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ABSTRACT

Despite the existence of co-orbital bodies in the solar system, and the prediction of the formation of co-orbital planets
by planetary system formation models, no co-orbital exoplanets (also called trojans) have been detected thus far. Here
we study the signature of co-orbital exoplanets in transit surveys when two planet candidates in the system orbit the
star with similar periods. Such pair of candidates could be discarded as false positives because they are not Hill-stable.
However, horseshoe or long libration period tadpole co-orbital configurations can explain such period similarity. This
degeneracy can be solved by considering the Transit Timing Variations (TTVs) of each planet. We then focus on the
three planet candidates system TOI-178: the two outer candidates of that system have similar orbital period and had
an angular separation near π/3 during the TESS observation of sector 2. Based on the announced orbits, the long-term
stability of the system requires the two close-period planets to be co-orbitals. Our independent detrending and transit
search recover and slightly favour the three orbits close to a 3:2:2 resonant chain found by the TESS pipeline, although
we cannot exclude an alias that would put the system close to a 4:3:2 configuration. We then analyse in more detail the
co-orbital scenario. We show that despite the influence of an inner planet just outside the 2:3 mean-motion resonance,
this potential co-orbital system can be stable on the Giga-year time-scale for a variety of planetary masses, either on
a trojan or a horseshoe orbit. We predict that large TTVs should arise in such configuration with a period of several
hundred days. We then show how the mass of each planet can be retrieved from these TTVs.

Key words. Transits · Trojans · Co-orbitals · Lagrange · Planetary problem · Three-body problem · Mean-motion
resonance · Kepler · CHEOPS · TESS · PLATO

1. Introduction

Among the known multiplanetary systems, a significant
number contain bodies in (or close to) first and second
order mean-motion resonances (MMR) (Fabrycky et al.
2014). However, thus far no planets were found in a 0th

order MMR, also called trojan or co-orbital configuration,
despite several dedicated studies (Madhusudhan & Winn
2009; Janson 2013; Hippke & Angerhausen 2015a), and the
TROY project (Lillo-Box et al. 2018a,b).

Such bodies are numerous in the solar system, such as
Jupiter and Neptune’s trojans, or some of the Saturnian
satellites. Although most of the time the mass of one of
the co-orbitals is negligible with respect to the other, Janus
and Epimetheus (co-orbital moons of Saturn) only have a
mass ratio of 3.6. Indeed, trojan exoplanets can be stable
on durations comparable to the lifetime of a star as long as
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(m1 +m2) < m0/27, where m1 and m2 are the mass of the
co-orbitals and m0 the mass of the star (Gascheau 1843).
That implies that even the two most massive planets of
our solar system, Jupiter and Saturn, could share the same
orbital period with difference of mean longitudes librating
around 60◦. The less massive the two co-orbitals are, the
larger their amplitude of libration around the L4/L5 equi-
libria can be. When both masses are similar to the mass
of Saturn or lower, the two co-orbitals can also be on a
stable horseshoe orbit, in which the difference of the mean
longitudes librates with an amplitude of more than 310◦

(Garfinkel 1976; Érdi 1977; Niederman et al. 2018). Eccen-
tric/inclined orbits offer a wealth of other stable config-
urations that are extensively studied (Namouni & Murray
2000; Giuppone et al. 2010; Morais & Namouni 2013; Robu-
tel & Pousse 2013; Leleu et al. 2018). Trojan exoplanets
are a by-product of our understanding of planetary sys-
tem formation (Cresswell & Nelson 2008) and can form
through planet-planet scattering or in-situ accretion at the
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Lagrangian point of an existing planet (Laughlin & Cham-
bers 2002). However, there are currently only few constrains
on the expected characteristics (such as the amplitude of li-
bration) of co-orbital exoplanets, due to the complexity of
the evolution of such configuration in a protoplanetary disc
(Cresswell & Nelson 2009; Giuppone et al. 2012; Pierens &
Raymond 2014; Leleu et al. 2019).

The detection of co-orbital exoplanets is challenging
due to the existence of degeneracies with other configu-
rations across various detection techniques, Transit Timing
Variations (TTVs) (Janson 2013; Vokrouhlický & Nesvorný
2014), radial velocities and astrometry (Laughlin & Cham-
bers 2002; Giuppone et al. 2012; Leleu et al. 2015); while
the transit of both planets require close-in coplanar sys-
tems. The multi-planet systems Kepler-132, Kepler-271 and
Kepler-730 were first announced to contain close period
planets until a more detailed analysis disfavoured the co-
orbital scenario in favour of the planets orbiting two differ-
ent stars of a binary (Kepler-132), or in a 2:1 mean-motion
resonance (Kepler-271 and Kepler-730, Lissauer et al. 2011,
2014).

In this study we focus on (quasi-)coplanar orbits, as
we aim to describe potential signals in the data from past
and current transit surveys such as Kepler/K2 and TESS
(Borucki et al. 2010; Ricker et al. 2014) and prepare for the
analysis of future missions such as CHEOPS and PLATO
(Benz et al. 2018; Rauer et al. 2014; Hippke & Angerhausen
2015b). After a brief summary on the dynamics and sta-
bility of close-period planets, in section 2 we discuss how
TTVs can be used to remove the degeneracy between co-
orbitals and seemingly similar but distinct orbital periods
when candidates do not have a good enough signal to noise
ratio to identify each transit individually. In section 3 we
consider the case of the TOI-178 system, where two of the
announced three planet candidates have close orbital pe-
riods. We first perform an independent detrending of the
lightcurve and search for transits. Then, assuming that the
estimated periods from the TESS data validation report are
correct, we perform a stability analysis of this 3-planet sys-
tem as a function of the masses of the planets, and predict
the TTVs that should be observed in such system.

2. Coorbital dynamics and stability

2.1. Coorbital motion

We consider the motion of two planets of mass m1 and m2

orbiting around a star of mass m0 with their semi-major
axes and mean longitudes aj and λj , respectively. When
the semi-major axes of the two planets are close enough,
in the quasi-coplanar quasi-circular case, the evolution of
the resonant angle ζ = λ1−λ2 can be modelled by the 2nd
order differential equation (Érdi 1977; Robutel et al. 2015):

ζ̈ = −3η2µ
(

1− (2− 2 cos ζ)−3/2
)

sin ζ , (1)

where µ = (m1 + m2)/m0, and η is the average mean-
motion, defined as the barycenter of the instantaneous
mean-motion of the two planets: (m1+m2)η = m1n1+m2n2
(Robutel et al. 2011). The phase space of eq. (1) is shown
in Fig. 1. ζ = 180◦ corresponds to the hyperbolic L3 La-
grangian equilibrium, while ζ = ±60◦ are the stable con-
figurations L4 and L5. Orbits that librate around these
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Fig. 1: Top: phase space of the co-orbital resonance valid
for small eccentricities and inclinations. The x axis dis-
plays the resonant angle ζ = λ1 − λ2 while the y axis is
its normalised angular frequency, which is proportional to
m1
√
a1 − m2

√
a2. Bottom: value of the normalised fun-

damental frequency ν for initial conditions along the line
(ζ,ζ̇ = 0) of the top graph. Both graphs were obtained by
integrating eq. (1).

stable equilibria are called tadpole, or trojan (in reference
to Jupiter’s trojan swarms). Examples of trojan orbits are
shown in purple in Fig. 1. The separatrix emanating from
L3 (black curve) delimits trojan orbits from horseshoe or-
bits (examples are shown in orange), for which the system
undergoes large librations that encompass L3, L4 and L5.

The libration of the resonant angle ζ is slow with respect
to the average mean-motion η. The fundamental libration
frequency ν is proportional to √µη. In the neighbourhood
of the L4 or L5 equilibria, ν =

√
27/4

√
µη (Charlier 1906).

Away from the equilibrium, we compute ν by integrating eq.
(1). Its value is given in Fig. 1 (lower panel) with respect
to the initial value of the resonant angle.

2.2. Stability of similar-period planets

The main parameters we have access to when detecting a
planet through transit surveys are the orbital period, the
epoch of transit, the radius of the planet, and the impact
parameter. As the eccentricity of the planets are generally
unconstrained by these observations, the stability of de-
tected multi-planetary systems is estimated through crite-
ria involving the mass and semi-major axis of the planets,
such as Hill stability. Such criteria, however, does not take
into account the stability domain of the coorbital 1:1 mean
motion resonance. For coplanar circular orbits, the width
of this domain (i.e. a1 − a2 or P1 − P2), is at its largest for
ζ = ±60◦, see Fig. 1. As shown in previous studies (Leleu
et al. 2018), the stability domains of these configurations
depend mainly on µ = (m1 + m2)/m0, and very little on
m2/m1.
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Fig. 2: Stability map as function of P1/P2 and µ =
(m1 +m2)/m0, for circular coplanar orbits, taking ζ = 60◦

as initial condition (vertical dashed line in Fig 1). Coloured
pixels are long term stable with respect to the integration
time of 105 orbits. Grey pixels are long term unstable, and
white pixels are short term unstable. The black curve rep-
resent the mutual Hill radius of the planets, (P1/P2)2/3 =
1+(µ/3)1/3, while the vertical line represents P1/P2 ≈ 1.04
which is close the estimated value for the candidates of the
TOI-178 system discussed in Sec. 3. The color code is the
amplitude of libration, black for zero (lagrangian equilib-
ria), orange for horseshoe orbits. The bottom right corner
shows stable orbits outside of the co-orbital area, in yel-
low. The purple line is the stability criterion from the over-
lapping of first-order mean-motion resonances (Deck et al.
2013). Black dots represent orbits that are stable over 1010

orbital periods, see the text for more details.

To illustrate the stability of circular coplanar co-
orbitals, we integrate the 3-body problem for a grid of ini-
tial conditions. Taking initial conditions along the vertical
dashed line on Fig. 1 (ζ(0) = 60◦) allows us to study all the
possible co-orbital configurations in the coplanar circular
case from the Lagrangian equilibria (P1/P2 = 1) to horse-
shoe orbits (stability around L5 is obtained as well due to
the symmetry of the problem). We hence integrate a grid of
initial conditions along P1/P2 ∈ [1, 1.09] for various values
of µ = (m1 +m2)/m0 ∈ [2× 10−6, 2× 10−3]. The results of
these integrations are shown in Fig. 2.

For each set of initial conditions, the system is inte-
grated over 105 orbital periods using the symplectic inte-
grator SABA4 (Laskar & Robutel 2001) with a time step
of 0.01001 orbital periods. Trajectories with a relative vari-
ation of the total energy above 10−7 are considered unsta-
ble. Such trajectories are identified with white pixels. These
short term instabilities are generally due either to the over-
lap of secondary resonances in the co-orbital region (Robu-
tel & Gabern 2006; Páez & Efthymiopoulos 2015, 2018), or

to the overlap of first-order mean motion resonances outside
this domain (Wisdom 1980; Deck et al. 2013; Petit et al.
2017). Grey pixels identify the initial conditions for which
the diffusion of the mean motion of one of the planets be-
tween the first and second half of the integration is higher
than 10−5.5 (Laskar 1990, 1993; Robutel & Laskar 2001).
The integration time of 105 orbital period is not enough to
assess the stability on the lifetime of a planetary system.
However, from the estimates regarding the diffusion vari-
ation versus time given in Robutel & Laskar (2001) and
Petit et al. (2018), we deduce that a mean-motion diffusion
rate lower than 10−7 derived from integrations over 107 or-
bits enable us to ensure the stability over 1010 orbits. This
was checked for a lower resolution grid of initial conditions.
Giga-year stable orbits are shown by black dots on Fig. 2.

The color code represents the libration amplitude of the
resonant angle ζ: purple for trojan orbits, orange for horse-
shoe, and yellow if the configuration is outside the co-orbital
resonance but on a stable orbit. Due to the chosen resolu-
tion of initial conditions, the chaotic area in the vicinity of
the separatrix between the trojan and horseshoe domains
is visible only for large masses. The purple line represents
the stability criterion proposed by Deck et al. (2013) for the
outer limit of the chaotic area: (P1/P2)2/3 = 1 + 1.46µ2/7.
The black line indicates P1/P2 ≈ 1.04, which is close to
the estimated value for both TOI-178 and Kepler-132 can-
didates. Pairs of planets have to be either above the black
curve (in the co-orbital resonance), or bellow the purple one
(on separated orbits), to be on long-term stable orbits.

2.3. Transit Timing Variations of similar-period planets

Using the notations, reference frame, and results of Leleu
et al. (2017), planet j transits, at first order in eccentricities
and inclinations, when

λj = −π/2 + 2ej cos($j) , (2)

where

λ1(t) = λ0 + ηt+
m2

m1 +m2
ζ(t) ,

λ2(t) = λ0 + ηt− m1

m1 +m2
ζ(t) ,

(3)

and ζ(t) is given by eq. (1). The TTVs induced by the
co-orbital configuration are detailed in Ford & Holman
(2007) and Vokrouhlický & Nesvorný (2014). In this study
we simply comment on the following point: a pair of
co-orbital exoplanets might be mistaken for two planets on
close but distinct non-resonant orbits if:
- Their libration period is significantly longer than the
duration of the observation. In this case, the continuous
evolution of the instantaneous period of the co-orbitals can
be retrieved using eq. (3). This is the case of the TOI-178
that will be discussed in section 3.
- They are on horseshoe orbits and have similar radii. This
case is discussed in the rest of this section.
In both cases, since the orbits are within the Hill instability
region, it might lead to the rejection of one of the candidate
as false positive despite the fact that the planets are on
stable co-orbital orbits.

We illustrate the horseshoe orbit case using the Kepler-
132 system which has four validated planets (Rowe et al.
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Fig. 3: Top panel: instantaneous orbital period of two plan-
ets in a horseshoe orbit. Bottom: TTVs river diagram of the
transits of both planet with respect to the outer dashed line
at ∼ 6.4day. In the background, black (resp. purple) dots
give the river diagram of a planet in the isolated orbit P1

(resp. P2).

2014), two of them with P1 = 6.4149 day and P2 = 6.1782
day (planets Kepler-132 c and Kepler-132 b). As the central
star of Kepler-132 was shown to be a possible wide binary,
these 2 planets were subsequently announced to orbit each
a different component of the binary, as they would be Hill-
unstable if they orbited the same star (Lissauer et al. 2014).
We call this scenario (i). In this case, no significant TTVs
are expected for these two planets.

We propose an alternative scenario (ii) that we illustrate
in Fig. 3. For this figure, we integrated the orbit of two
masses mx = 3 × 10−5m0, my = 3.75 × 10−5m0 around a
m0 = 1.37 solar mass star, in a horseshoe orbit. Two planets
in such orbit ‘exchange’ their position every half libration
period. We approximate this motion by ‘jumps’ between an
upper period: Px,+ (resp. Py,+), and a lower period Px,−
(resp. Py,−) for the planet x (resp. y).

For this example, we chose initial conditions for the
planet x and y such that the average of the upper posi-
tions (Px,+ +Py,+)/2 (resp. lower position (Px,− +Py,−)/2)
are the orbital periods announced for Kepler-132 c (resp.
Kepler-132 b), shown in black dashed lines. As the swap-
ping between higher and lower period for x and y happen
when they are near conjunction, and is quick with respect
to the libration time scale, both scenario (i) (planet 1 and
2) and (ii) (planet x and y) yield similar transit timings:
the bottom panel of that figure represents the simulated
river diagram of that system, folding the time of transits of
the planets x and y with respect to the fixed outer period
P1. If we assume that we cannot distinguish the transits
of planet x and y, they can be mistaken for planet 1 hav-
ing moderate libration around the orbit of period P1 (black
dots in bottom panel of Fig 3), and planet 2 oscillating
around a distinct orbit P2 (purple dots), which result in
almost-vertical lines in this river diagram.

We hence consider the possibility that the announced
planets 1 and 2 of the Kepler system would instead be the
planets x and y represented in blue and orange in Fig. 3. In
this case planets 1 and 2 would be ‘fictitious’ planets that
are alternately planet x and y: the ‘planet 1’ which has
an announced period of P1 = 6.4 day is actually half of the
time the planet x, and the rest of the time the planet y, and
the same goes for planet 2. This scenario is possible because
the two announced planets have nearly indistinguishable
radii (R1 = 1.3± 0.3 and R2 = 1.2± 0.2).

However in the scenario (ii) the fictitious planets 1 and
2 exhibit significant TTVs when the actual planets x and
y have different masses (see bottom panel of Fig. 3): the
instantaneous period of each planet librates around a mean
orbital period P = (P1 + P2)/2 = (mxPx + myPy)/(mx +
my) (Robutel et al. 2011). The upper and lower position of
the planets x and y read:

Px,± = P ± myδP

mx +my
, Py,± = P ± mxδP

mx +my
, (4)

with δP = (P1 − P2). This jump is occurring at every con-
junction, Pswap = (1/P2 − 1/P1)−1. As P1 is the averaged
value of Px,+ and Py,+, the TTVs have an amplitude of:

TTV s = (Px,+ − P1)Pswap/P =
my −mx

mx +my

P1P2

P1 + P2
, (5)

and a period of 2Pswap. Note that the amplitude is sightly
overestimated as the instantaneous periods are continu-
ously swapping instead of jumping. This smooth evolution
also produces TTVs but they are negligible with respect to
those described by eq. (5) as long as mx and my differ by
more than a few percent. In Fig. 3,mx/my = 5/4, inducing
TTVs estimated at 8.37 hour by eq. (5).

In the Kepler-132 case, our light-curve analysis excluded
TTVs larger than half an hour on both planets 1 and 2. If
we consider the scenario (ii), i.e. that the transits are in-
stead produced by two planets x and y on horseshoe or-
bits, eq. (5) yields mx−my < 0.0066(mx +my), implying a
mass difference below 1.5% between the two planets. Albeit
the scenario (i), where each star of a binary has a similar
planet at almost equal orbital periods seems unlikely, the
scenario (ii), where two planets on a horseshoe orbit have
equal masses down to the percent level doesn’t seem much
likelier.

3. TOI-178

The first release of candidates from the TESS alerts of
Sector 2 included three planet candidates in the TESS
Object of Interest (TOI) TOI-178 (or TYC 6991-00475-1).
The candidates TOI-178.01, TOI-178.02 and TOI-178.03
transited respectively 4, 3 and 2 times during the 27 days of
observation. The TESS pipeline fits converge on a solution
where all three candidates are of planetary nature. In the
TESS data validation report all three planets pass all first
order tests to exclude potential false positive signals. The
in difference image centroid offsets relative to the TESS
Input Catalog position and relative to the out of transit
centroid are within 2 sigma for all 3 planet candidates
(except 2.09 sigma for planet 3), showing no indication for
an eclipsing binary scenario. The pipeline ghost diagnostic
test that searches for correlation of time series of core and
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Table 1: Parameters for the 3 candidates in the TOI-178
system, extracted from the data validation report (DVR)
of the TESS mission.

Parameter value
Star (TOI-178)

m0 [Msun] 0.643± 0.075

R0 [Rsun] 0.70± 0.15

Planet 1 (TOI-178.02)
P1 [day] 10.3542± 0.0032

T1 [BTJD] 1354.5522± 0.0041

R1 [Re] 3.7± 1.5

Planet 2 (TOI-178.03)
P2 [day] 9.9559± 0.0051

T2 [BTJD] 1362.9533± 0.0035

R2 [Re] 2.3± 2.7

Planet 3 (TOI-178.01)
P3 [day] 6.5581± 0.0013

T3 [BTJD] 1360.2423± 0.0024

R3 [Re] 2.8± 1.1

halo apertures ruled out optical ghosts of bright eclipsing
binaries outside of the target apertures as the source of the
transit-like features. The bootstrap test excludes a false
alarm scenario by 10−13 or smaller for all three planetary
candidates. The only two “yellow” flags are the 7.6 SNR
and slight centroid offset of 2.09 sigma for the candidate
TOI-178.03.

During the TESS observation of sector 2, the period
ratios of the two outer candidates was close to 1.04 (see Tab.
1), while the phase between these planets ranged between
ζ ∈ [280◦ : 310◦] (assuming circular orbits), which is in
the vicinity of the L5 equilibria (ζ = 300◦, see Fig. 1).
Besides, the radius of the outermost candidate is estimated
to be 3.7 ± 1.5 Earth radii, while the radius of the other
candidate is poorly constrained. An estimation of the mass
of these candidates is difficult, albeit the outermost appears
to be a ‘Neptune-like’ object (Chen & Kipping 2017), and is
hence very unlikely to have a sub-Earth mass. As a result,
as shown in Sec. 2.2, these candidates have to be in the
co-orbital resonance in order to be on stable orbits, see
the vertical line in Fig. 2. This prompted us to study this
system in more details. For consistency with the section 2,
in the rest of the paper we name 1 and 2 the two co-orbital
candidates, while the planet at 6.5 day will be called planet
3, see Tab. 1.

3.1. Independent transit search and orbital fit

We run an independent transit search to confirm the result
of the TESS Science Processing Operations Center (SPOC)
pipeline (Jenkins et al. 2016), starting from the target pixel
file, which we downloaded from the MAST1. We first cal-
culate the centroid position and Full Width at Half Maxi-
mum (FWHM) of the target’s point-spread-function (PSF)
for each frame. We then generate the lightcurve by using a

1 Mikulski Archive for Space Telescopes,
https://archive.stsci.edu/prepds/tess-data-alerts/.

circular top-hat aperture, tracking the PSF center in each
frame.

Our transit search and detrending pipeline is based on
the Gaussian Process (GP) pipeline used to detrend K2
lightcurves in Luger et al. (2017); Grimm et al. (2018),
modified to work with the higher cadence rate of TESS
lightcurves. We find that the systematic noise encountered
in TESS lightcurves has a different source than in K2.
Namely, instead of being correlated with the PSF centroid
offset, it has a strong correlation with the x and y FWHM of
the target PSF. Therefore, we employ a similar procedure as
in Luger et al. (2017), running a GP regression pipeline to
simultaneously fit the systematic noise correlated with the
x and y FWHM, and the longer-term fluctuations caused by
stellar variability. The noise is then subtracted to produce
a flattened lightcurve. The detrended lightcurve has a simi-
lar residual noise level as the PDCSAP lightcurve produced
by the SPOC pipeline (with median absolute deviations of
0.126% and 0.124% respectively).

This GP-based detrending method is independent from
the TESS pipeline, which uses co-trending basis vectors de-
rived from the entire ensemble of lightcurves in a dataset
(Jenkins et al. 2016). As a result, we can provide an inde-
pendent check that the transit signals are not spuriously
caused by data processing.

We run a standard transit search to find the 10 strongest
transit-like signals, based on similar procedures in e.g. Van-
derburg et al. (2016); Dressing et al. (2017); Mayo et al.
(2018). First, we perform a series of BLS fits to find peri-
odic dimming events in the lightcurve, removing each signal
for subsequent fits (Kovács et al. 2002). For each of the 10
signals, we fit a transit model based on Mandel & Agol
(2002). We use the batman package to compute the transit
model (Kreidberg 2015), inputing limb-darkening parame-
ters calculated from Claret & Bloemen (2011).

Running the transit search on our detrended lightcurve,
we recover all three transit signals found by the TESS
pipeline. However, we also find a strong signal with a
4.96 day period, and a first-transit time of t0 = 1458.006
(BTJD). This is an alias of candidate 2. We calculate the
log-likelihood difference between the 9.96 period and its
alias to be 7.74, in favour of the 9.96 day period. This
would correspond to a difference of ∼ −15 in the Bayesian
Information Criterion, which is considered significant
(Schwarz 1978). However, our limited constraints on the
properties of the host star will have an effect on the
likelihood ratio, as it is calculated based on a transit model
which requires stellar mass and limb-darkening.

Given the signal to noise ratio limit of the TESS obser-
vations, we cannot fully confirm the 9.96d period of candi-
date 2 based on individual transits. We then check if the
transit timing variations can help us discriminate between
the two scenarios: (i) The configuration announced by the
TESS pipeline, where the orbits are near a 3:2:2 resonant
chain; and (ii) The case where the candidate 2 is in a 4.96
day period, resulting in a near 4:3:2 resonant chain. The
date of individual transits, derived both from the lightcurve
detrended by the TESS pipeline and the result of our own
detrending, are given in Tab. A.1.

We perform the Transit Timing Variation (TTV)
analysis with an ensemble differential evolution Markov
chain Monte Carlo method (DEMCMC) (Braak 2006;
Vrugt et al. 2009), similar as described in Grimm et al.
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Table 2: Orbital fit to the transit timings observed by TESS.
The initial conditions are taken close to the 3:2:2 resonant
chain in scenario (i), and close to the 4:3:2 resonant chain
in scenario (ii). The eccentricities were set with an upper
limit at 0.2, and were unconstrained by the fit.

Parameter value (i) value (ii)
Planet 1 (TOI-178.02)

P1 [day] 10.2601+0.107
−0.111 10.2974+0.053

−0.110

T1 [BTJD] 1354.57+0.05
−0.04 1354.56+0.03

−0.02

m1/m0[1E-4] 5.77+7.28
−4.01 4.35+7.79

−3.66

Planet 2 (TOI-178.03)
P2 [day] 9.9766+0.188

−0.117 4.9032+0.067
−0.155

T2 [BTJD] 1353.02+0.11
−0.09 1348.07+0.13

−0.12

m2/m0[1E-4] 3.11+3.79
−2.47 0.73+2.34

−0.67

Planet 3 (TOI-178.01)
P3 [day] 6.6053+0.099

−0.048 6.60771+0.095
−0.044

T3 [BTJD] 1353.66+0.03
−0.04 1353.68+0.03

−0.03

m3/m0[1E-4] 5.66+5.54
−4.60 3.68+5.81

−2.85

(2018). This method is using the GPU N-body code
GENGA (Grimm & Stadel 2014) to calculate the orbital
evolution of the planets and the transit times for the
DEMCMC steps. The estimated masses, in each scenario,
are summarised in Tab. 2, while the posterior distribution
functions can be found in Fig. A.1. We note that these
posteriors do not take into account the long-term stability
of the fitted orbits. Due to the low number of observed
transits, and the short time span of the observations, the
uncertainties on the masses are quite large, and do not
allow to discriminate further a scenario with respect to the
other. We note however a difference between the posterior
distributions of m2/m0 between the two scenarios: if the
candidate 2 is on a 4.94 day orbit, then its mass should be
significantly smaller than the other two candidates.

Our analysis of the current observations does not allow
to fully discard the 4:3:2 scenario. In the next sections we
nonetheless consider the case that is favoured by both our
lightcurve analysis and the TESS pipeline: the near 3:2:2
resonant chain. The stability of the orbit of planets 1 and
2 was already discussed in section 2.2. However, the pres-
ence of the planet 3 near a 2:3 MMR with the co-orbital
pair might further reduce their stability domain (Robutel
& Gabern 2006). We analyse the stability of this 3-planet
system in the next section.

3.2. Stability analysis

As P1/P3 ≈ 1.58 and P2/P3 ≈ 1.52, the co-orbital con-
figuration is just outside the 3:2 MMR with planet 3. As
a result, we expect resonances between the libration fre-
quency ν of the co-orbitals and the frequency Ψ = 2n3−3η
(called great inequality), where n3 is the mean-motion of
planet 3 and η the average mean-motion of the co-orbitals
(Robutel & Gabern 2006). As we have no information on
the eccentricities of the planets, we analyse the stability in
the circular case. Both ν and Ψ depend on the averaged
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Fig. 4: Stability domains for the co-orbital candidates of
the TOI-178 system. (a) as a function of the mass of the
two co-orbitals, fixing m3 = 2.5 × 10−5m0; and (b) as a
function of the mass of the two coorbitals µ and the inner
planet m3. Dotted lines represent the intersection of the
planes of initial conditions (a) and (b). The color code is
the same as Fig. 2. Panel (a) shows black dots to represent
orbits that are stable over 1010 orbital periods, see Sec.
2.2 for more details (orbit for higher masses are currently
being integrated and will be displayed in the re-submitted
version). The numbers displayed in panel (a) are the value
of p for the disruptive Ψ = pν + g resonances.

mean-motion, which in turn depends on the mass of the
star and the mass ratio between the two co-orbitals. The
mass of the star is a common factor to all involved fre-
quencies and can hence be ignored, as the initial conditions
are taken using the relative orbital periods of the planets.
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Given the constraints we have on the orbits, the three main
parameters for the stability of the system are the masses of
the three planets.

We hence check the stability of the co-orbital configura-
tion as a function ofm1/m0,m2/m0, andm3/m0 in two dif-
ferent planes: in Fig. 4 (a) we varym1/m0 andm2/m0, tak-
ing an arbitrary value for m3 = 2.5×10−5m0(≈ 5.3Mearth,
using m0 given in Table 1); while in (b) we fix m1/m2 vary-
ing µ and m3/m0. The initial values of the mean longitudes
and semi-major axis are derived from Table 1, and the or-
bits are initially coplanar and circular. These figures are
obtained in the same way and have the same color code as
in Fig. 2, see section 2.2.

In Fig. 4 (a), we recover the stable domains for horse-
shoe and trojan orbits, as was the case of Fig. 2. We see
however that these stability domains are crossed by disrup-
tive resonances. We identified the main chaotic structures
to be in the wake of resonances of the form Ψ = pν + g,
where g is one of the three secular frequencies of the sys-
tem, small with respect to ν. The p = [2, 3, 4] resonances
cross the trojan area, while p = [5, 6, 7, 8] disturb the horse-
shoe domain (for more details, see Robutel & Gabern 2006).
For two isolated co-orbitals m1/m2 has close to no impact
on the stability of the orbits in the coplanar quasi-circular
case (Leleu et al. 2018). Here however, the mass reparti-
tion between the co-orbitals shift the value of the averaged
mean-motion η, displacing the positions of the disruptive
resonances. This effect, combined with the evolution of the
resonant frequency ν (which is function of both µ and the
amplitude of libration of ζ, see Fig 1), gives the unstable
structures displayed in Fig. 4. Long term-stable areas re-
main for many values ofm1 andm2, butm1 > m2 is overall
favoured by this stability analysis.

Fixing the mass ratio to an arbitrary value m1/m2 = 2,
and changing µ and m3/m0, we show in Fig. 4 (b) that
m3/m0 has little effect on the position of the resonant struc-
tures, as it does not impact the value of the concerned fre-
quencies beside the secular frequency g. As a result, an
increase of m3/m0 only increases the width of the chaotic
area near these resonances, further reducing the stability
domains. A good estimation of the mass of the planet 3 can
hence further constrain the possible co-orbital configura-
tion of the planets 1 and 2. It is important to bear in mind,
however, that panel (b) only represents the evolution of the
m1 = 2m2 line on panel (a), and hence a more detailed
analysis is required once more constrains are obtained on
the masses.

3.3. Predicted TTVs for future observations

Depending on m1 and m2, we showed in the previous sec-
tion that the TOI-178 system could harbour stable co-
orbital exoplanets, either in a trojan or horseshoe configura-
tions. Using equation (3), we show in Fig. 5 the TTVs that
should exhibit such configurations, taking as initial condi-
tions the orbital elements summarised in Tab. 1, along with
two set of arbitrary masses. In the top panel, m1 + m2 =
1.25 × 10−4m0, resulting in a horseshoe orbit (see Fig. 2),
while in the bottom planetm1+m2 = 4.25×10−4m0, which
result in a tadpole orbit with a large amplitude of libration.

Fig. 5 also illustrates why planet 1, despite transiting
3 times during the observation by TESS of the sector 2,
would not display significant TTVs during that time: in
both example, the evolution of the TTVs is quasi-linear
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Fig. 5: Example of TTVs for TOI-178.02 (m1, orange) and
TOI-178.03 (m2, blue) for two arbitrary sets of masses, tak-
ing as initial conditions the configuration of the system
during the observation of sector 2 by TESS. Top panel:
m1 = 1 × 10−4m0, m2 = 2.5 × 10−5m0, resulting in a
horseshoe configuration. Bottom panel: m1 = 4× 10−4m0,
m2 = 2.5 × 10−5m0, resulting in a large amplitude trojan
configuration.

over the first 30 days. As a result, these TTVs can be ab-
sorbed by a redefinition of the orbital period of the planet.
This linearity is due to the fact that ζ ∈ [280◦ : 310◦]
during the observations, which correspond to a global
extremum of the instantaneous period of both co-orbitals
regardless of their amplitude of libration, see Fig. 1.

For this system, the full TTVs induced by the co-orbital
motion happen over hundreds of days. Figure 6 gives the
amplitude and period of the TTVs expected for planet 1
for a grid of masses of the co-orbital candidates. The ef-
fect of the inner planet 3 is neglected, and should be small
compared to the libration in the co-orbital resonance. The
TTVs’ amplitude of each planet is proportional to the mass
of the other planet, and proportional to the resonant angle
(eq. 3). As a result, the amplitude of the TTVs expected
for planet 2 can easily be deduced by swapping the labels
of the x and y axis in the lower panel of Fig. 6.

Due to the evolution of the resonant angle of ≈ 30◦

during the observation of sector 2 by TESS, at least one
of the two co-orbital candidates should exhibit TTVs of
the order of a day or more. If these TTVs are detected,
it would not only confirm the existence of the co-orbital
pair, but also allows for unique and precise determinations
of m1/m0 and m2/m0.

4. Summary and Conclusions

In section 2 we have reviewed the main properties of the 1:1
mean-motion resonance in the case where both objects are
of planetary nature, and we gave the constrains on TTVs
that allows us to recover if two planets on apparently close
period orbits are actually in a horseshoe configuration.
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Fig. 6: Period (top) and amplitude (here for planet 1, TOI-
178.02, bottom) of the predicted TTVs induced by the co-
orbital motion, assuming circular orbits derived from Table
1. The effect of planet 3 is neglected. The amplitude of
TTVs predicted for planet 2 (TOI-178.03) are obtained by
swapping the x and y labels of the bottom panel.

We applied this method to the Kepler-132 system, and
concluded that Kepler-132 b and Kepler-132 c need to have
equal masses down to the percent level for their TTVs to
be consistent with the co-orbital hypothesis.

In section 3 we have analysed in detail the case of the
TOI-178 system, where two planet candidates appear to be
on a co-orbital orbit. All first order analysis described in
the TESS data validation report point at transit signals of
planetary nature coming from one system in TOI-178. One
question still to be addressed is if these detected transits
were correctly accounted to individual planets. Our inde-

pendent detrending and transit search recovers all three
transit signals found by the TESS pipeline at the 6.5, 9.9,
and 10.5 day periods, but we cannot exclude an alias for the
TOI-178.03 (planet 2 in our study) which would put that
planet on a 4.9 day orbit, resulting in a configuration in, or
close to, a 4:3:2 three-body resonance. Our TTVs analysis
showed however that in this case, TOI-178.03 is expected to
be significantly less massive than the other two candidates.
A potential other alternative scenario would be that the
two transits of the TOI-178.03 are indeed two individual
transits of outer planets.

Assuming that the orbits summarised in Tab. 1 are cor-
rect, we performed a stability analysis of the system allow-
ing for a large range of mass for each planets. As long as
the mass of the inner planet is not much more massive than
the sum of the mass of the two co-orbital candidates, sta-
ble co-orbital configurations can exist for billion years. The
stability analysis favoured the case where the TOI-178.02
is more massive than TOI-178.03. During the time of the
observation of the sector 2 by TESS, the phase between
the two candidates was λ1 − λ2 ∈ [280◦, 310◦]. This allows
the bodies to be on a vast range of amplitudes of libration
around the L5 Lagrangian point (ζ = 300◦) or in a horse-
shoe orbit (see Fig. 1), depending on their mass. The min-
imal values of the mass of the bodies are also constrained
by the stability diagrams Fig. 2 and 4.

TTVs that should be induced by the co-orbital mo-
tion during the three transit observed of the TOI-178.03
cannot be used to further constrain the system because
ζ ∈ [280◦, 310◦] correspond to a local extremum for the
instantaneous period of the bodies. Important long term
TTVs, on an observation timespan of hundred of days,
should however be observed on at least one of the the two
candidates, see Fig. 5 and 6. Such TTVs must be observed if
the orbits reported in Table 1 are correct, and would allow
to constrain the masses of the TOI-178.02 and TOI-178.03
with great precision.

Alternatively radial velocity measurements can be used,
both on their own (Laughlin & Chambers 2002; Leleu et al.
2015), and in combination with the transit measurements
(Ford & Gaudi 2006; Leleu et al. 2017), to confirm the co-
orbital nature of the system. More constrains on TTVs
might be provided by GAIA (Gaia Collaboration et al.
2016), and by the ESA mission CHEOPS to be launched in
fall 2019 (Benz et al. 2018).
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Appendix A: TTVs of the TOI-178

Table A.1: Posterior of the transit times for the individual
transits of each of the three planet candidates in TOI-178,
both from the light curve detrended by the TESS pipeline,
and our own analysis. All dates agree within 1σ.

Candidate ID T [day] T [day]
transit TESS detrending Our detrending

Candidate 1 1 1354.5500+0.0110
−0.0058 1354.5550+0.0056

−0.0059

Candidate 1 2 1364.9110+0.0190
−0.0190 1364.9089+0.0069

−0.0079

Candidate 1 3 1375.2592+0.0045
−0.0060 1375.2598+0.0024

−0.0021

Candidate 2 1 1362.9540+0.033
−0.032 1362.9485+0.0094

−0.0101

Candidate 2 2 1372.9090+0.014
−0.018 1372.9106+0.0070

−0.0120

Candidate 3 1 1360.2384+0.0045
−0.0042 1360.2381+0.0040

−0.0042

Candidate 3 2 1366.8027+0.0057
−0.0027 1366.8028+0.0034

−0.0023

Candidate 3 3 1373.3580+0.0055
−0.0070 1373.3614+0.0036

−0.0033

Candidate 3 4 1379.9152+0.0042
−0.0048 1379.9154+0.0025

−0.0027
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Fig. A.1: Posterior distribution functions of the planetary
masses for the scenario (i) on the top panel, and scenario
(ii) on the bottom one. The histogram subplots on the di-
agonal show the median (dashed line) and the one-sigma
uncertainty (thin lines) of the estimated masses.
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