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Abstract 
 
The on-surface synthesis of graphene nanoribbons (GNRs) allows for the fabrication of atomically precise 
narrow GNRs. Despite their exceptional properties which can be tuned by ribbon width and edge structure, 
significant challenges remain for GNR processing and characterization. In this contribution, we use Raman 
spectroscopy to characterize different types of GNRs on their growth substrate and to track their quality upon 
substrate transfer. We present a Raman-optimized (RO) device substrate and an optimized mapping approach 
that allows for the acquisition of high-resolution Raman spectra, achieving enhancement factors as high as 
120 with respect to signals measured on standard SiO2/Si substrates. We show that this approach is well-
suited to routinely monitor the geometry-dependent low-frequency modes of GNRs. In particular, we track 
the radial breathing-like mode (RBLM) and the shear-like mode (SLM) for 5-, 7- and 9-atom wide armchair 
GNRs (AGNRs) and compare their frequencies with first-principles calculations. 
 
Keywords: graphene nanoribbons, Raman spectroscopy, substrate transfer, Raman-optimized substrate, 
vibrational modes  
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Introduction 
 
Graphene nanoribbons (GNRs) - narrow stripes of graphene – have unique electronic properties that make 
them an interesting material for nanoelectronic devices. In contrast to graphene, GNRs have a sizeable 
bandgap due to quantum confinement, which is a fundamental requirement for room temperature switching 
applications[1,2]. The electronic properties of GNRs can be tuned by engineering their width and edge 
structure[3,4]. Specifically, armchair GNRs (AGNRs) show a width-dependent electronic bandgap[5]. 
According to their width expressed in units of carbon atoms (N) across the ribbon, N-AGNRs can be 
classified into the three families N = 3p (medium bandgap), 3p+1 (wide bandgap) and 3p+2 (quasi-metallic), 
where p is an integer. Within each family, the bandgap scales inversely with GNR width[6]. Recent advances 
in the on-surface synthesis of GNRs have allowed to reach the required selectivity and atomic control over 
width and edge structure[7,8]. Scanning probe microscopy and spectroscopy studies have confirmed the 
intimate structure-property relationship by providing morphological and electronic information at the atomic-
scale[1,4,9,10]. The on-surface synthesis of atomically precise GNRs is, however, just a first step towards 
integrating GNRs into nanoelectronic devices which needs to be followed by their controlled transfer from 
the metallic growth substrate (usually Au(111)) onto an insulating or semiconducting substrate appropriate 
for digital logic applications [11,12]. In view of device integration, this is a critical step since the quality of 
the GNRs needs to be preserved and thus monitored after substrate transfer. Raman spectroscopy is, so far, 
the only technique able to probe the structural quality of GNRs all the way from growth under ultra-high 
vacuum (UHV) conditions to device integration [5,13,14]. This was demonstrated in a study reporting the 
first field-effect transistors (FETs) with large on/off ratio relying on 9-AGNRs as the channel material[13]. 
In particular, Raman spectra before and after GNR transfer were compared and the devices’ high 
performance was directly linked to the presence of the RBLM on the device. So far, however, this approach 
has been limited to cases with good resonance enhancement. Moreover, after transfer onto a silicon-based 
device substrate most of the GNRs’ low-frequency modes are hidden in the silicon background. As these 
low-frequency modes typically have low intensities, they require high laser powers and/or long integration 
times to be detected, which adversely affect the structural integrity of the GNRs. 
Here, we report on the fabrication of Raman-optimized (RO) device substrates relying on the interference-
based intensity enhancement provided by an amorphous dielectric layer on a metal which blocks the 
background of the silicon underneath. Together with an advanced mapping approach, this results in high 
signal-to-noise (S/N) ratios for several excitation wavelengths while limiting radiation damage to the GNRs 
under investigation. Importantly, the RO layer is integrated into the device substrate itself, allowing us to 
systematically probe the GNRs’ quality by investigating their low-frequency Raman modes. We apply this 
procedure to three different ribbons (5-, 7-, and 9-AGNRs) that cover all the AGNR families and compare 
Raman spectra obtained directly on the gold growth substrate with those on the RO-substrate. Finally, we 
discuss in detail the low-frequency modes resolved in this way and compare them with first-principles 
calculations.   
 
Results and discussions 
 
Raman spectroscopy has been widely used to characterize graphite and carbon-based nano-materials over the 
last five decades[15]. It is fast, potentially damage-free, and particularly well suited to investigate the 
morphology of carbon materials at the nanoscale[16,17]. GNRs have fingerprint modes that are used to probe 
their quality upon growth and integration  into devices[12]. The Raman spectrum of GNRs is dominated by a 
strong mode around 1600 cm-1, known as the G mode, which is common to all sp2 carbon materials and is 
assigned to the in-plane optical vibrations of the carbon sp2 lattice.  
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The high-frequency region of the spectrum also shows modes between 1100-1400 cm-1, which are a 
signature of the GNRs' edges. In analogy to graphene and graphite, the edges provide the necessary 
momentum such that the D-peak becomes allowed, without the need for additional disorder or defects. 
[18,19]. The appearance of multiple peaks in this frequency range is a result of the in-plane CH-bending 
modes of the hydrogen-passivated edges[20]. First-principles calculations show the resulting set of edge-
related normal-modes[12] that we collectively refer to as CH/D-modes. 
The low-frequency part of the spectrum is dominated by the radial breathing-like mode (RBLM) with a 
frequency that scales with ribbon width[21,22]. The lowest reported frequency in the spectrum of GNRs is 
the shear-like mode (SLM) for which the atoms on the two sides of the ribbon move in opposite directions 
along the GNR-axis[23].  
 

 
Figure 1. Sample fabrication and characterization. a: STM image of aligned 9-AGNRs (top) and a sketch 
of the ribbons grown parallel to the Au(788) terraces (bottom). b: Sketch of the electrochemical 
delamination transfer (top) and a picture of the on-going transfer (bottom). c: Image of a Raman-optimized 
(RO) device substrate with a transferred PMMA/GNR film on top (dashed outline). Optical zoom-in with 
Raman G-intensity map as overlay (top). Raman spectra of three different transfers illustrating the sample-to-
sample variation of the RBLM, CH/D and G modes (bottom).  
 
Figure 1 shows an overview of the fabrication and characterization process of a GNR device from UHV-
synthesis to the transfer onto a RO-device substrate (see experimental section for details). Graphene 
nanoribbons are grown under UHV conditions on a vicinal Au(788) surface[4], which promotes 
unidirectional growth on the narrow (111) terraces along the step edges, as depicted by the scanning 
tunneling microscope image in Figure 1a. Highly-aligned arrays of GNRs are important to control device 
properties and can significantly increase device yield as well as the drain current in the transistor "on" -state 
which is essential to meet the demands of switching applications[24]. In a second step, GNRs are transferred 
from the Au(788) growth substrate onto the RO-substrate using an electrochemical delamination technique 
(Figure 1b) [25]. This method preserves the uniaxial GNR alignment upon substrate transfer and thus allows 
for a well-defined orientation of the ribbons with respect to the device electrodes. We use Raman 
spectroscopy to investigate GNR quality and orientation after substrate transfer. In Figure 1c, we show an 
example for the characterization of a transferred GNR-film. Here, the good optical contrast on the RO-
substrate reveals the bubble pattern of an inhomogeneously transferred film, which can be unambiguously 
visualized by large area Raman mapping (overlay inset of G-peak intensity). In addition, Raman mapping 
shows that the peak-intensity within each bubble is fairly homogeneous and that it is comparable from one 
bubble to the next. Consequently, spectra from within such an area can be used to characterize the transferred 
GNR film. Below, we show Raman spectra of 9-AGNRs from different transfers. These measurements, 
performed on RO-substrates, show significant sample-to-sample variations in the spectral regions 
highlighted in red. This observation underlines the importance of monitoring the GNR quality after every 
process step and merits further systematic investigation. 
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In the following, we will first discuss the mapping strategy and its benefits for the characterization of GNR-
samples before describing the RO-substrates in more detail.  
The usual approach to acquire high-quality Raman spectra is to extend the integration time. This approach, 
however, is problematic for GNRs because it leads to the introduction of defects by prolonged radiation 
exposure. The reason for this degradation of GNRs is attributed to chemical reactions activated by light (with 
photon-energy above a certain threshold, see below). The defects, typically sp3, are a result of photochemical 
reactions between the GNRs, oxygen and ambient moisture[25]. This behavior was previously observed for 
graphene, in which the reaction with oxygen leads to different sp3 defects in the basal plane and edge 
defects[26,27].  
In contrast, scanning a large sample area allows us to ensure that we capture the typical properties of the 
GNRs, exclude outliers and get the best signal-to-noise spectra with minimal damage to the ribbons. We 
investigate this approach for the 5- and 9-AGNRs transferred to an RO-substrate but note that this is a 
general observation for GNR samples. Figure 2a shows a time series of Raman spectra acquired on a single 
point of a GNR film, showing a rapidly decaying intensity (over a measurement window of 100 seconds). 
Performing such measurements as a function of laser power (Figure 2b, top panel) shows that the damaging 
rate depends on light intensity. Importantly, it reveals that the damage cannot be fully avoided by reducing 
the laser power below a threshold. In fact, the signal intensity can be scaled to a constant power-integration 
time product, as shown in Figure 2b (bottom panel), indicating that the damage mechanism scales with the 
number of photons. 
Performing the same measurements in vacuum or with an infrared laser strongly reduces this damaging 
behavior as highlighted in Figure 2b (blue and red profiles, respectively).  

 
Figure 2. Laser-induced damage of GNRs and Raman mapping. a: Waterfall plot of a time series 
(cumulated laser exposure = 100 seconds) of Raman spectra on 9-AGNRs. The mode indicated by an asterisk 
is background from the RO-substrate. 100x objective. tint = 5 s b: Top panel: G-peak intensities extracted 
from Lorentzian fits for several time series as a function of cumulated exposure time. The time dependence 
is fitted with an exponential decay for each power. For comparison, results from time series in vacuum (50x 
objective) and with NIR-excitation in air (100x objective) are shown in blue and red, respectively. Bottom 
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panel: Signal intensity scaled to a constant power-integration time product. c: Raman map with 40x40 pixels 
of 5-AGNRs on Au/Mica, 50x objective, vacuum, tint = 26 s. The histogram of G-peak intensities is shown in 
the top right and used to create a mask to exclude outliers. Local averaging is used to increase the signal-to-
noise ratio and probe the homogeneity of less intense modes across the sample. d: Raman spectra from the 
map displayed in c, top to bottom: impurity-dominated spectrum excluded via mask, single spectrum with 
S/N too low to clearly identify the mode labelled '#', local averages of 5x5 pixels each showing mode '#', full 
average over 1566 spectra in mask for best S/N ratio.  
 
Even though measuring in vacuum avoids this damaging issue, it may not be available on every experimental 
Raman setup and substantially increases the time necessary for investigating a sample, thereby limiting the 
usefulness of Raman spectroscopy to monitor device fabrication. The second approach of exclusively using 
infrared excitation prevents wavelength-dependent studies and is limited to Raman modes that are (near-) 
resonantly enhanced at these wavelengths, as non-resonant Raman is often too weak to reveal several 
spectroscopic features of interest in these (sub-) monolayer systems. It is therefore important to limit the 
power-integration time product to values compatible with minimal GNR damaging.  
In order to still achieve a good signal-to-noise ratio, we employ a large area mapping process (Figure 2c) in 
which a Raman map with hundreds of spectra with limited integration time is recorded. The sample is 
scanned at a constant speed during the acquisition of a map, such that it is displaced by typically one laser 
spot diameter per acquisition interval. If the integration time needed to get sufficient signal-to-noise is 
comparable to the previously determined timescale of ribbon damaging, the sample is scanned at a higher 
speed such that the radiation damage during one integration time gets spatially distributed.  
While this results in decreased spatial resolution, this is usually acceptable as long as the map is restricted to 
a homogeneous area of the GNR-film (see Figure 1c).  
Typically, a map of the G-peak intensity is used to check for sample homogeneity. A histogram of the peak 
intensity is then used to identify outliers, which are excluded if their spectra display atypical signatures that 
are not a simple, moderate scaling of the spectrum (Figure 2c and 2d). If necessary, averaging of neighboring 
pixels is used to obtain a larger signal-to-noise ratio that allows to clearly identify peaks in the spectra 
representing a part of the scanned area. An example of this is the low intensity peak labelled # in Figure 2d, 
which could be mistaken for noise in a single spectrum. Local averaging reveals its homogeneous presence 
across the sample. Finally, an average spectrum is calculated from the entire homogenous sample area 
(excluding the mask) to give the best signal-to-noise ratio (Figure 2d).    

In order to use Raman spectroscopy as a tool to assess GNR quality and stability, which are both critical for 
applications, it is desirable to perform Raman measurements directly on the final device. This is often 
hampered by the presence of a significant background due to the substrate (usually SiO2/Si), which masks 
the GNR-related modes of interest. We illustrate this behavior in Figure 3a where we compare the Raman 
spectra of 5-,7- and 9-AGNRs with that of a SiO2/Si-substrate. The Raman spectrum of silicon consists of 
two strong optical phonon peaks at 520 cm-1 and ~950 cm-1, and an acoustic phonon peak at 300 cm-1 [28]. 
These three modes are in the same spectral region as the acoustic GNR-modes (RBLM and SLM) that are 
most useful for characterizing geometry-dependent properties of GNRs. For the three different ribbons 
investigated in this study, we observe the RBLM at 529, 398 and 311 cm-1 for 5-, 7- and 9-AGNRs, 
respectively. In Figure 3a we highlight in red the spectral regions for which the Si-background at an 
excitation wavelength λex = 488 nm masks the signal in a representative sample of 9-AGNRs.  
To address this issue we developed a layered, interference-optimized substrate that is suitable for both 
Raman and transport measurements. Interference enhanced Raman scattering takes into account that the 
layer structure of the substrate plays an important role in the measured Raman intensity, in addition to the 
usual factors such as set laser power, scattering cross-section of the investigated material, and numerical 
aperture of the objective[29]. This is particularly clear for the interference of incoming and reflected laser 
beam that results in very different effective electromagnetic fields and therefore Raman intensities for GNRs 
on metallic or insulating substrates[30]. Blake and coworkers also reported on the optimization of substrate 
layer-thicknesses to improve optical contrast for the fabrication of graphene-based devices by taking light 
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interference into account[31]. Interference models, have further been used to describe the overall Raman 
intensity of thin films including graphene on oxides and explain the change in relative peak intensities as a 
function of oxide thickness[30,32–35]. Here, we combined these considerations to produce a substrate that is 
compatible with standard silicon-based fabrication approaches for nanoelectronic devices, yields good 
contrast for GNR-film visibility and leads to an enhanced Raman signal of GNRs without the otherwise 
dominant signal of silicon as a background. 
When measuring GNRs directly on an Au(788) surface or on a metallic contact pad of a device used for 
fabrication of GNR-based transistors, destructive interference leads to a low electric field (and therefore low 
Raman scattering intensity) experienced by the GNR layer (see Supporting Information for a detailed 
discussion and simulations). Qualitatively, one can think of the metal as a quasi-perfect electric conductor 
that imposes an electric field node as a boundary condition. For a real metal with finite skin-depth this can be 
partially overcome by using higher laser powers to obtain a signal at all (which in this case is possible 
without excessive GNR damaging). A common approach to overcome this issue is surface-enhanced Raman 
scattering on a nanostructured metallic substrate. In our case, however, this is not desired, as we want to 
assess the average properties of the GNR film and not those in plasmonic hot-spots. Transferring the ribbons 
to a silicon substrate, instead, results in the background problems described above. Alternatives also include 
using an amorphous Raman substrate such as CaF2, resulting in a clean, low background signal, but at the 
cost of severely limiting the processability for devices.  
The Raman-optimized (RO) structure we designed and fabricated is displayed in Figure 3b and consists of an 
atomic layer deposition (ALD)-grown oxide layer patterned on optically thick (typically 80-90 nm) metal 
source-drain contacting-pads (labelled S/D) on a silicon device-substrate, that acts as a support and optional 
gate (G). The result is enhanced optical visibility of the GNRs on top of the metal, allowing for easy 
identification of film-inhomogeneity and a strongly enhanced Raman intensity. This is a result of the GNR-
layer being placed into the region of a field anti-node and it allows the acquisition of spectra at much lower 
excitation power or shorter integration times.  

 
Figure 3.  Raman-optimized (RO) device substrates. a: Raman spectra of 5-, 7- and 9-AGNRs on Au (λex 
= 785/532/785 nm, arbitrarily scaled) compared to SiO2/Si and 9-AGNR transferred to SiO2/Si (λex = 

A
cc

ep
te

d 
A

rti
cl

eRaman scattering int
A

cc
ep

te
d 

A
rti

cl
eRaman scattering intensity) experienced by the GNR layer (see 

A
cc

ep
te

d 
A

rti
cl

eensity) experienced by the GNR layer (see 
discussion and simulations). Qualitatively, one can think of the metal as a 

A
cc

ep
te

d 
A

rti
cl

ediscussion and simulations). Qualitatively, one can think of the metal as a 
that imposes an electric field node as a boundary condition. For a 

A
cc

ep
te

d 
A

rti
cl

ethat imposes an electric field node as a boundary condition. For a 
partially overcome by using higher laser powers to obtain a signal at all (which in this case is possible 

A
cc

ep
te

d 
A

rti
cl

e
partially overcome by using higher laser powers to obtain a signal at all (which in this case is possible 
without excessive GNR damaging). A common approach to overcome this issue is surface

A
cc

ep
te

d 
A

rti
cl

e
without excessive GNR damaging). A common approach to overcome this issue is surface

tering on a nanostructured metallic substrate. In our case, however, this is not desired, as we want to 

A
cc

ep
te

d 
A

rti
cl

e
tering on a nanostructured metallic substrate. In our case, however, this is not desired, as we want to 

assess the average properties of the GNR film and not those in plasmonic hot

A
cc

ep
te

d 
A

rti
cl

e
assess the average properties of the GNR film and not those in plasmonic hot
to a silicon substrate, instead, results in

A
cc

ep
te

d 
A

rti
cl

e

to a silicon substrate, instead, results in
using an amorphous Raman substrate such as 

A
cc

ep
te

d 
A

rti
cl

e

using an amorphous Raman substrate such as 
cost of severely limiting the processability for devices.

A
cc

ep
te

d 
A

rti
cl

e

cost of severely limiting the processability for devices.
optimized (RO)

A
cc

ep
te

d 
A

rti
cl

e

optimized (RO)
atomic layer deposition (ALD)

A
cc

ep
te

d 
A

rti
cl

e

atomic layer deposition (ALD)
drain contacting

A
cc

ep
te

d 
A

rti
cl

e

drain contacting-

A
cc

ep
te

d 
A

rti
cl

e

-pads (labelled S/D) on a silicon device

A
cc

ep
te

d 
A

rti
cl

e

pads (labelled S/D) on a silicon device

A
cc

ep
te

d 
A

rti
cl

e

gate (G). The result is enhanced optical visibility of the GNRs on top of the metal, allowing for easy 

A
cc

ep
te

d 
A

rti
cl

e

gate (G). The result is enhanced optical visibility of the GNRs on top of the metal, allowing for easy 
identification of film

A
cc

ep
te

d 
A

rti
cl

e

identification of film-

A
cc

ep
te

d 
A

rti
cl

e

-inhomogeneity and a strongly enhanced Raman intensity. This is a result of the GNR

A
cc

ep
te

d 
A

rti
cl

e

inhomogeneity and a strongly enhanced Raman intensity. This is a result of the GNR
placed 

A
cc

ep
te

d 
A

rti
cl

e

placed into the region of a field anti

A
cc

ep
te

d 
A

rti
cl

e

into the region of a field anti
excitation power

A
cc

ep
te

d 
A

rti
cl

e

excitation power or shorter integration times

A
cc

ep
te

d 
A

rti
cl

e

or shorter integration times

A
cc

ep
te

d 
A

rti
cl

e



  

This article is protected by copyright. All rights reserved 
 

 

488nm), scaled to the second order Si-peak. b: Optical micrograph of an RO-device substrate based on 
standard p-doped silicon with thermal oxide. The layers are sketched in the lower half of the panel, 
corresponding to the dashed red line in the optical image. c: Raman intensity of the 9-AGNR G-peak on top 
of an RO-substrate as a function of Al2O3 thickness on a sample with an oxide gradient. Measured with 100x 
(NA=0.9), in air. d: Raman spectra of transferred 9-AGNRs measured in the interference-optimized region 
(RO, solid lines) and on adjacent SiO2/Si (dashed lines) with different wavelengths. Measured with 100x 
(NA=0.9), in air, no background subtraction. 
 
In Figure 3c we show the Raman intensity of the G mode as a function of oxide thickness for a 9-AGNR 
sample measured with three different excitation wavelengths. For each wavelength, there is an optimal 
thickness resulting in maximum Raman intensity (see supporting Note 2). A good compromise suitable for 
multi-wavelength investigations of GNRs is found at an oxide thickness of about 40 nm (indicated by a 
vertical line), which was chosen for all subsequent studies. Figure 3d provides a comparison of the Raman 
spectra of 9-AGNRs transferred onto a 40 nm RO-substrate and the adjacent SiO2/Si substrate measured with 
λex = 785, 532 and 488 nm. The spectra are shown without any background subtraction and are normalized 
for power and integration-time. On the RO-substrate, the Si-background is suppressed and an enhancement 
of the GNR signal by a factor of 1.5/5.3/11.7 is observed for excitation wavelengths of 488/532/785 nm, 
respectively. Compared to the signal directly on the Au pad, we find an enhancement of 11.5/19.5/43.0, 
respectively.  
Note, that these values are for an oxide thickness of 40 nm, which is a compromise between the wavelengths 
used in this study and constraints from sample fabrication. In Figure S2 we show that a substrate can be 
optimized for a particular wavelength of interest, by choosing an oxide thickness which satisfies the well-
known condition of interference dox·nox = (2m+1)·λ/4, m ∊N, where dox and nox are the thickness and the 
refractive index of the oxide layer, respectively[34]. In this way, one can achieve enhancement factors as 
high as 120 with respect to a standard SiO2/Si substrate. Moreover, significant enhancement is still possible 
by using high-quality thin gate-oxides as found in state-of-the-art field-effect transistors. 

 
Figure 4. Raman spectra before and after substrate transfer and comparison with DFT. a: Low energy 
spectrum of 5-AGNRs (λex = 785 nm), b: 7-AGNRs (532 nm), and c: 9-AGNRs (785 nm) before and after 
transfer. Theoretical spectra were obtained by summing DFT-based resonant Raman intensities (all 785 nm 
excitation, Lorentzian line shapes with width of 10 cm-1, no frequency scaling). The most prominent peaks 
are labelled with position and normal mode assignment. The normal mode displacements for the SLM and 
RBLM are exemplified for the 5-AGNR.   
 
To explore the benefits of our RO-substrate and mapping strategy for investigating GNRs we acquire Raman 
spectra with high signal-to-noise ratio for 5-, 7- and 9-AGNRs before and after substrate transfer (Figure 4). 
The spectra acquired on the Au growth-substrate are displayed in black. The strong RBLM mode is visible 
for all three investigated ribbons. We also observe higher energy modes that are relatively clear in the case of 
7-AGNRs, because this ribbon is resonant with 532 nm excitation. Similar features are much fainter for the 
less resonantly excited spectra of 5- and 9-AGNRs (λex = 785 nm). The spectra after transfer are shown in red 
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and green. The peak position and width of the intense RBLM signal has been used to monitor GNR quality 
and to probe their stability over time[11,12]. Here, we observe several additional modes that we attribute to 
overtones such as the RBLM3 and higher order processes by comparison with computed normal modes (see 
Supporting Note 3). Most notably, for all GNRs we observe a mode at a frequency below the RBLM. This 
additional fingerprint of GNRs is attributed to the SLM, which is expected to have a similar scaling with 
GNR-width as the RBLM and has so far only been reported for 7-AGNRs[23]. Here, we can resolve this 
mode for all investigated ribbons, with frequencies of about 362, 266 and 170 cm-1 for 5- ,7-  and 9-AGNRs, 
respectively. 
 
Finally, we performed DFT-calculations and computed the Raman intensities using the VASP[36–38] and 
Phonopy software[39]. The calculated spectra are shown in blue and reproduce the experimental 
observations well. In particular, the calculated values for the SLM-frequency of 5- and 7-AGNRs closely 
match the experimental observations. For 9-AGNRs, there is some discrepancy with the calculations 
showing a mode frequency of 206 cm-1, whereas experimentally we observe it around 180 cm-1 on the Au 
growth substrate and 160 cm-1 after transfer (see Supporting Note 3 for additional spectra). Periodic DFT, 
however, provides a highly idealized picture, ignoring a number of effects such as the presence of a substrate 
and defects in GNRs. In particular, 9-AGNRs are known to exhibit a substantial amount of phenyl defects 
which occur between the polymerization and the cyclodehydrogenation reaction[9]. Also, the structure of the 
precursor molecule for the 9-AGNRs results in slanted ribbon termini. We investigated the possibility of the 
edge-defects or the ribbon termini causing a mode softening that could account for the difference between 
experimental and DFT-calculated spectra. A preliminary analysis based on calculations with the Phonopy 
package suggests, however, that these features alone cannot account for a mode softening on the order of 20-
40 cm-1.  
Finally, we note that our experimental spectra for 5-AGNRs reveal two peaks at 676 cm-1 and 789 cm-1 that 
are not present in the calculated spectra. The homogeneous presence of the second of these modes across the 
sample was already discussed in Figure 2, and it is found for several different GNR samples (Supporting 
Figure S3). We find an out-of-plane mode at a calculated frequency of 784 cm-1, that in a strict 
backscattering geometry is not visible (see supporting Figure S4). Non-normal incidence from an objective 
with large NA or surface morphology may however relax this condition and consequently lead to the 
observation of additional modes. 
 
Conclusions 

In conclusion, we reported on the development of a Raman-optimized substrate and on an optimized 
mapping approach that allowed us to acquire detailed Raman spectroscopic information of GNRs. The RO-
substrates were integrated into a device-type sample geometry which allow us to monitor the GNRs' quality 
during device fabrication with high signal-to-noise ratio and minimal damage to the GNRs. Finally, we 
investigated the GNRs’ low-frequency modes, the SLM, RBLM and its overtones and matched their 
frequency and mode profiles to first-principles calculations. Overall, both the RO-substrate and the 
optimized measurement approach allowed unprecedented insight into the low-frequency modes of GNRs and 
demonstrated their usefulness in monitoring GNR quality upon device fabrication.   
 
Experimental Methods 

On-surface synthesis of AGNRs. 9-AGNRs were synthesized from 3’,6’-diiodo-1,1’:2’,1”- terphenyl 
(DITP)[40], 7-AGNRs from 10,10’-dibromo-9,9’-bianthryl (DBBA)[1] and the 5-AGNRs were synthesized 
from an isomeric mixture of 3,9-diiodoperylene and 3,10-diiodoperylene (DIP) (details on monomer 
synthesis will be published elsewhere) as the precursor monomers. The GNRs were grown on a vicinal single 
crystal Au(788). First, Au(788) was cleaned in ultra-high vacuum by two sputtering/annealing cycles: 1 kV 
Ar+ for 10 minutes followed by annealing at 420 °C for 10 minutes. In a next step, the precursor monomer 
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was sublimed onto the Au surface from a quartz crucible heated to 70 °C (DITP) or 200°C (DBBA and DIP), 
with the substrate held at room temperature. In order to activate the polymerization reaction, both 7- and 9-
AGNRs were heated up to 200 °C (0.5 K/s) with a 10 minute holding time. Subsequently, samples were 
annealed at 400 °C (0.5 K/s with a 10 minute holding time) in order to form the GNRs via 
cyclodehydrogenation. For the synthesis of the 5-AGNRs a slow annealing (0.2 K/s) was carried up to 
225 °C. 
 
Substrate transfer of AGNRs. AGNRs were transferred from their growth substrate Au(788) to the RO-
substrates by an electrochemical delamination method. First, PMMA was spin coated (2500 rpm for 90 
seconds, 4 layers) on GNR/Au, to act as a support layer during the transfer, followed by a 10 minutes curing 
step at 80 °C. In a next step the PMMA at the edges of the Au (788) crystal was removed after UV-exposure 
(80 minutes) followed by 3 minutes development in water/isopropanol. By removing the PMMA from the 
crystal’s edges, the delamination time was reduced to 45-60 seconds. The electrochemical cell was mounted 
using a carbon rod as anode, the PMMA/GNRs/Au as the cathode and 1M NaOH as electrolyte. By applying 
a voltage of 5 V (current ~0.2 A) between anode and cathode, hydrogen bubbles are formed at the interface 
of PMMA/GNRs and Au resulting in the delamination of the PMMA/GNR-layer. After delamination, the 
PMMA/GNR layer was cleaned for 5 minutes in purified water before being transferred to the target 
substrate. In a next step, the PMMA/GNRs/substrate stack was annealed for 10 minutes at 80 °C followed by 
20 minutes at 110 °C to increase the adhesion between the target substrate and the PMMA/GNR layer. 
Finally, the PMMA was dissolved in acetone (15 minutes) and the final GNR/substrate rinsed with ethanol 
and ultrapure water. 
 
Raman spectroscopy. Raman spectra were acquired using a WITec Alpha 300 R confocal Raman microscope 
in backscattering geometry with a 50x long working distance objective (NA=0.55, working distance = 
9.1mm), unless stated otherwise (100x objective NA=0.9). For aligned GNRs the linear polarization of the 
exciting lasers was adjusted parallel to the GNRs. The backscattered light was detected without an analyzing 
polarizer and coupled to one of two spectrometers: a 300 mm lens-based spectrometer with gratings of 600 
g/mm or 1800 g/mm equipped with a cooled EM-CCD for measurements with 488 nm and 532 nm excitation, 
and a 400 mm lens-based spectrometer with gratings of 300 g/mm or 1200 g/mm and a cooled deep-
depletion CCD for 785 nm excitation.  
The laser wavelength, power and integration time were optimized for each type of GNR and substrate to 
maximize the signal and keep the intensity loss as discussed above well below 10% for all settings. Unless 
stated otherwise, the samples were mounted in a home-built vacuum chamber at a pressure below 10-2 mbar, 
mounted on a piezo stage for scanning. A polynomial background was subtracted from the raw spectra unless 
otherwise stated. 
 
First-principle calculations. We performed DFT-calculations and calculated the Raman intensities by using 
VASP for energy and force calculations[36–38] in conjunction with the Phonopy program package for the 
calculation of phonon modes and frequencies[39]. Projector-augmented-wave pseudopotentials, a plane-
wave cutoff of 600 eV, and the Perdew–Burke–Ernzerhof exchange-correlation functional were used in 
VASP. Raman intensities were calculated using in-house utility codes and the finite difference method[41] 
where the frequency-dependent dielectric matrix was also calculated via DFT[42].  
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We use Raman spectroscopy to characterize armchair graphene nanoribbons (AGNRs) on their growth 
substrate and after substrate transfer. We present a Raman-optimized (RO) device substrate and an optimized 
mapping approach for the acquisition of high-resolution, high signal-to-noise Raman spectra. The achieved 
signal enhancement factors up to 120 with respect to measurements on standard SiO2/Si substrates allowing 
the detection of low-intensity Raman modes. 
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