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Abstract

Finding communities in networks is a commonly used form of network analysis. There is a myriad of community detection

algorithms in the literature to perform this task. In spite of that, the number of community detection algorithms in directed

networks is much lower than in undirected networks. However, evaluation measures to estimate the quality of communities in

undirected networks nowadays have its adaptation to directed networks as, for example, the well-known modularity measure. This

paper introduces a genetic-based consensus clustering to detect communities in directed networks with the directed modularity as

the fitness function. Consensus strategies involve combining computational models to improve the quality of solutions generated

by a single model. The reason behind the development of a consensus strategy relies on the fact that recent studies indicate that

the modularity may fail in detecting expected clusterings. Computational experiments with artificial LFR networks show that the

proposed method was very competitive in comparison to existing strategies in the literature.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of KES International.
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1. Introduction

Many elements in our daily life such as the internet, the transportation systems, the city mapping, among others,

can be represented as relational structures. Graphs or networks are among the many forms to represents such data.

Extracting relevant information from networks is of utmost importance and, for this, there are specific tools. The

identification of patterns in the data may enable the adequate analysis of these graphs. In this sense, if the graph

topology characterizes a clustering tendency, there exists a number of works that attempt to identify groups of highly

related vertices (communities). Finding communities (also known as clusters) in networks allows a different type of

inference with regard to the information about the elements of the groups instead of the individual elements. Examples

of graphs with these characteristics are those represented by a social network data, such as the widely known online

social network, the facebook.
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Finding groups of vertices in a graph is known in the literature as the graph clustering problem or community

detection in networks. This problem has been investigated for decades and currently there are several approaches

to solving it. Among them, we can highlight those that optimize assessment measures which classify the quality

of the solutions found in1,2,3. Most of the problems of finding the communities that optimize quality measures is

NP-complete4. Consequently, the heuristics are the most explored methods for this problem, due to the sizes of the

networks that represent most of the applications. In particular, to address this problem in directed networks remains

a challenge due to the few existing algorithms that take the arcs directions into account. It is considerably difficult

to define a consistent measure for evaluating the quality of the communities in directed networks. However, some

assessment measures, as the modularity in directed networks5 and the map equation proposed in2, attempt to evaluate

the quality of communities considering the asymmetric relations in the networks.

This paper presents a novel strategy for detecting communities in directed networks through a consensus genetic-

based algorithm. As the modularity poses as a good measure despite the resolution limit drawback, the consensus

strategy has this measure as objective function (or fitness function). The resolution limit in the modularity refers

to the size of the clusters and the number of arcs in the networks. For networks with small-sized communities, the

modularity maximization-based algorithms may not correctly identify the groups6. An advantage of developing a

consensus-based strategy is that it enables the search for partitions with different traits than those found in algorithms

that specifically maximize this measure.

Computational experiments carried out using artificial and real networks indicate a very good potential of the

proposed strategy. The combination of a consensus strategy considering a fine tuning of the resolution parameter and

the evolutionary traits found in genetic algorithms contributed in the robustness of the proposed strategy. The results

achieved by the consensus genetic-based algorithms outperformed heuristics widely employed found in the literature.

2. Community detection in directed networks

A simple digraph, oriented graph, can be defined by a tuple D = (V(D), A(D)), in which V(D) represents its set of

vertices and A(D), its set of arcs. In this study, the notations of the sets of vertices and arcs will be simplified to V and

A, respectively. The set V has its elements represented by the numbers belonging to the set of integers {1, 2, 3, ..., |V |}.
The numbers of vertices and arcs in a digraph are represented by, respectively, n and m. Moreover, each element of

the set of arcs A is a tuple (i, j), being i the end corresponding to the source of the arc and j, the terminal vertex of the

arc. In this case, we say that the vertices i and j are adjacent and that arc (i, j) is different from arc ( j, i). The number

of times a vertex i is a source vertex defines the out-degree of a node (d+i ) whereas the number of times it is a terminal

indicates the in-degree of a node i (d−i ). A vertex i is said a neighbor of j if they are adjacent.

Digraphs are structures extensively employed to represent relational data as, e.g., the web links of the internet. In

this example, each vertex of the corresponding network refers to the site and the links between a pair of sites can be

represented by arcs. The representation of a social network, as, e.g., twitter social network, can be performed by asso-

ciating each user with a vertex of the graph whereas the arcs may indicate the dominance between the pair of vertices:

if there exists an arc (i, j), it means that the individual i follows the individual j inside the social network. Another

example is the data that represent a transportation network that can also be represented by a directed graph. For this,

simply consider each vertex as a city and the arcs as the streets and roads that connect these cities7. Detecting com-

munities in this type of networks is one of the most difficult problems in clustering. Since the arcs do not necessarily

possess symmetric relations, the communities may have different interpretations, that may not take into account the

reciprocity of the arcs. Consequently, many consolidated formulations and algorithms for detecting communities in

undirected networks may not be an option for considering the directed networks. In3, the authors thoroughly discuss

the existing methods for finding clusters in directed networks and mention as a gap in the literature methods specially

designed for this type of networks.

In3, the authors propose a categorization of these clustering types into distinct groups. These groups are the

naive transformation approach, the transformations maintaining directionality, the extending objective functions and

methodologies for directed networks and the other alternative approaches. For being beyond the scope of this paper to

go into detail about all these approaches, we draw the attention to the strategies based on the paradigm of extending

methodologies for tackling directed networks, within which the proposed strategy fits.

In line with our proposal, a way to define clustering in directed networks is by assessing the network topology,

i.e. the amount of arcs inside cluster must be greater than the number of existing links between the clusters. This
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type of approach is used in solving the problem of detecting communities in undirected networks and adapted to

identify communities in directed networks. In particular, algorithms based on the directed modularity8,5 investigate

exactly this type of communities. A formulation for evaluating the modularity of a vertex partition π is presented in

Equation (1).

q(π) =
1

m

∑

∀C∈π

∑

i, j∈C
(a ji −

d−i d+j
m

) (1)

where C is a community from clustering π; a ji is the number of arcs in which j is the source and i is the terminal.

Being a well-known measure for undirected graphs, the modularity, when extended to the directed case, explores

the quantity of links inside clusters, by taking their directions into account. Therefore, for example, if we consider

a vertex i with a high out-degree and a vertex j, adjacent to i, but with low in-degree, it is more likely that the arc

connecting them has i as source and j as terminal. As a result, whether the arc has the opposite direction, it is not

as expected as the arc (i, j) and, then, that arc is considered a clustering tendency, having a larger contribution in the

modularity value.

To the extent of our knowledge, a few studies and algorithms can be found in the literature specially designed for

the modularity maximization problem in directed networks, that is NP-complete4. In5, the authors introduce the

measure and suggest that some of the existing methods for the undirected graphs could be easily adapted in order

to address the directed modularity. Nevertheless, some drawbacks, as well as those found for the undirected graph

modularity were observed in the equivalent measure for the directed networks. In line with this, other studies that

either refine or propose new strategies for assessing the quality of partitions in directed networks are encountered in2.

In this paper, we propose a hybrid method based on two strategies commonly used in data clustering: genetic

algorithms (GAs) and consensus clustering methods.

3. Related Works

Genetic algorithms (GAs) have been widely employed to solve a number of combinatorial optimization problems.

The primary trait of the GA is the presence of an initial population, a pool of solutions represented by the chro-
mosomes, that along the iterations evolve after the application of some genetic operators. The two primary genetic

operators are the crossover and the mutation. According to the original version of the method, in the crossover, a pair

of solutions (parents) produces an offspring, providing new generations of solutions. This is the reproductive phase

of the method. Both the selection of the individuals to be crossed and the way to perform the crossover vary in its

form depending on several factors as the features of the target problem. The mutation is an operator that acts in a

rarer fashion and in an unpredicted form to modify the genes of the chromosome, promoting the diversification of

the population. To measure the evolution of the population, each individual is evaluated by a fitness function, that is

expected to be improved on average along the generations.

Shang et al. 9 propose a community detection method based on modularity and an improved memetic algorithm,

named MIGA. Additionally, MIGA uses the number of community structures as prior information, and a simulated

annealing method is applied to every chromosome from the offspring. The individual of MIGA is represented by a

vector where each position represents a vertex and its label corresponds to the community to which the vertex belongs.

The crossover operator is based on the two-way crossing, and the mutation operator sporadically changes the label

of a random position of some individual. The experiments with undirected Lancichinetti-Fortunato-Radicchi (LFR)

networks10 with 1000 vertices indicate a competitive performance of MIGA with regard to well-known strategies.

However, it must be observed that the Normalized Mutual Information (NMI), that evaluates the proximity of the

partitions achieved by MIGA and the expected ones, is very low when the mixing parameter of the networks is higher

than or equal to 0.4.

Similar to9, Mu et al. 11 also propose a memetic algorithm for detecting communities in undirected networks. Un-

like in9, the authors mention the resolution limit drawbacks, the reason behind they employ an approach to which

they had to vary the resolution parameter for defining their fitness function. The individuals have the same represen-

tation of the chromosome as in9. The crossover operator was different since it consisted in the one-point crossing

that, choosing one vertex’s community from the parent chromosome, all vertices belonging to the chosen community
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Fig. 1. The CGA flowchart.

were the same in the offspring. According to experiments carried out by the authors using LFR networks, with 1000

vertices, the strategy presents a poor performance when comparing with strategies as Label Propagation (LP)12 and

Infomap2. The NMI significantly drops on networks with mixing parameter larger than or equal 0.5.

Ma et al. 13 also introduce a modularity-based memetic algorithm with multi-level learning strategies for community

detection in undirected unweighted graphs. The individuals have the same decoding as in9,11. The authors employ a

two-way crossover operation, where they randomly choose the labels of the parents to copy to their offspring. The

framework has a learning strategy that works as the local search of the memetic algorithm. In experiments with LFR

networks with 1000 nodes, the memetic algorithm had a good performance in networks with mixture parameters of

0.7, being very competitive with strategies like Infomap.

4. Consensus Genetic-based Algorithm (CGA)

The main paradigm of consensus clustering relies on the premise that combining models may achieve clusterings

not biased by particular objective functions that, as already discussed, may be not reliable in specific case studies14,15.

In line with these concepts, for the production of initial solutions for consensus clustering, it is common to use weak

algorithms14,15,16,17. However, these weak algorithms are usually stronger than the heuristics that produces the initial

population of a GA. Additionally, the consensus clustering-based algorithms stand out as a robust solution method

for the problems to which they were subjected. Motivated by the diversification of GA and the robustness of the

consensus clustering, as an attempt for obtaining good quality results for the problem discussed in this paper, we

develop a genetic algorithm based on the concept of consensus clustering.

The proposed algorithm, the consensus genetic-based algorithm (CGA), has virtually all the stages of a conven-

tional genetic algorithm. The next section goes into detail on each step of the CGA. Figure 1 displays a flowchart with

the main steps of CGA.

4.1. Initial Population

The generation of the initial population in a GA is of profound importance since the characteristics of the initial

solutions can affect the quality of the final solution as well as the running time of the algorithm. In both GAs and

the consensus clustering, the individuals to be combined must be sufficiently diversified14,15. Therefore, the proposed

strategy, here named CGA, employs fast heuristics to produce the initial population14,15,16,17.

CGA uses three different algorithms for producing the initial population. Even though they are different to each

other, all of them have a similar feature: are computationally cheap and their robustness ranges from low to fair.

All strategies take into account that the chromosome is a n-dimensional vector, where each position i of this vector

indicates the community to which the vertex i belongs.

The first strategy for generating initial solutions is called here RandomPop and works as follows: a vector of

integers of size n is created. After that, for each position of this vector, we sort an integer between 1 and n that
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indicates which cluster the vertex belongs to. The second algorithm employed to generate the initial population is the

algorithm Label Propagation (LP)12, whose complexity is O(m). The choice for this algorithm was motivated by the

good results achieved by the ensemble learning strategy (this terminology is equivalent to the consensus clustering)

proposed in16 for tackling undirected networks. A pseudocode of the version of the LP used in this paper is presented

in Algorithm 1.

Algorithm 1: LP
Data: D, n, sizeLimit
Result: Π
Π← SingleCluster (n);
sizeClusters← 1;
i← 1;
repeat

iVertex← i mod n;
Π[iVertex] = MaxNeighborhoodLabel(D, Π,iVertex);
update(sizeClusters);
bool← {1, if ∀ j sizeClusters[ j] ≤ sizeLimit; 0, otherwise};
i← i + 1;

until bool;

Algorithm 2: RandomLP
Data: iterations, D
Result: Π
Π = Random(n);
for i = 1 to iterations do

iVertex = Sort(1,n);
Π[iVertex] = MaxNeighborhoodLabelvertex(D,
Π,iVertex);

end

The LP algorithm, in its modified form presented in Algorithm 1, starts with three parameters: D, the input digraph,

from which we need to detect the communities; n, the number of vertices of this digraph; and sizeLimit, the largest

number of member a community can have. Initially, each position of the vector Π receives the label regarding a

different cluster, through the function SingleCluster (n). In the second step, each vertex iVertex is analyzed and its

label is upgraded by the choice of the label present in the majority of its neighborhood. This information is obtained

by the function MaxNeighborhoodLabel (D, Π,iVertex) in which the digraph and the partition to be updated must be

informed as the parameters of the procedure. The stop criterion of the LP is the size limit of the clusters, i.e., the

moment the first cluster reaches the maximum limit of the cluster size. We set the sizeLimit variable to be n/8. As

mentioned in12, this algorithm has almost linear speedup. The difference between the original version of the LP and

the one presented here is that the latter considers the size of the clusters for deciding whether an additional iteration

will be necessary for the algorithm. The former LP keeps running until either no label is modified or a predetermined

number of iterations is achieved.

A version slightly different from the RandomPop, resulting from its hybridization with the LP, is the third strategy

for generating initial solutions of the CGA. Algorithm 2 shows a pseudocode of this strategy. The algorithm Ran-
domLP starts by initializing the vector of labels, Π. This vector receives random values ranging from 1 to n in every

of its positions. After that, for a number of iterations, iterations, this vector is refined through a strategy that searches

for the label present in the majority of the neighbors of some vertex, iVertex, randomly selected in the process. The

routine MaxNeighborhoodLabelvertex is responsible for performing such update. The computational complexity of

this algorithm is O(n) if the parameter iterations is O(n). As, in our experiments we set this parameter to a random

integer value that falls in the interval [1, n], the running time of this algorithm is O(n).

4.2. Genetic Operators

The two genetic operators used in the proposed strategy, CGA, are the crossover and the mutation. The crossover

takes a pair of parents and applies an algorithm based on the so-called one-point crossover. Roughly, according to

this strategy, the selected parents for crossover produce their offspring through the crossing of the parents from the

point selected for such. Accordingly, considering the chromosome as a vector, the one-point crossover consists in

choosing a position of the vector that will be the child and the genes of one of the parents are replicated from the first

position of the vector to the selected position. The remainder positions of the vector, from the crossing point until the

end of the vector, are occupied by the genes from the corresponding positions from the other parent. Furthermore, we

established a minimum percentage of the genes that a member of the offspring must receive from each of its parents.

A pseudocode of the crossover strategy is presented in Algorithm 3.

The algorithm has as input parameters the parents Π1 and Π2 which were selected through a strategy described

in Section 4.3 and the factor γ, which indicates the minimum percentage of the genes of each parent replicated in

the offspring. Then, the crossing point, point, will be randomly chosen in the interval [n × γ, n − n × γ]. Then, the

child, Πchild, is created through the crossing of the parents limited by the crossing point. The value chosen for γ after

preliminary experiments was 0.25. It is easy to attest that this procedure is O(n). For enabling a diversification in the
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CGA, the mutation acts by considering a very low percentage of occurrence probability, ρ, in order to avoid getting

trapped in local optimum solutions. The mutation in the CGA modifies two positions of the solution vector generated

in the corresponding iterations by values picked up at random within the interval [1, n]. The chosen value for ρ was

0.01, adjusted after preliminary experiments.

Algorithm 3: Crossover
Data: Π1, Π2, γ
Result: Πchild
point = S ort(γ);
Πchild[1:point] = Π1[1:point];
Πchild[point +1:n] = Π2[point +1:n];

Algorithm 4: Tournament
Data: Pop
Result: winner
chromosomeS et← Random(Pop,3);
winner←
arg maxΠ∈chromosomeS et f itness(Π);

Algorithm 5: Substitution
Data: Pop, PopGen, iElitism
Result: PopNextGen
i← �iElitism × |Pop|/100	;
PopNextGen←

arg max
S 1⊆Pop\|S 1 |=i

f itness set(S 1) ∪
arg max

S 2⊆PopGen\|S 2 |=|Pop|−i
f itness set(S 2);

Bearing in mind this step of the CGA, in the next section we discuss the way that individuals of populations are

selected to generate descendants through the crossover.

4.3. Selection Algorithm

In choosing the method for selecting the individuals in the population for crossing them over, we opted for an

algorithm that kept elitism controlled. This means that individuals with values of fitness not as high as the fittest

individuals could also be present in future generations. To do this, we employed the method of selection known as

tournament. The characteristic of this method is to give an equal chance for individuals of the population to be selected

for crossover. The pseudocode of the method of selection of individuals based on tournament strategy is presented in

Algorithm 4.

Algorithm 4 has a single input parameter, Pop, that corresponds to the set of individuals in the current popu-

lation. In a first stage, the algorithm chooses randomly 3 individuals from this set and store them in the variable

chromosomeS et. Then, the return of the algorithm is the winner chromosome, i.e., that with the highest fitness. We

used the modularity for directed networks, Equation (1), for measuring the fitness of the population. Consequently,

CGA uses an elitist selection method that leads to the next generation the best individuals of the current generation.

In line with this, in the next section, we discuss the method for the substitution of the population.

4.4. Substitution Process

The substitution of the current population for defining the individuals of the generations in CGA considers a

method that keeps a percentage of individuals found during the current generation and maintain the fittest individuals

generated in previous rounds of the algorithm. The choice for this method is due to the study found in18 that suggested

the same strategy for tackling a supply chain problem. In Algorithm 5, we summarize a pseudocode of the substitution

method that CGA employs.

Algorithm 5 has three parameters: Pop, the current population of solutions (parents); PopGen, the offspring

produced during the current generation from the population Pop; and iElitism, that indicates the percentage of indi-

viduals of the current population to be kept for the next generation. The first step of the algorithm aims at calculating

how many individuals of the population Pop shall be kept for the next generation and stores this value in the variable

i. The function Trunc is used to round the percentage to the nearest integer number. The second step of the method

consists in composing the new generation of candidates for parents by adding those elite solutions from the current

population and the best solutions found in the current generation. In line with this purpose, the f itness set corresponds

to the sum of the fitness function, the modularity in Equation (1), of a set of solutions passed as parameters. The

computational complexity of this algorithm is dependent of the sorting algorithm to find the best solutions from the

aforementioned sets. Nevertheless, as the size of the population was set to 30, this sorting algorithm did not affect

the overall complexity of the proposed algorithm. Therefore, as n >> 30, the operations required for calculating the

modularity of the partitions, that was O(m), dominated the worst-case complexity of the algorithm.

5. Computational Experiments

In this paper, we carried out two experiments to attest the quality of the proposed strategy in comparison to some

existing algorithms found in the literature. The code was developed in C++ language, using data structures and
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functions present in the igraph package19. Furthermore, the experiments were run in a Intel(R) Core TM i5-3470

processor CPU 3.20 GHz with 4.0 GB RAM.

The first experiment employed artificial datasets generated by the software introduced in20. The second experiment

used real networks found in the literature. For means of comparison, we compared our results with the results of LP12,

a well known algorithms to detect communities in undirected networks. The goal of this comparison is to show that

the algorithm specifically developed for directed networks consistently outperforms this strategy that simply does not

consider the arcs in the network, transforming them into undirected edges for the use of the algorithm. Additionally,

both experiments show the results of the Infomap algorithm that is a very efficient algorithm for large-scale networks2

reportedly being one of the best for graph clustering. It is guided by the already mentioned map equation function.

Similar to CGA, this solution method takes the direction in the networks into account to detect their communities.

In preliminary experiments, we observed a performance not as satisfactory as we expected in the CGA. After a

thorough study investigating the reasons behind this behavior, the reportedly problem of the resolution limit came

out6. According to this problem, small-sized clusters in large networks are not detected through community detection

algorithms based on the modularity maximization problem. As the results present in the literature are with regard

to the resolution limit in undirected networks, here we introduce this drawback for directed networks. For example,

Figure 5 displays a ring network of 30 supernodes, in which each tournament1 has five vertices as that presented in

Figure 5.
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Fig. 2. Example of a directed network on which modularity optimization may fail.

In this case, the (directed) modularity of considering a community as each of the supernodes presented in Figure 5,

π(1), is 0.8757. On the other hand, the (directed) modularity of the partition in which two adjacent supernodes are in

the same cluster, totalizing 15 clusters, π(2), is 0.8878. This second partition obviously is not the expected one, but due

to some resolution limitation in the modularity, if we rely on a modularity maximization-based algorithm, it is better

evaluated than the intuitive clustering. For this reason, a reformulation in modularity by considering a parameter λ in

the expected number of arcs between vertices inside communities will suitably consider the resolution of the clusters.

qλ(π) =
1

m

∑

∀C∈π

∑

i, j∈C
(a ji − λ

d−i d+j
m

) (2)

According to Equation (2), qλ(π(1)) > qλ(π(2)), if λ ≥ 1.3636. For automatically adjusting this parameter λ, we

employed a study found in the literature that introduces a neural network for providing the most suitable λ with regard

to the graph topology21. Let CGAλ be this version of CGA whose fitness function is guided by the version of the

directed modularity measure, and λ adjusted according to21.

5.1. Experiment I

Every network generated for this experiment possessed 1000 vertices and the mixing parameter, μ, (the parameter

for defining the connectivity inter-communities) falls in the set {0, 1; 0, 2; . . . ; 0, 8}. For this experiment, 10 replications

1 A tournament of n vertices is a directed network whose line graph is a simple complete network of n vertices.
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of a same type of network were produced. The assessment of the solutions took the real partitions and the modularity

in directed networks into account. Moreover, we analyse the average values achieved for the networks with the same

mixing parameter (μ) and of the Normalized Mutual Information (NMI) between the real partitions and the partitions

found by the algorithms. The NMI gives the closeness between such clusterings. The higher its value, the closer the

partitions are. Additionally, we report in this paper the mean time (MT) of each algorithm used in this experiment.

Table 1. Table of results.

μ
CGA CGAλ LP Infomap

NMI MT NMI MT NMI MT NMI MT

0.1 0.993964 3.7500 1.000000 2.9142 0.950163 0.0851 0.982143 0.0000

0.2 0.990911 3.7878 0.999931 2.8444 0.908189 0.0843 0.984572 0.0000

0.3 0.987202 3.6791 1.000000 2.7605 0.841416 0.0833 0.983751 0.0000

0.4 0.982820 3.6445 0.999920 2.6527 0.748496 0.0843 0.986805 0.0000

0.5 0.966592 3.7221 0.995325 2.6065 0.584286 0.0842 0.964491 0.0000

0.6 0.481004 3.8458 0.481751 8.9916 0.336460 0.0839 0.988143 0.0000

0.7 0.261610 4.0874 0.243641 12.3326 0.249762 0.0858 0.0 0.0000

0.8 0.207990 3.9111 0.233690 12.1741 0.212179 0.0851 0.0 0.0000

Table 1 shows the results achieved by the algorithms. It is noteworthy that both solution methods proposed in

this paper, CGA and CGAλ, on average, were consistently better than all other algorithms. In particular, CGAλ
outperformed the other algorithms in almost all networks tested in this experiment. However, one may observe that

the proposed strategies were not able to find better solutions than the Infomap algorithm for the graphs with mixing

parameter equals to 0.5. Concerning the modularity values, Table 2 shows the average among the modularity values

for the graphs of each mixing parameter.

Table 2. Table with the modularity and the adjusted modularity values.

μ
CGAλ CGA

λ qλ q
0.1 1.20551 0.850075 0.857707

0.2 1.81352 0.729674 0.760028

0.3 2.30387 0.617344 0.662268

0.4 2.79616 0.501755 0.562628

0.5 3.31024 0.386417 0.462550

0.6 3.81233 -0.026858 0.205133

0.7 4.30147 -1.370320 0.113006

0.8 4.78901 -0.244130 0.099613

According to Table 2, there is a clear pattern in the values assigned for λ by the algorithm found in21. From the

networks with the lowest mixing parameter to the networks with the highest μ, the values for λ are set in increasing

order. More interestingly, these values start from approximately 1.2 up to 4.78, differing to each other by a factor

between 0.49 to 0.61 for subsequent values for λ.

5.2. Experiment II

This experiment considers 5 real unlabelled networks. All these networks were extracted from the repository avail-

able in Vlados’s webpage (http://vlado.fmf.uni-lj.si/pub/networks/data/mix/mixed.htm). To assess

the quality of the partitions comparatively, we employ the directed modularity of the communities obtained by the

algorithms. Table 3 shows the primary characteristics of the tested networks.

The network football represents the relations between the countries that the 1998 FIFA World Cup players have

signed a contract and their national association football teams. In this network, each arc represents a soccer player,

being the tail the country of his national association team and the head, the nation of the team where the player

has signed contract. The network epa presents a relational representation of a set of web pages found by a search
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Table 3. The main characteristics of the networks used in this experiment.

Network n m Reference

football 35 118 22

epa 4772 8965 23

polblogs 1490 19090 24

galesburg friends 31 78 25

chesapeake 39 177 26

engine linking to www.epa.gov. The network polblogs is a representation of connections between blogs of democrats

and republicans from the 2004 election. The arcs in this network is the links between the blogs, represented by the

vertices of the network. The network galesburg friends refers to a discussion between physicians regarding a new

drug in Galesburg. The network chesapeake represents a predator-prey pairwise relation between species living in the

Chesapeake Bay.

Table 4. Directed modularity values and running times of CGA, CGAλ LP and Infomap considering real unlabeled networks.

Network
CGA CGAλ LP Infomap

Mod Time Mod Time Mod Time Mod Time

football 0.118041 0.1633 0.120188 0.1638 0.100244 0.0000 0.068658 0.0000

epa 0.489391 24.6562 0.490127 80.1338 0.368710 1.6070 0.476418 0.0000

polblogs 0.392394 0.2685 0.392507 57.0034 0.211945 0.780 0.385240 0.0000

galesburg friends 0.404224 0.1459 0.407922 0.1643 0.348291 0.0000 0.370661 0.0000

chesapeake 0.227777 0.2435 0.225957 0.1794 0.145948 0.0000 0.200071 0.0000

Table 4 reports the directed modularity values and running times of CGA, CGAλ LP and Infomap for the 5 real

networks. The values reported are the average of 5 independent executions since all 4 algorithms are not deterministic.

Even though the fitness function of CGAλ was not necessarily the directed modularity, it achieved better results than

CGA. Except for chesapeake, CGAλ obtained the best values for this metric among the other algorithms. It is worth

mentioning that neither LP nor Infomap have as fitness function this quality measure. Nevertheless, modularity is

widely employed to assess the quality of partitions and it is expected that they achieve good values for this metric.

And, as one may observe, the values were very close, even though CGA and CGAλ outperformed the other algorithms

considering the directed modularity.

6. Conclusions

In this paper, we propose a novel consensus genetic-based algorithm for detecting communities in directed net-

works. The genetic algorithms are well-known for producing good results for a number of hard problems, in particu-

lar, combinatorial optimization problems. All steps of the proposed strategy were defined bearing in mind we aimed at

introducing a computationally cheap algorithm, for being suitable for tackling large-scale networks. The fitness func-

tion considered in the experiments was the modularity designed for directed networks. Besides the original version,

we carry out experiments with the version that considers the adjustment on the resolution parameter, here referred as

λ.
Computational experiments were carried out with LFR networks and real instances. A comparative performance

analysis of prominent algorithms as Infomap and Label Propagation indicated that the proposed strategy, considering

the modularity and the adjusted modularity, outperformed when considering the expected partitions. Additionally,

we highlight the results of the version with the adjusted modularity, named CGAλ, since it achieved the best results

between the two versions of the proposed algorithm. The reason behind this behavior is the need of adjusting the

so-called modularity measure due to the resolution limit it presents in some type of networks. The experiment with

real networks indicated a very good performance of the consensus genetic-based algorithm. However, as they do

not present any expected partition, the only metric in the assessment was the modularity. In the sense of ensemble

partitions, the proposed algorithm is a very good alternative, since the population of the genetic algorithm produced
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a collection of good quality partitions. The possibility of a community detection algorithm to return more than

one partition besides enabling a greater flexibility for the method, allows the user to deeply study his/her data set.

Moreover, this algorithm can be adapted for different fitness functions, in particular, the one employed by Infomap,

the so-called map equation.
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