corresponding to the nodes of the

GNG network. The matrix of weights wa corresponding to a partition of node a is obtained by wa = nodes(a).

487 Camila Pereira Santos and Mariá C.V. Nascimento / Procedia Computer Science 96 (2016) 485 – 494

GNG will be employed in the proposed community detection algorithm to insert an adaptive condition in the

strategy. The general pseudocode of the proposed strategy, named GNGClus, is presented in Algorithm 1.

Algorithm 1: GNGClus

Data: G = (V,E), maxIter

Output: Partition C ∗
1 Define C as singletons

2 nodes:= structure that contains the nodes of the GNG network

3 H = (A,F), A = {a1;a2}, nodes(a1),nodes(a2) := random partitions

4 for iter = 1 to maxIter do
5 CC = Construction Phase(G,C ,Q,α)

6 if iter < 15 then
7 GNG(H,nodes, iterGNG , CC)

8 end
9 else

10 if Q(CC)≥ 0.6Q̄ then
11 GNG(H, nodes, iterGNG, CC)

12 end
13 if (i+1) mod 3 then
14 Contractions GNG(G,H,nodes)

15 end
16 end
17 end
18 w∗:= node with highest error in the GNG network

19 C ∗:= partition obtained from w∗.

Algorithm 1 has as input the graph G to detect communities and the maximum number of iterations of GNGClus.

It returns the final communities in the set C ∗. Each node a ∈ A of the neural network stores a partition of G. The

GNG network initiates with two nodes, a and b, with random partitions. In order to define a random partition, each

position of the weight matrix is randomly selected with real numbers between 0 and 1.

In the first iterations of GNGClus, every solution obtained is presented to the GNG network as an input. After a

number of iterations of the proposed strategy, however, only if the current solution, CC, has an adjusted modularity

higher than or equal to 60% of the average values obtained on the iterations, indicated as Q̄, the partition CC is

presented as an input to the GNG network.

Additionally, at each three iterations, the vertices that appear in the same community in the three nodes with the

highest errors of the GNG network are definitively contracted by the procedure Contractions GNG. This idea was

suggested in4, by considering an elite set containing the best solutions found by their algorithm. In the end, the node

of the GNG network with the highest error, w∗, indicates the final communities.

The task of mapping the vertices to the communities according to this matrix is not direct. The reason is that the

transitivity rule does not necessarily hold for the weight matrix. Therefore, this paper proposes a procedure to produce

C ∗: for each vertex i ∈ V (G), if i was not assigned to a community in C , it must be assigned to a new community.

Then, for each vertex j ∈ V (G), i � j, j is assigned to the same community as vertex i, if wi,t
h∗ > 0.5 for at least

half of the vertices t already assigned to this community. The computational complexity of the proposed strategy is

O(|V |2|E|+ |V ||E|2) and each of its phases and procedures is explained in the next sections.

3.1. Construction Phase

In the proposed Construction Phase, the contraction of edges results in an operation of creating supernodes in the

network. At each iteration of this phase, an edge is contracted until the stop criterion is reached. When it does, the

resulting supernodes are the communities of the network, here denoted as C . A community of C is referred as C.

488 Camila Pereira Santos and Mariá C.V. Nascimento / Procedia Computer Science 96 (2016) 485 – 494

The quality of an edge contraction, that means the partition resulting from the contraction of a pair of vertices v and

c with regard to the former communities in C , must be calculated. Equation (2) assesses this variation in the adjusted

modularity, if v and c will be considered in the same community.

ΔQ(C ,v,c) =
1

m

(
(φ(v,c)−λ

dG(v)dG(c)
2m

)
(2)

Notice that both v and c might represent supernodes from previous edge contractions. For this reason, the ver-

tex degrees and edge weights must be carefully updated after edge contractions in order to properly represent the

supernodes in the graph.

In the first iteration of the Construction Phase, the vertices are singletons. Algorithm 2 shows a pseudocode of this

phase.

Algorithm 2: Construction Phase

Data: G = (V,E) , initial partition C , adjusted modularity value Q, α
Output: partition CC

1 Let M be the list of all possible edge contractions (v,c) sorted in decreasing order of ΔQ(C ,v,c)
2 repeat
3 Create RCL with the �α |M|� first elements of M.

4 Pick at random an element of RCL, denoting such element as (v,c)
5 Update C by assigning c to the same community as v
6 d(v) = d(v)+d(c)
7 Update (v, i) ∈ M,∀i ∈ N (v).

8 for k ∈ N (c) do
9 if (v,k) � E(G) then

10 E(G) = E(G)+(v,k)
11 φ(v,k) = φ(k,c)
12 Insert (v,k) in M in the corresponding position according to ΔQ(C ,v,k)
13 end
14 else
15 φ(v,k) = φ(v,k)+φ(k,c)
16 Update (v,k) ∈ M according to ΔQ(C ,v,k)
17 end
18 end

19 Remove (c, j) from M, ∀ j ∈ N (c)
20 V (G) =V (G)− c

21 Q(C) = Q(C)+ΔQ(v,c)
22 until ΔQ(v,c)> 0 and |M|> 0;

The inputs of Algorithm 2 are the graph G under consideration, an initial partition C , in this case, the singletons,

its adjusted modularity value Q, and the α ∈ [0,1] value, which defines the degree of randomness on the movement

choice. The closer to 1 the parameter α is, the more random the strategy. The parameter α was set as 0.5, as suggested

in4.

Initially, the algorithm constructs a list M of all possible edge contractions, sorted in decreasing order of adjusted

modularity gain. The Restricted Candidate List (RCL) contains the best �α|M|� edge contractions from M. The stop

criterion of the strategy is either there exists no element in M or the corresponding edge contractions of the list have

negative adjusted modularity gain. For each edge contraction (v,c), the node c is moved to the community of v and

node c is contracted in the supernode v. For each vertex k adjacent to c, φ(c,k) is added to φ(v,k), if (v,c) already

exists. Otherwise, a new edge (v,k) is created with φ(v,k) = φ(c,k). In both cases, the new modularity gain of

489 Camila Pereira Santos and Mariá C.V. Nascimento / Procedia Computer Science 96 (2016) 485 – 494

contracting (v,k) is calculated and the edge contraction is inserted or updated to keep M ordered. The edges incident

to v are also updated in M, since the degree of v has changed. Finally, vertex c and all its edge contractions are

effectively removed from the graph and the list M. The adjusted modularity value of the partition is incremented and

the RLC is updated.

Máximo et al.13 proposed an algorithm named Intelligent-Guided Adaptive Search to solve the maximal location

covering problem. IGAS consists in a hybridization of the GNG network with the well-known metaheuristic Greedy
Randomized Search Procedure (GRASP)14. GRASP is a two-phase iterative method. The first phase builds a solution

from the scratch, using a semi-greedy-based strategy, the construction phase. The solution is then refined in the local

search phase.

Máximo et al.13 observed that the GRASP heuristic is iteration independent since it has not any memory mecha-

nism to guide next iterations. Bearing this in mind that the authors embedded in the construction phase of GRASP

a learning stage considering the GNG network. The best solutions obtained by GRASP are presented to the GNG

network as an input signal.

In this paper, instead of guiding the choice by elements to insert in the partial solutions, the GNG network guides

which pair of vertices should belong to the same cluster in every posterior iterations. Accordingly, the GNG network

indicates the pair of nodes to be contracted in the graph under consideration. Moreover, as the local search in com-

munity detection problems has a very poor performance, being inefficient, this stage will not be considered in the

proposed strategy.

3.2. Growing Neural Gas

The pseudocode in Algorithm 3 details the adaptation phase of the GNG network.

Algorithm 3: Adaptation Phase

Data: the GNG network H = (A,F) and structure nodes, γ
1 γ := inputSignal()

2 s1,s2 := the closest nodes to γ
3 error(s1) := error(s1)+(||ws1 − γ||)2

4 Δ(ws1
) := μ1(γ −ws1

)
5 Δ(wv) := μ2(γ −wv) , ∀v ∈ N (s1)
6 if z = (s1,s2) ∈C(H) then
7 agez = 0

8 end
9 for c ∈C(H) do

10 agec := agec +1

11 if agec > gmax then
12 H := H − c
13 if dg(v) = 0, for some v, end of c then
14 H := H − v
15 end
16 end
17 end

The proximity of a pair of nodes v and u is the variation of the average squared error between the matrices of

weights of the nodes, wv and wu. The values of the errors of the nodes are used to identify the regions of the network

with the largest errors. This study employs the mechanism proposed in12 that, during the iterations the edge ages are

incremented to identify the oldest ones. Accordingly, the algorithm has a mechanism to remove old (unvisited) edges

of the network, i.e., those older than a threshold gmax. The parameter gmax was empirically set to 20. If the removal of

an edge results in isolated vertices, those are removed from the GNG network.

After θ adaptations, the algorithm performs the growing neural phase, detailed in Algorithm 4.

490 Camila Pereira Santos and Mariá C.V. Nascimento / Procedia Computer Science 96 (2016) 485 – 494

Algorithm 4: Growing Neural Phase

Data: network H = (A,C)
1 q := node with the largest acummulated error.

2 f := f ∈ N (q) with the largest accumulated error.

3 A(H)∪ r, wr := 0.5(wq +w f).
4 C(H)∪{(r,q),(r, f)}
5 C(H)− (q, f)
6 error(q) := error(q)χ
7 error(f) := error(f)χ
8 error(r) := error(q)
9 ∀a ∈ A(H),error(a) := error(a)β

Algorithm 5: GNG

Data: Network H = (A,F), the set of weight matrices nodes, iterGNG, partition C
1 γ = weight matrix of C
2 H = Adaptation Phase(H,nodes,γ)

3 if iterGNG mod θ then
4 H = Growing Neural Phase(H,nodes)

5 end
6 iterGNG := iterGNG +1

Therefore, the GNG strategy is summarized in Algorithm 5.

As observed in Algorithm 5, C is used to obtain a matrix of weights by defining, for each i, j ∈V (G), wi, j
γ = 1, if i

and j are in the same community and 0, otherwise. Next, γ is used in the Adaptation Phase of GNG. The asymptotic

complexity of adaptation phase is O(|A||V |2).
In this paper, θ was empirically defined as 5. The Growing Neural Phase asymptotic complexity is O(|A||V |2).

4. Computational Experiment

The proposed algorithm, named GNGClus, has a high resemblance with a strategy introduced in4, called ConClus.

For this reason, in the computational experiment, its results are compared with those achieved by ConClus. Addi-

tionally, this experiment presents the results achieved by the version of the construction phase without the contraction

strategy and memory mechanism. The key difference between ConClus and GNGClus is in the choice of which pairs

of vertices to contract. The former takes into account the pairs of vertices that are in the same community in 50%

of an elite set of solutions. The latter considers the GNG network to perform these contractions, as presented in the

previous section. The number of iterations of GNGClus was set as 30, the same number of iterations of ConClus and

Construction Phase. This number was chosen after experiments performed in4.

The experiment evaluates the performance of GNGClus, in a set of 80 artificial undirected networks, generated by

the software introduced in15. In the literature, networks generated by this software are referred as LFR networks. The

set of LFR networks has graphs with less fuzzy communities to more mixed communities. This feature is controlled

by the mixture parameter, that the higher it is, the more overlapping communities are defined. This parameter, here

referred as μ , ranges from 0.1 to 0.8 in the graphs considered in the experiments. All LFR networks in this experiment

have 1000 vertices. The other parameters used to define these networks are the same as in16. For each mixture

parameter, 10 networks are considered.

The strategy found in8 , which identifies an interval for the adjustment parameter value, was used in the three

algorithms of this experiment to provide the adjustment parameter of modularity. Alike the consensus strategy of4,

the algorithm under consideration is used to obtain a partition for f ive different values of the adjusted parameter

491 Camila Pereira Santos and Mariá C.V. Nascimento / Procedia Computer Science 96 (2016) 485 – 494

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

μt

GNGClus
ConClus
Construction Phase

GNGClus
ConClus
Construction Phase

GNGClus
ConClus
Construction Phase

(a) Mean NMI values.

0.0 0.2 0.4 0.6 0.8

0

10

20

30

40

μt

GNGClus
ConClus
Construction Phase

GNGClus
ConClus
Construction Phase

GNGClus
ConClus
Construction Phase

(b) Mean times for each mixture degree.

Fig. 1. Average results achieved by GNGClus, ConClus and Construction Phase.

interval. A final partition is constructed by assigning vertices that appear in the same cluster in more than 50% of the

partitions obtained by the adjusted parameters.

As the LFR networks have the expected partitions, they are used as referential to assess the quality of the achieved

results. For this, the results obtained by the algorithms are contrasted with the expected partitions using the well-

known Normalized Mutual Information (NMI) metric17. The closer to 1 this value is, the more similar to the expected

partitions the results are. Figure 1 displays the average results obtained by the three tested algorithms.

According to Figure1.a, GNGClus and ConClus had a very competitive behavior, significantly outperforming the

Construction Phase in both time and NMI. The results achieved by GNGClus, according to these averages, apparently

have a more competitive behavior with networks with mixture degree higher than 0.5. To present a more robust

analysis of the results obtained by the three algorithms to investigate this hypothesis, we present the performance

profiles of5. According to them, to assess how effective is an algorithm s that belongs to a set of algorithms S to solve

a problem p from a set of problems P, the following ratio must be considered:

rp,s =
tp,s

min{tp,so f : ∀so f ∈ S} (3)

In this case, the metric to be analyzed must be minimized, as, for example, the time to solve a problem. The ratio

is always greater than or equal to 1. To assess the effectiveness of an algorithm to solve the set P of problems, one

must evaluate the percentage of problems that an algorithm solves within a factor τ , calculated as:

ρ(τ) =
1

|P| |{p ∈ P : rp,s ≤ τ}|.

As in our experiment we analyze both time and NMI values, for the latter, we will have to adapt this ratio to take

into account the goal of maximizing a metric. In this case, the ratio is defined to be the difference between the highest

NMI value obtained to solve a problem p and the NMI value obtained by the algorithm s to solve p.

The performance profiles considering the networks with the parameter mixture degree higher than 0.5, 0.6, 0.7 and

0.8 are presented in Figure 3.

According to the performance profiles considering the NMI values, the major difference in the algorithms occurs

for low values of τ . Additionally, the difference gets smaller as the mixture degree increases. Both GNGClus and

ConClus clearly outperformed Construction Phase with respect to the NMI values. However, the Construction Phase

492 Camila Pereira Santos and Mariá C.V. Nascimento / Procedia Computer Science 96 (2016) 485 – 494

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τ

P
(lo

g 2
(r p

s)
≤

τ|
1<

s<
n s

)

GNGClus
ConClus
Construction Phase

GNGClus
ConClus
Construction Phase

GNGClus
ConClus
Construction Phase

(a) Performance profiles considering the NMI values for networks

with mixture degree higher than 0.4.

1.0 1.2 1.4 1.6 1.8 2.0 2.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τ

P
(lo

g 2
(r p

s)
≤

τ|
1<

s<
n s

)

GNGClus
ConClus
Construction Phase

GNGClus
ConClus
Construction Phase

GNGClus
ConClus
Construction Phase

(b) Performance profiles considering the times of the algorithms

to detect communities in networks with mixture degree higher than

0.5.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τ

P
(lo

g 2
(r p

s)
≤

τ|
1<

s<
n s

)

GNGClus
ConClus
Construction Phase

GNGClus
ConClus
Construction Phase

GNGClus
ConClus
Construction Phase

(c) Performance profiles considering the NMI values for networks

with mixture degree higher than 0.6.

1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τ

P
(lo

g 2
(r p

s)
≤

τ|
1<

s<
n s

)

GNGClus
ConClus
Construction Phase

GNGClus
ConClus
Construction Phase

GNGClus
ConClus
Construction Phase

(d) Performance profiles considering the times of the algorithms

to detect communities in networks with mixture degree higher than

0.6.

Fig. 2. Performance profiles of GNGClus, ConClus and Construction Phase considering the time to solve and the NMI valus, for networks with

mixture degree parameter higher than 0.4.

time performance was better than GNGClus and ConClus for networks with mixture degrees 0.7 and 0.8. In particular,

Construction Phase were able to obtain an NMI performance very similar to GNGClus and ConClus for the mixture

parameter 0.8 with a much better computational performance. The reason for this behavior might be explained by

the difficult of GNGClus and ConClus in obtaining the slightly better NMI performances in networks with fuzzy

communities.

493 Camila Pereira Santos and Mariá C.V. Nascimento / Procedia Computer Science 96 (2016) 485 – 494

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τ

P
(lo

g 2
(r p

s)
≤

τ|
1<

s<
n s

)

GNGClus
ConClus
Construction Phase

GNGClus
ConClus
Construction Phase

GNGClus
ConClus
Construction Phase

(a) Performance profiles considering the NMI values for networks

with mixture degree higher than 0.7.

1.0 1.2 1.4 1.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τ

P
(lo

g 2
(r p

s)
≤

τ|
1<

s<
n s

)

GNGClus
ConClus
Construction Phase

GNGClus
ConClus
Construction Phase

GNGClus
ConClus
Construction Phase

(b) Performance profiles considering the times of the algorithms

to detect communities in networks with mixture degree higher than

0.7.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τ

P
(lo

g 2
(r p

s)
≤

τ|
1<

s<
n s

)

GNGClus
ConClus
Construction Phase

GNGClus
ConClus
Construction Phase

GNGClus
ConClus
Construction Phase

(c) Performance profiles considering the NMI values for networks

with mixture degree higher than 0.8.

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τ

P
(lo

g 2
(r p

s)
≤

τ|
1<

s<
n s

)

GNGClus
ConClus
Construction Phase

GNGClus
ConClus
Construction Phase

GNGClus
ConClus
Construction Phase

(d) Performance profiles considering the times of the algorithms

to detect communities in networks with mixture degree higher than

0.8.

Fig. 3. Performance profiles of GNGClus, ConClus and Construction Phase considering the time to solve and the NMI valus, for networks with

mixture degree parameter higher than 0.6.

Concerning GNGClus and ConClus, ConClus had a slightly better NMI performance considering small factors τ
for the networks with mixture parameter higher than 0.5. ConClus solved the highest percentage of problems within

the smallest values of τ and in the best times. However, for approximately τ > 1.1, GNGClus time performance was

significantly better. The NMI values of GNGClus and ConClus were equal in networks with mixture parameter higher

than 0.6. In such cases, GNGClus presented a better performance on time.

494 Camila Pereira Santos and Mariá C.V. Nascimento / Procedia Computer Science 96 (2016) 485 – 494

GNGClus obtained the best NMI performance in the networks with mixture parameters higher than 0.7 and 0.8.

For the mixture parameter 0.7, GNGClus achieved a time performance worse than ConClus within a factor of τ < 1.1,

approximately, and a better time performance for the remaining factors. In networks with the mixture parameter 0.8,

the time performance of ConClus was considerably worse than of the other algorithms for τ < 1.2 and comparable

with the time performance of GNGClus for the remaining factors. These results attest the better performance of the

proposed GNGClus with respect to ConClus in networks with high values of mixture degree.

5. Final Remarks

This paper presented a comparative analysis of three forms to construct a solution using a semi-greedy process.

They are: using no memory mechanism; using memory through the storage of the best (elite) solutions; and employ-

ing a Self Organizing Map (SOM) neural network as memory mechanism to guide future decisions based on former

solutions. The latter approach is introduced in this paper, whilst the former two are strategies found in the litera-

ture. In a computational experiment with 80 networks, it was clear that the two memory-based strategies significantly

outperformed that without such mechanism. However, even though the two memory-based strategies were very com-

petitive, the strategy based on elite solutions was slightly better than the introduced strategy, GNGClus. Nevertheless,

when observing the performance profiles of every solution, it was possible to observe that the improvement was very

small and by inspecting the individual solutions, we attested that there were cases in which the introduced strategy

outperformed ConClus. As future work, we intend to hybridize the two strategies, as an attempt of significantly out-

performing the two strategies. It is worth mentioning that, ConClus presented better performance than a number of

strategies found in the literature, as Infomap.

Acknowledgements

The authors are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP Proc.: 2015/21660-

4) and Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq id: 448614/2014-6) for the financial

support.

References

1. Girvan, M., Newman, M.E.J.. Community structure in social and biological networks. Proc Natl Acad Sci USA 2002;99:7821–7826.

2. Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., et al. On modularity clustering. IEEE Transactions on
Knowledge and Data Engineering 2008;20:172–188.

3. Fortunato, S., Barthelemy, M.. Resolution limit in community detection. Proceedings of the National Academy of Sciences 2007;104(1):36–

41.

4. Santos, C., Carvalho, D.M., Nascimento, M.C.V.. A consensus graph clustering algorithm for directed networks. Expert Systems with
Applications 2016;54:121–135.

5. Dolan, E.D., Moré, J.J.. Benchmarking optimization software with performance profiles. Math Program, Ser A 2002;91:201–213.

6. Rosvall, M., Bergstrom, C.T.. Maps of random walks on complex networks reveal community structure. Proceedings of the National
Academy of Sciences 2008;105(4):1118–1123.

7. Reichardt, J., Bornholdt, S.. Statistical mechanics of community detection. Physical Review E 2006;74:016110.

8. Carvalho, D.M., Resende, H., Nascimento, M.C.V.. Modularity maximization adjusted by neural networks. 21st International Conference,
ICONIP 2014 2014;:287–294.

9. Fritzke, B.. A Growing Neural Gas network learns topologies. In: Advances in Neural Information Processing Systems (NIPS) 7. MIT Press;

1995, p. 625–632.

10. Martinetz, T., Schulten, K., et al. A” neural-gas” network learns topologies. University of Illinois at Urbana-Champaign; 1991.

11. Martinetz, T.. Competitive hebbian learning rule forms perfectly topology preserving maps. In: ICANN’93. Springer; 1993, p. 427–434.

12. Fišer, D., Faigl, J., Kulich, M.. Growing neural gas efficiently. Neurocomputing 2013;104:72–82.

13. Máximo, V.R., Nascimento, M.C.V., Carvalho, A.C.P.L.. Intelligent Guided Adaptive Search for the maximum covering location problem.

Submitted to Computers & Operations Research 2016;.

14. Feo, T., Resende, M.. Greedy randomized adaptive search procedures. Journal of Global Optimization 1995;6:109–133.

15. Lancichinetti, A., Fortunato, S., Radicchi, F.. Benchmark graphs for testing community detection algorithms. Physical Review E 2008;

78:046110–[5 pages].

16. Nascimento, M.C.V., Pitsoulis, L.. Community detection by modularity maximization using grasp with path relinking. Computers &
Operations Research 2013;40(12):3121–3131.

17. Danon, L., Daz-Guilera, A., Duch, J., Arenas, A.. Comparing community structure identification. Journal of Statistical Mechanics: Theory
and Experiment 2005;2005(09):P09008–[11 pages].

