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Abstract. It has been commonly assumed that analytic solutions can efficiently provide the
direction of a gravitational wave (GW) once sufficient data is available from gravitational
wave detectors. Nevertheless, we identified that such analytic solutions (based on the GW
matrix reconstruction) present unforeseen theoretical and practical limitations (indeterminacies)
and that for certain incoming directions they are unable to recover the latter. We present
here important indeterminacy cases as well as a mathematical procedure that reduces such
indeterminacies. Also, we developed a method that requires the least computational power to
retrieve GW directions and which can be applied to any system of detectors able to reconstruct
the GW matrix. As a test for the method, we used simulated data of the spherical, resonant-
mass GW detector Schenberg, which involves five oscillating modes and six transducer readouts.
The results show that this method canceled indeterminacies out satisfactorily.

1. Introduction
Determining the direction of a gravitational wave (GW) source is necessary, for instance, for
confrontations between a candidate GW signal and its electromagnetic counterpart. In Figure
1 the wave’s direction is z′ while the detector’s frame is xyz.

Gravitational waves are expected to transfer different amounts of energy to the five degenerate
quadrupolar modes of the spherical antenna as a function of the incoming GW direction. In
order to monitor the modes’ oscillations, transducers are placed on the sphere’s surface[1]. The
electric readout of the k-th transducer is here described in the frequency domain by the function
Ik(f). We will assume that the sphere is monitored by k = 6 transducers. The relation between
their readouts and the m-th mode of the sphere, which is described by the mode channel hm(f),
is given by

hm(f) = Tmk(f)Ik(f), k = 1, .., 6, m = 0, 2, ..., 4 , (1)
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Figure 1. Position of the GW
frame (primed) relative to the
proper detector frame (unprimed).

where Tmk(f) is proportional to the inverse transfer function T −1(f) of the detector.
We can write the GW matrix in the lab frame in terms of the mode channels:

h =

 h0/
√
3 + h3 h4 h1
h4 h0/

√
3− h3 h2

h1 h2 −2h0/
√
3

 . (2)

In the context of low latency pipelines it is assumed that analytic expressions (based on the
GW matrix reconstruction) can efficiently provide the GW direction. In this work we indicate
that this is not true in general and we propose means to overcome this limitation. Details of
the results presented here can be found in [2].

2. Analytical limitations
We found that analytic expressions present theoretical and practical limitations (indetermina-
cies) which were not previously mentioned in the literature. Under realistic conditions, we iden-
tified that for certain incoming directions such solutions are unable to recover them. Examples
of these directions are given by the red zones of Figure 2

Figure 2. Aitoff projection of
the average direction reconstruc-
tion errors (in degree) as functions
of the injected signal directions (un-
der SNR∼ 80). The plot shows
the results when using the direction
vector V2−3. In the colored leg-
end on the right of the plots (log
scale in degree), values lower than
two (shades of blue) indicate areas
with small direction reconstruction
errors in the GW direction recon-
struction, while higher values (in
red) indicate high direction recon-
struction errors and thus indeter-
minacy zones. θ and ϕ are ranging
from 90 to +90.

The knowledge of the five mode channels enables one to obtain the relevant quantities of the
GW, particularly its incoming direction. We found that the analytic solutions depend on the
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GW direction in a particular way. In Table 1 we present a summary of the different equations
and their dependence on the GW direction, (θ, ϕ).

Table 1. Summary of the analytic solutions and their dependence on the incoming gravitational
wave direction (θ, ϕ). The subindices (1) and (2) denote the two options to compute θr

Pair of lines 1− 2 1− 3 2− 3

tanϕr
sin θ cos θ sinϕ
sin θ cos θ tanϕ

sin2 θ sin2 ϕ
sin2 θ cosϕ sinϕ

sin2 θ cosϕ sinϕ
sin2 θ cos2 ϕ

tan θr (1)
1

sinϕr

cos θ sin θ sinϕ
cos θ2

1
sinϕr

sin2 θ sin2 ϕ
sin θ cos θ sinϕ

1
sinϕr

cosϕ sin θ2 sinϕ
cos θ cosϕ sin θ

tan θr (2)
−1

cosϕr

cos θ cosϕ sin θ
cos θ2

−1
cosϕr

cosϕ sin θ2 sinϕ
cos θ sin θ sinϕ

−1
cosϕr

cosϕ2 sin θ2

cos θ cosϕ sin θ

3. The proposed method
In order to avoid the limitations illustrated in Figure 2 derived from equations in Table 1 we
decided to use the direction vector V, which satisfies (h − λI)V = 0. By using this vector we
were able to reduce the indeterminacy zones to only three circles in the Aitoff projection. The
vector V fully describes the incoming GW direction but it is more usual to give this information
in terms of (θ, ϕ):

cos θr = V3/|V| , (3)

with three options for the determination of ϕ,

cosϕr = V1/
√
V 2
1 + V 2

2 , (4)

sinϕr = V2/
√
V 2
1 + V 2

2 , (5)

tanϕr = V2/V1 . (6)

The advantage of these solutions is that θr and ϕr are computed independently. Therefore there
is no error propagation to θr.

We implemented our method in the context of a low latency pipeline [3] and in the presence
of noise[4] applying a weighted average of the direction vector for each sample. We tested our
method injecting a simulated burst into the mathematical model of the GW detector Schenberg
[5, 6].

We characterize the direction reconstruction error using the angular distance

δs = arccos (sin(θ) sin(θr) cos(ϕ− ϕr) + cos(θ) cos(θr)) , (7)

which is the angle between the direction (θ, ϕ) of the injected signal and the reconstructed
direction (θr, ϕr) of the signal in the presence of noise.

We found that it is possible to cancel out indeterminacies in the presence of noise using the
following method: for each direction vector V1−2t, V1−3t and V2−3t, we apply the averaging
technique where each sample direction is weighted by its signal-to-noise ratio (SNR). From the
three resulting averaged direction vectors ⟨V1−2⟩, ⟨V1−3⟩ and ⟨V2−3⟩, we select the direction
vector that presents the lowest value of its components’ standard deviation product:

σ3(V ) ≡ σ(Vx)σ(Vy)σ(Vz) . (8)

11th Edoardo Amaldi Conference on Gravitational Waves (AMALDI 11) IOP Publishing
Journal of Physics: Conference Series 716 (2016) 012019 doi:10.1088/1742-6596/716/1/012019

3



Then using its averaged components ⟨Vx⟩, ⟨Vy⟩ and ⟨Vz⟩, we compute the direction in terms of
the spherical coordinates (θr, ϕr).

We tested our method with the injected burst signal in the Schenberg detector and the red
zones in Figure 2 turned blue, as shown in Figure 3, eliminating indeterminate incoming GW
directions.

Figure 3. Aitoff projection of the
average angular distances ⟨δs⟩ (in
deg) as a function of the direction
of the injected signal (SNR∼ 80).
We used our proposed method to
reconstruct the GW direction in the
presence of noise. The minimum is
at 0.8 deg (shades of blue) and the
maximum is at 1.7 deg (green).

4. Conclusions
Our method proved efficient in facing indeterminacies in the evaluation of the direction of a GW
and it is suited for a low latency pipeline. It was tested with the mathematical model of the
resonant-mass GW detector Schenberg, and it can be applied to any array of detectors that use
the GW matrix to retrieve a wave’s incoming direction.
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