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Abstract: The western honeybee Apis mellifera exhibits a diverse set of adaptations in response to
infestations by its most virulent disease-causing agent, the ectoparasitic mite Varroa destructor. In this
study, we investigated the effect of honeybee pupae genotype on the expression of four host and
parasite traits that are associated with the reproductive phase of the mite in the brood of its host.
We first phenotyped cells containing bee pupae to assess their infestation status, their infestation
level, the reproductive status of the mites, and the recapping of cells by adult workers. We then
genotyped individual pupae with five microsatellites markers to compare these phenotypes across full
sister groups. We found that the four phenotypes varied significantly in time but did not across the
subfamilies within the colonies. These findings show that V. destructor mites do not differentially infest
or reproduce on some particular honeybee patrilines, and that workers do not target preferentially
specific pupae genotypes when performing recapping. These findings bring new insights that can
help designing sustainable mite control strategies through breeding and provide new insights into
the interactions between A. mellifera and V. destructor.

Keywords: coevolution; host-parasite interactions; behavioral genetics; molecular ecology; population
genetics; reproduction biology; microsatellite markers; Varroa; Apis; honeybees

1. Introduction

Social insects are characterized by large numbers of individuals living in close proximity in a nest.
Within this group, eusocial insects are defined by the presence of overlapping generations, cooperative
brood care, and division of labor into reproductive and non-reproductive individuals. Despite
their multiple advantages, these traits make eusocial insects particularly vulnerable to diseases [1].
In response to this increased susceptibility, a wide range of collective and individual defenses against
parasites and pathogens have evolved in insect societies [2,3]. Within an eusocial insect colony,
the diversity of resistance and tolerance traits can be very high, even more so if queens mate with
several unrelated males [4–6].

Honeybees (genus Apis) stand amongst the most polyandrous eusocial insects [7]. In this taxon,
diploid queens achieve extreme levels of multiple mating with males through highly diverse and
dynamic lek-like mating systems called Drone Congregation Areas (DCAs) [8–11]. Colonies of
honeybees are formed by a single polyandrous queen, which produces haploid males and diploid
females that either turn into new queens or into workers. Within a nest, workers can be full-sisters if
they share the same parents, or half-sisters if their fathers differ. In the Western honeybee, A. mellifera,
about twelve half-sister groups (called “subfamilies” or “patrilines”) are found in average per colony [7].
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In addition to these extreme levels of polyandry, very high rates of recombination have been documented
across the genome of this species [12]. Altogether, this enhanced genetic diversity affects colonies
development [13,14] and can increase chances of the colonies to survive diseases [15].

A. mellifera suffers from a great number of diseases, of which the varroosis is undoubtedly the most
harmful at the global scale [16,17]. This syndrome is caused by the ectoparasitic mite Varroa destructor
and generally leads to the rapid collapse of the western honeybee colonies if no treatments are applied.
The native parasite of Apis cerana in Asia is a mite that has managed to spillover to A. mellifera after
colonies of the western honeybee were introduced in its distribution range and subsequently spread
across most regions of the globe [18]. Acting as a vector for highly virulent honeybee viruses [19–21],
V. destructor particularly affects the brood of its host, where its reproduction takes place [22].

The life cycle of V. destructor is composed of two phases: reproduction within brood cells and
dispersal on the adult workers and drones. Reproduction starts with the invasion of a 5th instar
larvae brood cell by a mature female mite (the foundress) shortly before capping by the workers.
Approximately three days after the cell is closed, the foundress will lay a first haploid egg, which
will develop into a male. She will then lay several diploid female eggs in 30 h interval. Her offspring
will take about six days to reach maturity. At this stage, reproduction will occur between the mature
offspring in the cell, resulting in incestuous mating if the cell was infested by a single foundress, or in
the possible admixture of mite lineages if several foundresses initially infested the same cell [23,24].
Mating will occur until the host is fully developed and emerges, after nine to twelve days post-capping.
Once the fully developed bee exits the cell, the mated female mites will enter a dispersal phase. They
will crawl on the combs, climb onto adult bees, and hide between the sclerites of their host until an
opportunity to infest new brood cells emerges. V. destructor dispersal phase finishes with the detection
and infestation of a new 5th instar larva cell, where a new reproductive cycle can start. A wide variety
of factors are believed to trigger host finding, and chemical cues from the host seem to play a crucial
role in this important step [25].

A single V. destructor foundress will typically perform several reproductive cycles during its
life [26], leading to a rapid buildup of parasite populations within a honeybee colony [27,28]. However,
the reproduction of V. destructor depends on the availability of bee brood, which fluctuates greatly
during the season, across environments and among A. mellifera populations [29]. In addition, the type
of brood (i.e., worker vs. drone) also affects mite population dynamics. In fact, the honeybee drone
brood, which takes more time to develop and leads to the production of more offspring per foundress
than the worker brood, is more attractive to V. destructor [30–32]. However, little knowledge exists on
the links between the invasion behavior of the mite and the biology of the brood. More specifically,
whether mites consider certain biological traits of the individual larva they infest is currently unknown.

The rapid growth of V. destructor populations in A. mellifera generally induces the collapse of
colonies within a few years in the absence of beekeepers’ intervention. However, several resistance
and tolerance traits against the parasite have arisen and some Western honeybee populations can now
survive without treatments [33,34]. One of these adaptations, the Suppression of Mite Reproduction
(SMR), is of particular interest for beekeepers, breeders and scientists [35,36]. This trait is highly
heritable [37,38] and consists of the absence or the delay of mite foundresses’ egg laying in the
host brood cells and results in strong diminution of the parasite population dynamics. However,
the biological mechanisms behind SMR are currently not fully understood. More specifically, whether
the reproduction failure of the parasite is solely due to the action of adult workers, of brood, or both
simultaneously remains unclear. In fact, adult worker bees may interfere with the mite reproduction
through a diverse range of mechanisms, including the detection, unsealing, and resealing of the infested
cells (the “recapping behavior”), or the selective removal of the infested pupae (the “Varroa-Sensitive
Hygiene”, or “VSH behavior”) [39–42]. Yet, the brood may also play a role by directly altering the
reproduction of the mite with kairomones [43] or by signaling the workers that it is infested [44].

We herein used behavioral genetics to investigate the interactions between A. mellifera and
V. destructor. This discipline aims at unraveling the links between behaviors and genotypes and has
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been used extensively to study A. mellifera [45]. In this study, we first investigated four traits of the
mite or of its host that take place during the parasite reproductive cycle: the infestation of brood cells,
the number of foundresses infesting brood cells, the reproduction of foundresses, and the recapping of
cells by adult bee workers. We then compared these different phenotypes to the genotype of the brood
on which they were observed, using sibship reconstruction analyses with microsatellite markers to
reconstruct the subfamilies of the pupae. The comparison of the phenotypic traits across patrilines
allowed us to investigate whether specific bee subfamilies (i) are more frequently targeted by varroa
infestations, (ii) are able to block the reproduction of the mites and (iii) are more likely to be opened by
workers performing the recapping behavior.

2. Materials and Methods

2.1. Phenotyping

Reproductive traits of V. destructor mites were analyzed in the worker brood of seven colonies of
A. mellifera located in the apiary of the INRA institute of Avignon, France, from the end of August to
the end of October 2018 (Table S1). These hives had not been treated against V. destructor for over a
year before the start of the experiments. Brood cells that were at least seven days post-capping (i.e.,
purple eyes pupal stage) were carefully opened with insect tweezers and their content was examined
with stereo microscopes. The examination of the brood cells consisted of: (i) observing whether the
capping had been manipulated by the workers (“recapping behavior”), (ii) noting the age of the pupae
(from day 7 to day 11 post-capping) following [31], (iii) counting the number of foundresses and (iv)
carefully describing all other varroa stages found in the cells, according to the methods detailed in [46].
The recapping behavior was monitored by checking whether the silk that usually lines the underside
of the cap was lacking (recapped cell) or not (untouched cell) following [39]. A successful reproduction
was presumed if at least one offspring female had sufficient time to mate with her brother before their
host’s emergence. In all other cases (e.g., no male or no offspring females in the cells, not enough time
for reproduction before emergence, etc.), the reproduction was considered unsuccessful. Using these
observations, the presence/absence of mites, the number of foundresses, the mite reproduction level
and the recapping status of every cell were obtained. Colonies were screened every two weeks in
order to assess the temporal variability of the traits. However, due to complications (e.g., requeening
of colony A), each of the colonies could not be screened at all time points (Table S1). In all, 2627 cells
were phenotyped in the seven colonies (Table S1).

2.2. Genotyping

After phenotyping the brood, the pupae were collected and a hind leg per individual was dissected
and placed in a 96 PCR well plate containing 100 µL of 5% Chelex solution per well. The location of
each pupa on the plate was recorded to be able to keep tracks of the phenotypes of the individual cells
during the downstream analyses. Directly after sampling, 5 µL of proteinase K (10 mg/mL) was added
to each well of the plates and DNA extraction protocols were run in a thermocycler according to [47].
The plates containing the DNA were then stored at −20 ◦C until further use.

To analyze whether the different phenotypes matched the workers’ genotypes, the individuals from
three colonies (B, D and E, N = 556 pupae) were sent to Genoscreen (Lille, France) to be genotyped on a
3730 XL sequencer (Applied Biosystems®, Foster City, CA, USA) at five microsatellite markers [48,49]
(Table S2) using a single marker per PCR reaction and following the standard conditions detailed
in [50]. The three colonies used for genotyping were selected according to their level of variability of
the phenotypes, the dates when they could be sampled, and the number of pupae collected. Once
retrieved, the genotypic data were scored manually using Peak Scanner v. 1.0 (Applied Biosystems®).
The genotyping process was repeated once per sample if the first PCRs did not work. After this,
individuals with missing data were discarded, resulting in a final dataset including 486 individuals.
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To test the independence of the microsatellite markers, linkage disequilibrium tests were run for
each pair of loci on the overall dataset using the software FSTAT v. 2.9.3. [51]. The number of alleles and
observed heterozygosity levels were then estimated for each locus in every colony and over the three
colonies (Table S2) using the microsatellite toolkit Excel add-on [52]. To assess whether the markers
used were variable enough to accurately discriminate distinct bee genotypes, the Non-Detection
Error coefficient (NDE) was calculated according to [50]. This index is derived from the number and
frequency of alleles at the markers used and represents a probability of non-discrimination between
two different genotypes due to a lack of polymorphism in the marker set used.

2.3. Testing the Links between Phenotypes and Genotypes

To identify subfamilies in the colonies, the queen and drone alleles of the genotyped workers
were identified based on the frequency and pattern of the alleles, following the guidelines from [50].
With this procedure, the patrilines of the workers in the three colonies were reconstructed. In addition,
the Non-Sampling Error coefficient (NSE) was estimated for each colony in order to assess whether the
sample size used in this study was large enough to accurately grasp the diversity of subfamilies in
each colony. This second index takes into account the distribution of the individuals of each genotype
and provides an estimate of the number of patrilines that have not been sampled [50].

After these controls were performed, statistical analyses were conducted. Four independent
Generalized Linear Models (GLMs) were used to assess the effects of three factors on the four different
phenotypes: the patrilines of the individual pupae on which the traits were recorded, the colony of
origin, and the date of sampling. To do so, only patrilines with at least five individuals were kept in
the dataset. This cutoff number was selected as it allows keeping a sufficient number of patrilines for
the analyses while retaining enough of the samples to allow assessing the variance within subfamilies.
Given that no patriline was found in two colonies simultaneously, we used a nested design to account
for both the variability explained by the differences between colonies and by the patrilines within
each of the colonies. For three traits (infestation status, reproduction and recapping) the family used
was Binomial, and for the fourth (infestation level) a Quasipoisson family was used. These statistical
analyses were performed in R v. 3.6.1. [53].

3. Results

3.1. Phenotyping

In all, 2627 cells containing at least seven days old worker pupae were analyzed in the seven
colonies screened during the phenotyping step (Table S1). These phenotypic results were variable
across colonies (Table 1). Notably, recapping was significantly correlated with the mite infestation level
of the colonies (r2 = 0.396, p = 0.005). Yet, at the individual level, recapping was not systematically
higher in infested cells (Table 1), indicating that they may not be preferentially targeted by workers
performing this behavior.
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Table 1. Results of phenotyping. Details of the phenotyping of A. mellifera colonies showing the colony
identification (Colony), the sampling period (Sampling; I: end of August, II: middle of September, III:
beginning of October and IV: end of October), the number of infested cells (NInf), the percentage of
multiply-infested cells based on the total number of cells infested (% Multi), the proportion of mites
reproducing (Reproduction), the percentage of cells recapped (% Recapped), and the percentage of
infested cells that were recapped (% Inf Recapped).

Colony Sampling NInf % Inf % Multi Reproduction % Recapped % Inf Recapped

A
I 22 26.51% 9.09% 0.65 16.87% 22.73%
I 25 28.74% 20.00% 0.85 34.48% 36.00%
II 25 17.86% 24.00% 0.47 15.71% 36.00%

B *

I 24 29.63% 16.67% 0.60 2.47% 8.33%
I 27 34.18% 25.93% 0.55 10.13% 18.52%
II 28 18.92% 28.57% 0.65 6.76% 14.29%
III 39 11.08% 20.51% 0.42 10.23% 2.56%

C
I 29 30.85% 31.03% 0.65 23.40% 17.24%
II 27 38.03% 25.93% 0.40 42.25% 70.37%
III 41 31.06% 29.27% 0.55 53.03% 36.59%

D *
I 28 21.71% 28.57% 0.85 6.98% 14.29%
II 20 19.05% 0.00% 0.85 12.38% 0.00%
IV 59 40.14% 32.20% 0.75 35.37% 59.32%

E *
II 22 23.16% 9.09% 0.90 13.68% 9.09%
IV 33 54.10% 39.39% 0.65 90.16% 90.91%
IV 58 38.41% 32.76% 0.69 82.78% 100.00%

F
III 45 13.80% 26.67% 0.42 28.53% 11.11%
III 53 15.32% 20.75% 0.55 47.69% 50.94%

Total 605 23.03% 25.12% 0.63 29.27% 38.84%

* colonies selected for genotyping.

3.2. Genotyping

Three colonies out of the seven phenotyped were genotyped. Highly significant genetic
disequilibrium was found over all samples between each pair of markers, showing that the five
markers were independent of one another. In addition, the Non-Detection Error of the microsatellite
markers used was small (NDE = 0.25–1.70%), indicating a low probability of not being able to
discriminate two individuals with different genotypes (Table 2). Overall, 57 patrilines were found in
the 486 individuals genotyped. Moreover, the Non-Sampling Error was small in all three colonies
(NSE = 1.10–2.44), indicating that the great majority of subfamilies were reconstructed. Interestingly,
none of the patrilines was found in two colonies simultaneously. In addition, the subfamilies were
found evenly across the different sampling dates (Table S3).
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Table 2. Results of Genotyping. Details of the colonies genotyped. The name of the colony (Colony),
the Non-Detection Error coefficient (NDE), and the total number of bees genotyped (NTotal) are given,
together with details on the patrilines (NIND: number of individual with data at all five markers, N:
total number of patrilines, N > 5: number of patrilines with at least five workers, NSE: Non-Sampling
Error coefficient).

Colony NDE NTotal
Patrilines

NInd N N > 5 NSE

Colony B 0.71% 213 202 18 6 2.44
Colony D 0.25% 179 149 25 10 1.10
Colony E 1.70% 164 135 13 4 1.45
Overall 0.12% 556 486 57 20 5.52

3.3. Association between Phenotypes and Genotypes

The statistical analysis using GLMs revealed that the honeybee subfamilies could not significantly
explain the observed variability of the four phenotypes investigated (Table 3). Moreover, the expression
of these traits across patrilines revealed no major deviation from the proportion of the phenotypes
at the colony level (Figures 1–3). Although the infestation status and infestation level did not vary
significantly across the three colonies, mite reproduction and recapping did. Finally, all four traits
were influenced significantly by the period of sampling (Table 3). In the three colonies sampled, the
infestation status and level decreased slightly after the first sampling period (end of August) but
increased notably towards the last period (end of October) (Table 1). A notable temporal decrease of
mite reproduction was observed, whereas recapping showed an increased expression towards the end
of the season (Table 1).

Table 3. Results of the statistical analyses. Outputs of the four GLMs used to compare the effect of the
colonies, patrilines and sampling date on the phenotypic traits studied (infestation status, infestation
levels, reproduction and recapping). Significant p-values are indicated in italics and bold.

Model Factors d.f. Deviance Resid. Dev. p-Values

Infestation Status
Colony 2 3.060 550.39 0.216

Colony:Patriline 17 13.468 528.32 0.704
Date 3 8.598 541.79 0.035

Infestation Level
Colony 2 4.2518 429.47 0.096

Colony:Patriline 17 14.309 396.26 0.540
Date 3 18.898 410.57 <0.001

Reproduction
Colony 2 10.086 211.53 0.006

Colony:Patriline 13 14.310 187.90 0.352
Date 3 9.315 202.21 0.025

Recapping
Colony 2 69.684 227.01 <0.001

Colony:Patriline 13 14.507 133.94 0.269
Date 3 78.564 148.45 <0.001
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4. Discussion

In this study, we used behavioral genetics to investigate the interactions between A. mellifera and
V. destructor, focusing on several crucial aspects of the reproduction of the mite. To do so, we compared
the status and level of infestation of the mite, its fertility, and the recapping behavior of workers to
the subfamilies of the pupae where these phenotypes were observed. Our results show that the traits
varied in time, but revealed no significant associations between these phenotypic observations and the
most prevalent patrilines found in the colonies we investigated, suggesting that these traits are not
strictly determined by the genotype of the drones siring the honeybee worker brood.

Although not all colonies could be sampled at each time point, our data provide interesting
insights into the temporal evolution of the expression of the traits we observed. In fact, the different
phenotypes we investigated in this study varied significantly across the different sampling dates.
First, the infestation level (number of infested cells and multiple infestations) of V. destructor over
all colonies showed variation that reflect A. mellifera colony dynamics. In regions with a hot climate
like Provence, where this study took place, A. mellifera queens typically stop producing brood during
the hottest days of summer (mid-July to mid-August) and restart laying eggs again once the nectar
flow restarts (end of August). In parallel, mite numbers generally increase in an exponential fashion
throughout the brood season when no treatments are performed [28]. Our data reflect these population
dynamics, since we found higher levels of infestation and multiple infestations at the end of August
(i.e., moderate number of mites but few brood cells) and October (i.e., more mites and fewer brood cells)
than in September (i.e., moderate number of mites but more brood). These findings are in line with
previous studies documenting correlated population dynamics between brood and mites in A. mellifera
colonies [24,27,28]. The next phenotype, the reproduction of V. destructor, varied greatly across the
sampling dates and colonies and tended to decrease towards the end of the season. Temporal variation
in V. destructor reproduction has been documented in the past [54,55], but these patterns may vary
across years, and factors governing this variation remain currently unknown. Finally, the recapping



Insects 2019, 10, 299 9 of 13

phenotype varied highly across colonies, with a general temporal increase from the end of August
to the end of October. In the recent past, this behavior has been proposed as a key mechanism
explaining survival of mite infested colonies in the same honeybee population as we studied here [39].
However, although recapping significantly correlated with the level of infestation at the colony level,
our data show that the expression of this trait on infested cells was not systematically greater than on
non-infested cells. This result suggests that recapping does not take place in response to V. destructor
infestation, and stress the need for more investigations on the mechanisms behind this behavioral
trait. Overall, the important variations of the phenotypes we observed at the colony level may also
be explained by the finite number of cells analyzed in this study. However, our aim here was not to
provide precise colony-level parameters, but to look at individual bee phenotypes, an aim that was not
perturbed by this phenotypic variation.

The genotyping revealed marked variation in genetic diversity across the three colonies.
The number of markers and their polymorphism level, as well as the sample sizes used, permitted
to study accurately the dominant subfamilies in the colonies, as reflected by the low NDE and NSE
estimates. Notably, the distribution of the patrilines was homogenous across the collection dates,
which is in accordance to former results on sperm admixture in the queen spermatheca [56]. Curiously,
a consequent amount of rare subfamilies (<5 individuals per patriline) were sampled in the colonies.
Unfortunately, these patrilines could not be included in our statistical analyses for methodological
issues. Such rare patrilines have been documented in the past, and may have specific functions
in the colony such as developing into emergency queens [57,58]. Although these subfamilies may
possess increased resistance towards V. destructor, their low prevalence in the colony would not affect
significantly the population dynamics of the mite, and the parasite populations could quickly build up
on the brood of more frequent, sensitive patrilines. In contrast, some patrilines were very common in
the colonies (e.g., 41.66% of individuals from the colony B belonged to a single patriline). Although this
finding could be due to chance alone, it could also be caused by the fact that queens mated with several
drones with identical genotypes (e.g., brothers from the same colony). Altogether, these observations
stress the need for more studies on the colony-level behavioral genetics of A. mellifera, as little is
currently known on the exact prevalence and specialization of the honeybee worker subfamilies.

These phenotypic and genotypic analyses allowed us to study the links between A. mellifera
pupae subfamilies and several reproductive traits of V. destructor. First, the invasion behavior of
V. destructor was not affected by its host subfamilies, since the presence/absence of mites and the
number of foundresses did not vary significantly across bee patrilines. In the past, physical properties
of the cells and the position of the larva have been shown to affect the mite invasion behavior [59].
In addition, mites use specific chemical cues of the larvae to infest cells [60] and mite infestation levels
were shown to vary significantly between different bee brood race [59]. However, the distribution of
mites in the brood cell of A. mellifera does not seem to reflect specific aggregation patterns [61]. Here,
the absence of significant association between subfamilies and mite infestation bring new insights into
the invasion behavior of V. destructor and adds to other recent findings showing that foundresses do
not co-infest a cell based on genetic cues [23].

In parallel, the absence of significant association between the reproductive status of mites and the
pupae subfamilies brings new knowledge on the expression mechanisms of SMR in diploid workers.
The heritability of the main V. destructor resistance traits has been known for decades [37], and traits
such as VSH have been used in selection programs with promising results. Notably, honeybee colonies
selected for this trait also expressed lower mite reproduction levels [42]. SMR can be transmitted
by queens to their progeny, and expressed in colonies even if the founding females are mated with
unselected drones [62]. Interestingly, when performing crosses between colonies expressing high and
low SMR levels, Locke [38] found that colonies formed with susceptible queen and resistant drones
had low levels of mite reproduction, suggesting that SMR had a strong dominant genetic component
that can be passed across generations by males. Our results do not match the predictions of that
study. The variation of SMR was substantial in the colonies we genotyped (colony-level proportions
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of non-reproducing mites ranging from 0.46 to 0.20), but this trait did not vary significantly across
subfamilies. These discrepancies may be due to the fact that SMR has a different genetic component in
the colonies we studied compared to the Swedish resistant colonies analyzed by Locke [38]. Indeed,
genomics studies performed in these two populations have found distinct genetic bases for this trait
in Sweden [63] and in France [64]. However, the French A. mellifera population used in [64] is not
the same as the population used here. Thus, conclusions from the latter study cannot be applied to
our findings.

Finally, the recapping of cells by the adult workers was also not significantly affected by the
subfamilies of the brood within the cells. Honeybee workers may be able to discriminate between
brood genotypes, since behavior such as the rearing of emergency queens has been shown to be
affected by the pupae’s subfamilies [57,58]. Our GLM also showed that recapping varied significantly
in time and across colonies. While the reason for the temporal pattern we detected here remains
unknown, high variability of this trait across colonies of Avignon and other populations was previously
documented [39]. Here, irrespective of the fact that recapping has evolved in response to V. destructor
in the population we studied (see above), our result indicate that the adult workers do not perform
this behavior according to the brood subfamily found in the cell.

The level of A. mellifera genetic diversity has been linked to the level of resistance to V. destructor [65]
and other pathogens [15,66] at the colony level. However, in this study we did not detect a significant
link between the dominant honeybee worker subfamilies and the invasion behavior of the mite,
or with the expression of two honeybee resistance traits (SMR and recapping). However, with our
study design, we may have missed rare worker subfamilies that specialize in V. destructor resistance
behavior. Although the expression of SMR in these rare patrilines would only poorly disturb the mite
population dynamics at the colony level, workers from these patrilines could affect mite populations
by specializing in recapping or other behavior such as Varroa-Sensitive Hygiene. The potential role of
these rare subfamilies and the interactions between the different resistance traits at the colony level
need to be further examined.

5. Conclusions

We have shown here that the dominant subfamilies of A. mellifera brood do not vary significantly
in their attractiveness to V. destructor, do not distinctively impact mite reproduction, and are not
differentially targeted by workers performing recapping behavior. While this work brings new insights
into the co-evolution between the Western honeybee and its major parasite, our results also provide
practical information for beekeeping. In fact, our findings suggest that two resistance traits believed to
play a key role in the survival of A. mellifera colonies towards V. destructor infestation are recessive in
the population we studied. Thus, breeding efforts relying on artificial insemination with sperm from
resistant drones may only fail to produce colonies exhibiting the SMR and recapping traits. As this
finding is in contradiction with others [38], further research should aim at comparing the genetic bases
and inheritance mechanisms of these traits across A. mellifera populations to improve our current
knowledge on this topic. This will surely help current breeding programs by allowing developing
sustainable control strategies towards V. destructor to safeguard the Western honeybee’s valuable
ecological and economical services across the globe.
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