# It's all about absorption: Learning by teaching in immersive virtual reality

**UNIVERSITÄT** BERN

D

S. Chiquet<sub>a</sub>, C. Martarelli<sub>b</sub>, D. Weibel<sub>a</sub> & F. W. Mast<sub>a</sub> a Department of Psychology, University of Bern <sub>b</sub> Faculty of Psychology, Swiss Distance University Institute, Brig

## Objectives

Learning by teaching is an effective way to improve learning outcome [1, 2].

### Methods

- Sample: 68 participants (mean age: 22.34 ± 3.9 yrs)
- The physical presence of another person is not mandatory because explaining learned material to fictitious students is effective [3, 4].
- By means of head-mounted displays immersive virtual reality (IVR) enables immersion in computer generated three-dimensional environments.
- We investigate whether learning by teaching in IVR improves learning.
- We compared the educational outcome of teaching an avatar in IVR with a less immersive desktop condition and a control condition (writing a summary).
- IVR has the potential to make its way into education.

- 1<sup>st</sup> appointment: Baseline, study-phase, intervention (IVR, desktop, control), test (16 MC and open questions), presence questionnaires
- 2<sup>nd</sup> appointment: Follow-up-test (16 MC and open questions), immersive tendency questionnaire
- Participants were instructed to explain a technical topic; randomly assigned to the conditions IVR, desktop or control.
- Besides the learning outcome, presence and immersive tendency (absorption and emotional involvement) were assessed.
- Bayesian Generalized Linear Mixed Models predicting the probability to answer the test-questions correctly.

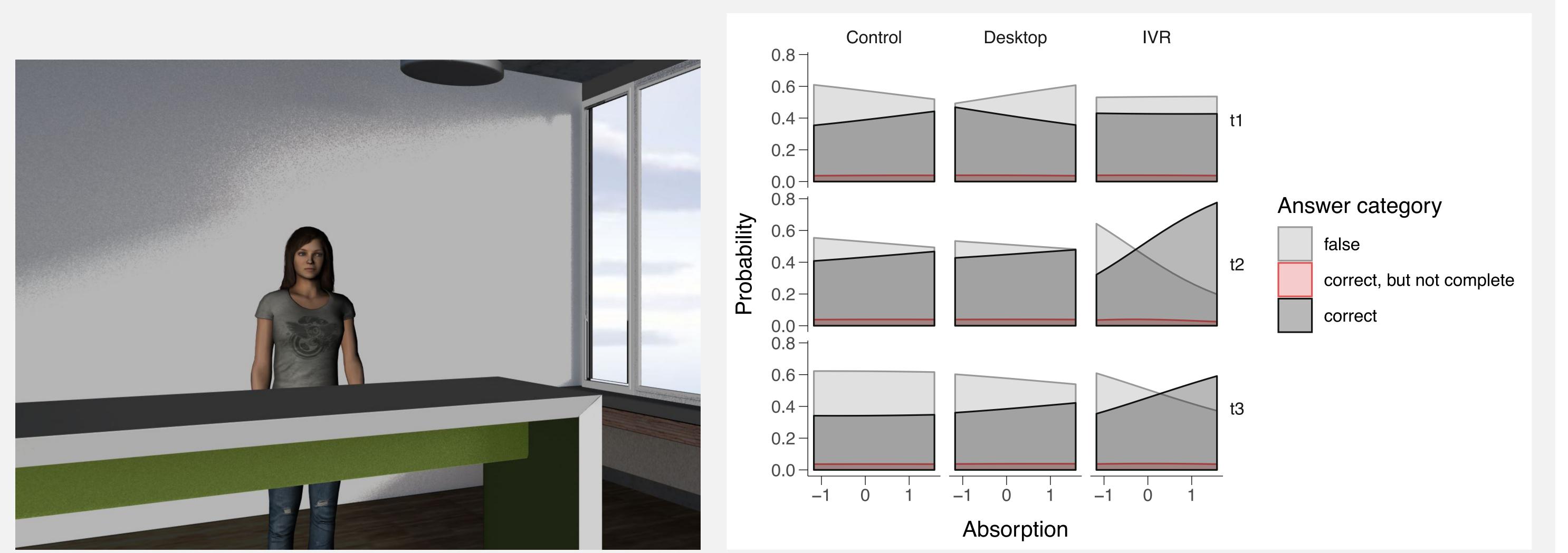



Figure 1: Participant's 3D view in the IVR with avatar who listens to the explanation. The virtual environment was rendered using the *Worldviz Vizard* (version 5.0) and presented by means of a Oculus Rift Head-mounted display.

Figure 2: Probability to answer the test-questions with either a false answer, a correct, but not complete answer or with a correct answer as a function of the absorption score (centerd around the grand mean). The data are shown separately for time point t1 (= baseline), t2 (= just after the intervention) and t3 (one week after the intervention) for each of the three conditions (control, desktop, IVR).

### Results

- **Learning Outcome:** There was no overall difference in the learning outcome in the IVR condition compared to the other conditions.
- **Absorption**: We found at time-point 2 an interaction between, condition and absorption. Higher absorption scores increased the probability to correctly answer the test questions in the IVR condition when compared to the control condition ( $\beta$  = 0.81, SE = 0.36, L-95% CI = 0.12, U-95% CI =



- Learning by teaching in IVR improves learning, depending on individuals' tendency of absorption by media content.
- In contrast, absorption had no influence on learning outcome while teaching on a computer screen or writing a summary.
- Presence was higher in participants who were assigned to the IVR than in participants explaining in front of a computer. However, presence did not

1.52) (see Figure 2).

- **Presence:** Participants in the IVR condition reported higher presence compared to the desktop condition ( $\beta = 1.20$ , SE = 0.05, L-95% CI = 1.11, U-95% CI = 1.30).
- Presence did not predict learning outcome.

influence the learning outcome.

The results highlight the importance of considering personality traits when applying IVR technologies and making use of their potential benefits.

**Correspondence:** Sandra Chiquet, Department of Psychology, University of Bern, 3012 Bern, Switzerland, e-mail: sandra.chiquet@psy.unibe.ch

Acknowledgement: This study was funded by the Swiss Distance University

#### **References:**

[1] Roscoe, R. D., & Chi, M. T. H. (2007). Understanding Tutor Learning: Knowledge-Telling in Peer Tutors' Explanations and Questions. Review of Educational Research, 77(4), 534–574. [2] Fiorella, L., & Mayer, R. E. (2013). The relative benefits of learning by teaching and teaching expectancy. Contemporary Educational Psychology, 38, 281–288. [3] Hoogerheide, V., Deijkers, L., Loyens, S. M. M., Heijltjes, A., & Van Gog, T. (2016). Gaining from explaining: Learning improves from explaining to fictitious others on video, not from writing to them. Contemporary Educational Psychology, 44–45, 95–106.

[4] Fiorella, L., & Mayer, R. E. (2014). Role of expectations and explanations in learning by teaching. Contemporary Educational Psychology, 39, 75–85.