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Abstract

Graphene nanoribbons (GNRs) have attracted considerable interest as their

atomically tunable structure makes them promising candidates for future elec-

tronic devices. However, obtaining detailed information about the length of

GNRs has been challenging and typically relies on low-temperature scanning

tunneling microscopy. Such methods are ill-suited for practical device applica-

tion and characterization. In contrast, Raman spectroscopy is a sensitive method

for the characterization of GNRs, in particular for investigating their width and

structure. Here, we report on a length-dependent, Raman active low-energy

vibrational mode that is present in atomically precise, bottom-up synthesized

armchair graphene nanoribbons (AGNRs). Our Raman study demonstrates that

this mode is present in all families of AGNRs and provides information on their

length. Our spectroscopic findings are corroborated by scanning tunneling mi-

croscopy images and supported by first-principles calculations that allow us to

attribute this mode to a longitudinal acoustic phonon. Finally, we show that this

mode is a sensitive probe for the overall structural integrity of the ribbons and

their interaction with technologically relevant substrates.

Keywords

graphene nanoribbons, Raman spectroscopy, length-dependent mode, STM, substrate trans-

fer, vibrational modes, DFT

Atomically precise graphene nanoribbons (GNRs) hold the promise of engineering the

electronic properties of sp2-carbon systems over a wide range.1–3 While graphene has sev-

eral electronic properties that make it an attractive material in certain applications, it lacks

an electronic band gap, which limits its use for switching and optoelectronic applications.4
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Lateral confinement of charge carriers in narrow graphene nanoribbons is one approach to

overcome this limitation. A major advantage of GNRs is that their electronic band structure

can be tailored via their width and edge structure. GNRs with armchair edges (AGNRs), for

instance, cover the full range from quasi-metallic to wide band gap semiconductors. Based on

the number p of carbon-dimer lines present across their width, AGNRs can be grouped into

three families: 3p (medium gap), 3p+1 (wide gap) and 3p+2 (quasi-metallic gap).5,6 Within

each family, the band gap scales inversely with the GNR width. A fabrication approach that

allows for atomic control of ribbon width and edge structure is therefore indispensable. On-

surface synthesis has emerged as the prime technique to fabricate atomically precise GNRs.

Based on metal surface-assisted covalent coupling of specifically designed molecular precur-

sors, this bottom-up approach has proven to be successful for the fabrication of GNRs with

different widths (5-,7-,9-,13-AGNRs) and edge topologies (armchair-, zigzag-, chiral-GNRs

and GNRs with topological phases).1–3,7–10 In order to exploit GNRs for electronic devices,

they need to be transferred from their metallic growth substrate onto a technologically suit-

able one.11,12 First experiments with GNRs incorporated into devices have shown that the

ribbon length as well as their overall integrity are essential for realizing the inherent poten-

tial of this material.13,14 However, methods suited to estimate the length of the GNRs after

transfer onto device substrates are lacking.

Here, we report on a length-dependent vibrational mode in atomically precise AGNRs

observed at small Raman shifts. This mode, identified as a longitudinal acoustic phonon by

first-principle- calculations, is present in all families of AGNRs and is the first vibrational

characteristic that provides information about the GNRs’ length after transfer onto device

substrates. We analyze in detail its properties based on a combined study via Raman spec-

troscopy, scanning tunneling microscopy (STM), and computational modeling. Finally, we

show that the frequency of this mode is highly sensitive to substrate interaction and the

presence of defects, making it ideally suited for the investigation of GNR integrity and dam-

age monitoring.
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Due to its ease of use, efficacy, and sensitivity to structural details, Raman spectroscopy

has emerged as a primary method for the investigation of GNRs, in particular after trans-

fer onto insulating materials where STM characterization is not possible. Many of the

Raman-active phonon modes in GNRs are named in analogy to the terminology used in

graphite, graphene, and carbon nanotubes (CNTs). For example, the LO-/TO-modes are

referred to as the G-peak and its properties have been the focus of several studies.12,15,16 In

contrast to graphene and CNTs, additional phonon modes found in the spectral range of

1100-1500 cm-1 are not a sign of the presence of defects but rather a result of the (hydrogen-

passivated) edges breaking the periodicity of a perfect honeycomb lattice. These features,

referred collectively as making up the CH/D-region, can be used to identify and probe the

edge structure of GNRs.17,18 The fundamental transverse acoustic mode of GNRs, named

radial breathing-like mode (RBLM) in reference to its counterpart in CNTs, is commonly

used to identify the ribbon width.16,17,19 As the Raman shift, intensity, and peak widths

associated with these modes depend on the GNR structure, they have been used to monitor

the quality of the transfer process and aging of GNRs.1,9,11,12 The RBLM, in particular, has

been used to monitor growth-related processes such as lateral fusion of GNRs.20,21

In the above-mentioned studies GNRs are treated as 1D-objects of quasi-infinite length,

which allows modeling them in a periodic framework.5 This, however, is a highly idealized

picture as can be seen from STM images showing significant amounts of short ribbons, al-

ready present on the growth substrate.2 As the GNRs’ length is a crucial factor for their

integration into functional devices, a universally applicable method for detecting and mod-

elling finite size GNRs is highly desirable. In the following, we present such a method which

we apply to 5-, 7- and 9-AGNRs, as distinct representatives of all three AGNR families. The

GNRs are grown by on-surface synthesis on gold as described by Cai et al. and further

transferred onto device substrates (see Methods for details).
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Figure 1: Longitudinal vibrational mode in armchair GNRs. a) Raman spectrum
of 5-AGNRs with assignment of the most prominent peaks: G- & CH- modes, RBLM and
a low-energy peak at approximately 100 cm-1, labelled LCM. Excitation wavelength λexc =
785 nm. Sample 5-1 Au, see Table S1. b) Low-energy Raman spectra of 5-, 7- and 9-AGNRs
(offset for clarity), each exhibiting a peak slightly below 100 cm-1. λexc = 785 nm, 532 nm
and 488 nm for Samples 5-1 Au, 7-1 T, 9-1 T, respectively. c) Atomic displacement profiles
obtained from DFT calculations of 5-AGNRs matching the peaks in a). LCM for a finite-size
10-unit GNR. A single naphthalene unit is referred to as 1u. RBLM, CH- and G-modes are
shown for a single unit-cell of a periodic ribbon. C-atoms are shown with filled, H-atoms
with open circles.

Results and Discussion

A longitudinal compressive mode in GNRs. Figure 1 a) shows a Raman spectrum

of 5-AGNRs obtained directly on the Au(788) growth substrate. The corresponding STM

images are shown in Figure S1. Unless stated otherwise, Raman spectra are obtained in

a homebuilt vacuum chamber using an optimized mapping approach to minimize damage

to the GNRs, to obtain a high signal-to-noise ratio, and to probe the average properties of

the GNR film (see Methods).22 In the spectrum we identify the G-, CH- and RBLM-peaks

described above. In addition to these modes, we detect a low-energy peak slightly below

100 cm-1 (labeled LCM). This mode has, to the best of our knowledge, not been discussed
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for GNRs to-date and is the focus of this study. We argue below that it originates from a

longitudinal vibration of the GNR and that it is extremely useful for GNR characterization

and to probe their structural integrity upon transfer and device integration.

We first discuss the low-energy modes that have already been reported for armchair-type

GNRs and how they can be distinguished from this additional mode. The lowest mode

usually reported is the well-documented RBLM, the fundamental acoustic mode for which

all atoms move in-plane in the direction perpendicular to the ribbon axis (see Figure 1 c)).

It is observed at a Raman shift of about 534 cm-1, 399 cm-1 and 313 cm-1 for the 5-, 7- and

9-AGNRs, respectively. Modes at energies below the RBLM of a particular GNR have been

attributed to the formation of wider GNRs with correspondingly lower RBLM frequency by

thermally-induced lateral fusion.20,21 We can exclude this effect here as we do not reach the

temperatures required to induce lateral fusion, nor do we observe them in STM or measure

the characteristic series of RBLMs for GNRs of integer multiple widths of the fundamental

ribbon.20 Another low-energy mode is the shear-like mode (SLM), which has been observed

in 7-AGNRs and has recently been discussed for 5-AGNRs and 9-AGNRs.22,23

To clarify whether the LCM-mode at 100 cm-1 is specific to 5-AGNRs or is a universal

property of all AGNRs, we also acquired Raman spectra on 7- & 9-AGNRs. Figure 1 b)

displays the low-energy spectra of 5-, 7-, and 9-AGNRs. In all spectra, a peak at roughly

the same Raman shift is clearly identified, pointing towards the universal presence of this

mode in AGNRs. While the spectrum for 5-AGNRs was acquired directly on the Au(788)

growth substrate, the spectra for 7- & 9-AGNRs were acquired after transferring the GNRs

to a device substrate optimized to enhance the Raman signal.22 For each type of GNR the

wavelength and laser power were independently optimized to obtain the highest signal to

noise ratio. The presence of this mode in multiple AGNRs, always at frequencies below their

fundamental transverse acoustic mode (RBLM) points towards an even longer-range mode

associated with a longitudinal acoustic vibration.

First-principles modeling of finite-size GNRs, in contrast to the usual approach of simu-
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lating infinitely long ribbons via periodically repeated unit cells, produces precisely such a

longitudinal compressive mode (LCM) (see Figure 1c). The emergence of these modes stems

directly from a zone-folding effect that accounts for the dimensionality reduction of a 1D

periodic GNR into a 0D finite-size GNR. In fact, the LCM mode and its overtones arise from

the quantization of q along the LA branch. In SI Note 2 we show a mapping of the phonon

bandstructure from a 1D to finite-size ribbons of two different lengths. For a quantitative

modeling of these low-energy modes, we performed Raman spectra calculations using both

density functional theory (DFT) as well as separate calculations using a combination of the

REBOII force-field and a bond polarizability model. The latter calculations were carried

out in order to examine overall trends and larger systems not easily tractable by DFT. For

details see Methods and SI Note 3.

Length-dependence and quantum mechanical calculations. In Figure 2 a), we ini-

tially compare the calculated Raman spectra for all three GNR widths for a length of about

12 nm (28 units). For these long GNRs, we employ the combined REBOII and bond polar-

izability method as Raman calculations at the DFT level are prohibitively computationally

expensive.

The most prominent peak is the RBLM, which shows the well-known width-dependent

Raman shift.16,17,19 Also, the position of the shear-like mode (SLM) mentioned earlier shows

a clear down-shift with increasing GNR width.23In contrast, the frequency of the LCM

and its overtone does not change as a function of width of the three GNRs, matching our

experimental observations in Figure 1 b). This can be rationalized by the nearly constant

ratio of mass per unit cell to the number of bonds along the GNR axis. In a simple mass-and-

spring approximation, this ratio determines the frequency of the normal mode considering

the atomic displacement profile of the LCM along the GNR axis, as shown in Figure 1c

and S5. It would therefore be interesting to investigate GNRs with armchair segments of

different width to clarify the effect of changing the vibrating mass vs. ribbon stiffness.9,10

The calculations show a strong change of the LCM frequency as a function of GNR length.
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Figure 2: Length-dependence of GNR-modes in experiment and Raman calcu-
lations. a) REBOII-based spectra for long, finite (28 units ≈ 12 nm length) 9-, 7-, and
5-AGNRs and shorter 5-AGNRs. b) Experimental Raman spectrum for 5-AGNRs from a
sample with high content of short ribbons (black line) and DFT-calculated spectra for 4- &
6-unit (4u, 6u) length 5-AGNRs. Dotted lines indicate the frequencies obtained from the
REBOII-based calculations for the corresponding LCM modes. λexc = 785 nm, Sample 5-
6 Au. c) Raman spectra for a selection of 5-AGNR samples on Au substrates, offset for
clarity. REBOII-calculated frequencies for the 4/6/8u-LCM and 6u-RBLM+/- are indicated
in grey. λexc = 785 nm, Samples 5-1 Au to 5-5 Au, top to bottom. d) Map of REBOII-
calculated length-dependent spectral intensity, superimposed with the experimental mode
frequencies (symbols) and analytical model (black line). Intensity values are color-coded on
a logarithmic scale from white to red (green/blue) for 5-AGNRs (7-/9-AGNRs). Symbols
are colour coded accordingly. The LCM for the three GNRs overlap, preventing distinction
by color. Black asterisks indicate the shear-like modes (SLM).

In the lower part of Figure 2 a) we show three spectra of shorter 5-AGNRs that exhibit a

progressive up-shift of the LCM as the ribbon gets shorter. To probe this effect experi-

mentally, we fabricated a sample with an unusually high number of very short 5-AGNRs as

determined from low temperature STM (LT-STM; see Figure S2). Short GNRs are usually
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a result of a premature hydrogen-passivation during the polymerization step, which is sensi-

tive to the halogen-functionalization of the precursor molecules.24 It can also be caused by

mono-bromo(iodine) functionalized molecules, which can be used to identify inappropriate

growth conditions or inadequate precursor storage. The shortest ribbon segments obtained

in our experiments with 5-AGNRs are 4-units and 6-units long, composed of two and three

precursor molecules, respectively. Such short ribbons are extremely mobile at room tem-

perature requiring low-temperature STM characterization in order to quantify the GNRs’

length distribution (see Figure S2). Figure 2 b) displays the Raman spectrum of a sample

with short 5-AGNRs, exhibiting two prominent peaks below 200 cm-1. Also plotted are the

calculated Raman spectra for 4- and 6-unit 5-AGNRs, which can be treated entirely in DFT

because of their limited size. The spectra match well with the peak positions observed exper-

imentally for the LCM, without any need for frequency scaling. Moreover, the DFT-spectra

also reproduce the side-peaks observed on the RBLM, which result from the splitting of the

RBLM into normal modes with diagonal atomic displacement for these short ribbons (see

Figure S5 for the atomic displacements). To assess the sensitivity of the Raman spectra

on the computational method, we also calculated the LCM frequencies via forces calculated

by the REBOII potential (dotted lines). The results are very similar, validating its use for

longer GNRs. The results also indicate that the relevant REBOII-calculated forces tend to

be weaker than those from DFT and thus the mode frequencies are slightly underestimated

for these acoustic modes (also observed for the RBLM of 7-/9-AGNRs).

Next, we experimentally investigate the influence of the ribbon length. Figure 2 c) shows

Raman spectra obtained on several samples of 5-AGNRs with changing percentages of short

ribbons tuned via the growth parameters. The spectra are sorted, from bottom to top, by

increasing average GNR length as deduced from STM imaging. The bottom spectrum shows

the peak at 187 cm-1 attributed to the 4u-LCM, as well as a small peak at 125 cm-1 where

the 6u-LCM is expected. For increasing average ribbon length, the relative amplitude of

the 6u-LCM becomes more prominent, whereas the 4u-LCM decreases. For even longer
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average ribbon length, a third peak appears centered at 98 cm-1, which we attribute to the

8u-LCM, while the peaks at 125 cm-1 and 187 cm-1 disappear. Notably, unassigned modes at

comparable frequencies can be found in Raman spectra published by other groups.21,25 The

RBLM shows a similar trend with side peaks clearly visible for the same spectra that show

the strongest signal of 4u- & 6u-LCM. For the two topmost spectra, the central RBLM-peak

characteristic of long GNRs is recovered.

Figure 2 d) provides an overview of the theoretical and experimental data in a single plot.

For the calculations, the length of the GNRs is varied from 4 units to 36 units (1.7 nm to

15.3 nm) along the y-axis. The computed Raman scattering intensities are represented on

a logarithmic color-scale from white to red for 5-AGNRs, and from white to green/blue for

7-/9-AGNRs as a function of Raman shift (x-axis). As shown in Figure 2 a), the RBLMs of

the three GNRs are well separated and do not significantly change as a function of length,

except for the splitting seen in very short 5-AGNRs. The LCM, in contrast, overlaps for

the three different GNRs and shows a common frequency-downshift with increasing GNR

length. This trend is also seen for its overtone, labeled LCM3 on the figure. The SLMs

are marked by small asterisks and are essentially independent of length, as expected. The

experimental data are superimposed as symbols with the same red/green/blue color-coding

for 5-/7-/9-AGNRs, respectively. We display the experimental data at an assigned length

of 14-15 nm for ‘long’ GNRs produced with the optimized growth parameters. This is a

lower bound for the length distribution determined from STM images (see Figure S3 b)).24

The discrepancy in Raman shift of the LCM between experiment and theory for these long

ribbons is discussed below. Finally, for the LCM we plot an analytical curve based on Equa-

tion 2 in SI Note 2, derived from a zone-folding approach. Gillen et al. used this to model

the frequency of the RBLM as a function of width. The frequency ωLCM = π · V/L, where

L is the ribbon length and V = 1026 Å cm−1 is the speed of sound in graphene26, results in

excellent agreement with our other calculations as well as our experiments.
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Figure 3: Characterization of the LCM for 5-AGNRs. a) Sketch of the measurement
geometry for aligned GNRs grown on terraced Au(788) crystals. The incoming light under
normal incidence to the Au(788) surface is polarized at an angle θin relative to the direction of
the gold terraces. b) STM image of aligned GNRs (sparsely grown 9-AGNRs for the purpose
of illustration). c) Raman spectra of aligned 5-AGNRs on a Au(788) growth substrate as a
function of polarization of the exciting laser at λexc = 785 nm. Sample 5-1 Au. Inset: polar
plot of the RBLM & LCM (scaled x10) mode intensities I ∝ cos2(θ).

Polarization analysis of the LCM. Polarization-dependent measurements provide ad-

ditional information on the nature of Raman-active vibrations. As a consequence of their

high aspect ratio, GNRs show a characteristic anisotropic dependence of scattering intensity

on the relative alignment of light polarization direction and ribbon axis, an effect known

from other quasi-1D materials such as carbon nanotubes.27–31 We probe this dependence for

5-AGNRs grown on a Au(788) crystal where the narrow (3-4 nm) (111)-terraces favor unidi-

rectional growth of 5-AGNRs parallel to the step edges separating the terraces (see Figure 3 a,

b)). To probe the global alignment of GNRs by Raman spectroscopy we vary the angle θin

of the linear polarization of the excitation laser with respect to the direction of the terraces

θ = 0◦ (see Figure 3 a) and SI-Note 3). No polarizer was used in the detection path to

maximize the signal intensity. Figure 3 c) shows a waterfall plot of Raman spectra of aligned

5-AGNRs as a function of polarization angle. The intensity of the low-energy LCM clearly

follows that of the RBLM, CH- & G-modes. The inset shows the peak intensities of the

RBLM and LCM displayed in a polar plot. The behavior is well-described by an ensemble

of dipoles, each with an I(θin) ∝ cos2(θin) characteristic, that are preferably oriented along
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the θ = 0◦-direction.31 The fact that all GNR modes, including the LCM, follow a common

polarization dependence irrespective of intrinsic mode symmetry is attributed to the strong

shape anisotropy.29,30 We use the polarization anisotropy P as a measure to quantify this

effect and find a value of PLCM,(RBLM) = 0.5, (0.6) see SI Note 4. The length of GNRs

also affects the observed polarization-dependence. In Figure S11 we show measurements on

samples containing predominantly short GNRs. We observe a lower polarization anisotropy

PRBLM = 0.4 than for the GNRs grown with optimized parameters (Figure 3 c)). We at-

tribute this to the combination of two effects: First, a lower degree of ribbon alignment as

seen in STM because short ribbons are not restricted in growth direction by the width of

the terraces, and second, a reduced shape-anisotropy as reflected in the optical absorption

matrix elements.30

Finally, we investigate the effect of transferring the GNRs from their gold growth sub-

strate to standard silicon and Raman optimized device substrates.22 Figures S6, S8, and

S9 of SI Note 3 show the LCM in spectra for the three types of AGNRs after transfer.

Again, we performed polarization-dependent measurement on the LCM of aligned 7- and

9-AGNRs. As for aligned 5-AGNRs, the LCM follows the polarization dependent intensity

of the other Raman active GNR modes (Figure S10). For 9-AGNRs with an average length

of about 40 nm we observe a significantly larger polarization anisotropy (PLCM > 0.9 and

PRBLM > 0.7). Samples of (globally) non-aligned 5-AGNRs synthesized on Au/Mica sub-

strates with wider terraces, too, show the LCM and RBLM at the same frequencies but

without any polarization dependence (see SI Note 1 and Figures S3 b) and S8 a) for STM

and Raman spectra). Beyond confirming the ribbon-origin of the LCM, these polarization-

dependent measurements can therefore be used as an independent, albeit rough, indication

of GNR length for well-aligned ribbons. Altogether, for all three families of AGNRs, we

find a common polarization dependence of the LCM and the other Raman modes, and that

the transfer procedure does not significantly impact the GNR structure as revealed by its

vibrational modes.
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Figure 4: Damage monitoring and substrate sensitivity via the LCM-peak of 9-
AGNRs. a) Low energy spectra acquired with 5 s integration time and after an additional
100 s laser irradiation time at the same sample location, showing GNR damaging. The inset
shows the normalized peak intensity obtained from a Lorentzian fit of the LCM, RBLM, CH-
& G-peaks as a function of the cumulated irradiation time. Full data in Figure S12. Dashed
lines are fits with simple exponential decays. λexc = 488 nm, P = 5 mW, Sample 9-2 T. b)
Substrate-dependent Raman shift of the LCM for GNRs on oxide or on a graphene inter-
layer. The inset shows histograms for the peak center extracted from a single Raman map
containing both substrates, fitted with Gaussian distributions. λexc = 488 nm, Sample 9-1 T.

LCM as a tool to assess ribbon damage and substrate interaction. In addition to

being useful to rapidly assess non-ideal growth regimes that result in short GNRs, the LCM

is also a sensitive probe for ribbon integrity. The atomic displacement shown in Figure 1 c)

shows that the LCM requires the coherent vibration of all atoms along the ribbon. It can

therefore be expected that the presence of defects in GNRs as well as the interaction with

the substrate on which the ribbon is placed has a strong influence on it, especially for long

ribbons.

To systematically investigate damaging of GNRs, a transferred film of 9-AGNRs was

irradiated with high laser power (5 mW) at 488 nm, leading to the introduction of defects.31

Figure 4 a) shows spectra acquired on the same sample spot after short and prolonged laser

exposure. The inset shows the fitted intensity of the LCM, RBLM, CH- and G-peaks as

a function of the accumulated irradiation time by the excitation laser while acquiring the

spectra. While all peaks show an intensity decrease with increasing irradiation time, this

decay is most pronounced for the LCM. Figure S12 c, d) displays a power-dependent series
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of spectra, all normalized to a common power-time product. The LCM clearly disappears as

the power and corresponding laser damage is increased. This shows that the LCM intensity

is a good tool for monitoring the ribbon integrity throughout device processing and may be

a key identifier for GNRs’ suitability in optoelectronic applications.

Inspired by the long-range nature of this mode, we investigated whether there is any

influence of the target substrate onto which the GNRs are transferred. Two technologically

relevant substrates are oxide surfaces used for gate-insulation in field-effect transistors and

graphene, which is increasingly used as an electrode material.21,32 We transferred a sample of

9-AGNRs on a patterned graphene-on-oxide substrate and acquired Raman spectra scanning

over the boundary of both substrates (Figure S13). Interestingly, we find a strong down-shift

of the LCM frequency for GNRs on graphene, a change of nearly 4%. No comparable shift

is observed for any of the other Raman modes of GNRs. Low-frequency modes have been

used extensively over the last years to probe the layer interactions of 2D-materials.33–35 The

observation of a significant substrate-dependent effect on the LCM points towards a host

of so far unexplored phenomena relevant for the fabrication of hybrid devices that can be

explored via these low-frequency modes.

Matching calculated Raman spectra and experimental data. We find a good

overall match between Raman spectra, first-principles calculations and independent obser-

vations from (low-temperature)-STM. The high background and low Raman intensity when

measuring on gold, however, prevent us from observing the LCM in the samples containing on

average the longest GNRs while still on the growth substrate (see Figure S9). Moreover, the

frequency of the LCM observed after transfer to device substrates is substantially higher than

that predicted by calculations for isolated GNRs, matching better with the overtone denoted

LCM3. In contrast, for short 5-AGNRs the LCM is observed precisely at the frequencies

predicted by DFT on both growth and device substrates. To address this discrepancy for

long GNRs we focused on 9-AGNRs, which reproducibly show the LCM at 96 cm-1 for λexc =

488 nm, the wavelength for which our setup allows measurements at the lowest wavenumbers.
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The spectra in Figure S10 b) show a clear polarization dependence not only of the LCM at

96 cm-1 but also of the background below about 60 cm-1. Our spectral resolution still does

not allow us to discriminate whether this low-energy polarization dependent background is a

signature of another lower-energy Raman peak or due to increased scattering of the tail of the

laser from the ribbons, which should also follow the variation of the GNRs’ interaction cross-

section with polarization. To access the ultra-low spectral range predicted to contain the

fundamental LCM for longer ribbons one would need to further reduce Rayleigh scattering

and improve filtering. Selective synthesis of intermediate length (5-7 nm) GNRs would allow

to find a definite answer. Based on the strong substrate-sensitivity shown in Figure 4 b), we

interpret the observed peak at 96 cm-1 as the LCM of 9-AGNRs being up-shifted in energy

relative to the gas phase calculations due to the interaction with the substrate. In particu-

lar, we attribute this shift to localized pinning of the GNR on the rougher device substrate.

This effect, which is not included in our calculations, can lead to a reduced effective length

of freely vibrating GNR sections thereby up-shifting the modes towards the experimentally

observed frequencies. The importance of modeling the substrate is further highlighted by its

selective influence on longer GNRs. To accurately model an experimental spectrum, which

includes contributions of typically hundreds of GNRs within the size of the laser spot, one

can extract the length distribution of GNRs from high-resolution STM images and compute

an accordingly weighted sum of calculated spectra (see Figure S14 in SI Note 5). This sum-

mation approach qualitatively reproduces the spectra, in particular the signatures of short

ribbons and the observed increase in background intensity around 100 cm-1. The discrepancy

with the experimental spectra is, again, attributed to the fact that we neglect the substrate

effect in the calculations. We anticipate that the inclusion of such a substrate model will al-

low the reverse approach of deducing a quantitative length-distribution of GNRs in a sample

by Raman spectroscopy alone. An improved understanding of substrate effects is the focus

of an ongoing study and beyond the scope of this paper.

15

Page 15 of 27

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Conclusions

We have identified and characterized a so-far unreported longitudinal vibrational mode in

AGNRs by Raman spectroscopy. Its length-dependent Raman shift has been investigated

by adjusting the GNR growth parameters and is supported by a combined analysis with

high resolution STM and first-principles calculations. We demonstrated the usefulness of

the LCM for the rapid identification of samples containing short ribbon-segments on both

growth and device substrates. This information would otherwise require time-consuming and

expensive low-temperature STM for probing the GNRs’ length on the growth substrate and

would not at all be accessible after GNR transfer and device integration. Moreover, we show

the mode’s sensitivity to damage of the GNRs. This makes it ideally suited to study the

effects of processing and nano-fabrication on GNRs, which therefore has become a routine

practice in our labs. Finally, we observe a particularly strong influence of the substrate on

the vibrational frequency of this mode, pointing towards the possibility to investigate the

interaction of GNRs with their environment by Raman spectroscopy. We anticipate that this

mode will also be observed in GNRs with different edge structures and that these findings

will substantially advance the overall understanding of GNRs, their interaction with diverse

substrates, and provide insights that we deem crucial for the deterministic fabrication of

GNR-based devices.

Methods

On surface synthesis and STM characterization of AGNRs. 5-AGNRs were synthe-

sized from an isomeric mixture of 3,9-diiodoperylene and 3,10-diiodoperylene (DIP) as the

precursor monomer - referred to as iodine-based. 5-AGNRs with bromine-based precursors

were synthesized from an isomeric mixture of 3,9-dibromoperylene and 3,10-dibromoperylene

(DBP).36 7-AGNRs were synthesized from 10,10’-dibromo-9,9’-bianthryl (DBBA)1 and 9-

AGNRs from 3’,6’-di-iodine-1,1’:2’,1”-terphenyl (DITP).24 First, Au(788) single crystals

16

Page 16 of 27

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(Matec, Germany) or Au/mica substrates (Phasis, Switzerland) were cleaned in ultra-high

vacuum by two sputtering/annealing cycles: 1 kV Ar+ for 10 minutes followed by annealing

at 470 ◦C for 10 minutes. Next, the monomer was sublimed onto the Au surface from a quartz

crucible heated to 70 ◦C (DITP), 200 ◦C (DBBA), and 200 ◦C (DBP/DIP) respectively, with

the substrate held at room temperature. After 1 monolayer coverage deposition, for both

7-, and 9-AGNRs the substrate was heated (0.5 K/s) up to 200 ◦C with a 10 minute holding

time to activate the polymerization reaction, followed by annealing at 400 ◦C (0.5 K/s with

a 10 minute holding time) in order to form the GNRs via cyclodehydrogenation. For the

synthesis of the 5-AGNRs a slow annealing (0.2 K/s) was carried up to 225 ◦C.

Topographic scanning tunneling microscopy images of as-grown AGNRs on Au(788) and

Au/mica were taken with a Scienta Omicron VT-STM/LT-STM operated at room temper-

ature/5 K. Constant-current STM images were recorded with -1.5 V sample bias and 0.03 nA

setpoint current. The length analysis of the ribbons was performed in Igor Pro using an

image processing script developed in-house. In total we identified 123 ribbons for the his-

togram in Figure S2 and 261 ribbons for the histogram in Figure S3. By counting GNRs

in different scan images, we ensure that this is a representative length distribution of these

samples.

Transfer of GNRs to substrates. AGNRs were transferred from their Au/mica or

Au(788) growth substrate to silicon-based substrates by two different transfer approaches.

Au/mica samples were transferred using a polymer-free method described elsewhere.12 Sam-

ples grown on Au(788) crystals were transferred by an electrochemical delamination method.

First, PMMA was spin-coated (2500 rpm for 90 seconds, 4 layers) on GNR/Au to act as a

support layer during the transfer, followed by a 10 minutes curing step at 80 ◦C. In or-

der to decrease the PMMA delamination time, the PMMA on the edges of the Au (788)

crystal was removed after UV-exposure (80 minutes) followed by 3 minutes development

in water/isopropanol. The electrochemical delamination transfer was carried out using 1 M

NaOH aqueous solution as electrolyte. The electrochemical cell was mounted using a carbon
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rod as anode and the PMMA/GNR/Au as the cathode. A DC voltage of 5V was applied

between anode and cathode for 1 minute (resulting current around 0.2 A). Hydrogen bubbles

form at the interface of PMMA/GNR and Au, resulting in delamination of the PMMA/GNR

layer. The PMMA/GNR layer was cleaned for 5 minutes in purified water before being trans-

ferred to the target substrate. Subsequently, the PMMA/GNR/substrate stack was cured

for 10 minutes at 80 ◦C followed by 20 minutes at 110 ◦C to increase the adhesion between the

target substrate and the PMMA/GNR layer. Finally, the PMMA was dissolved in acetone

(15 minutes) followed by an ethanol-rinse.

Raman spectroscopy experiments. Raman spectra were acquired with a WITec

Alpha 300 R confocal Raman microscope in backscattering geometry. The linear polariza-

tion of the exciting lasers was adjusted with a motorized λ/2 plate. Rayleigh scattered

light is blocked by a notch filter (specifically, a volume holographic grating, referred to as

‘Ray-shield’ -option) for 488 nm excitation and edge filters for 532 nm / 785 nm excitation.

The backscattered light was filtered with an analyzing polarizer only where explicitly stated

and coupled to one of two spectrometers: a 300 mm lens-based spectrometer with grat-

ings of 600 g/mm or 1800 g/mm equipped with a thermoelectrically cooled CCD for 488 nm

and 532 nm excitation and a 400 mm lens-based spectrometer with gratings of 300 g/mm or

1200 g/mm equipped with a cooled deep-depletion CCD for 785 nm excitation. The laser

wavelength, power and integration time were optimized for each type of GNR and substrate

to maximize the signal.22 The sample was mounted in a home-built vacuum chamber at a

pressure below 10-2 mbar. For maximum signal intensity spectra are recorded with a Zeiss 50x

LD objective, NA=0.55, through an uncoated fused silica window of only 0.2 mm thickness

covering a hole of just 7 mm diameter. The chamber is mounted on a piezo stage for scan-

ning. A polynomial background was subtracted from the raw spectra to remove signatures

of photoluminescence (see Figure S6).31

Computational methods. Normal modes and Raman intensities were calculated using

density functional theory (DFT) for small finite size and periodic GNRs, and a combination
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of a force-field and bond polarizability model for larger finite-size systems. For the smaller

systems, DFT calculations were performed with the VASP program37–39 with projector-

augmented-wave pseudopotentials40 and the Perdew–Burke–Ernzerhof exchange-correlation

functional.41 A plane-wave cutoff of 600 eV was used and prior to other calculations all

structures were relaxed in VASP until residual forces were less than 10−4 eV/Å in magni-

tude. Resonant Raman intensities were calculated by the Placzek approximation42 where

the derivatives of the DFT-calculated frequency dependent dielectric matrix43 obtained from

a finite difference method.44 Larger systems were treated with a combination of the RE-

BOII potential45 for forces and a bond polarizability model30 for Raman intensities. The

bond polarizability parameters used were α‖ − α⊥ = 0.32 Å
3
, α′‖ + 2α′⊥ = 7.55 Å

2
, and

α′‖ − α′⊥ = 2.60 Å
2
.30,46 In both cases, the dynamical matrix was calculated using the fi-

nite difference method with a displacement of 0.03 Å via the use of the phonopy program

package47 in combination with forces calculated by either DFT or REBOII. Intensities are

calculated as an average over all backscattering geometries, spectra are then plotted as a

sum of Lorentzians with a width of 10 cm-1.
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5. Additional data on the damage sensitivity, substrate interaction and length distribution

assessment of GNRs
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Müllen, K.; Fasel, R.; Ruffieux, P. On-Surface Synthesis and Characterization of 9-Atom

Wide Armchair Graphene Nanoribbons. ACS Nano 2017, 11, 1380–1388.

4. Schwierz, F. Graphene Transistors. Nat. Nanotechnol. 2010, 5, 487–496.

5. Fujita, M.; Wakabayashi, K.; Nakada, K.; Kusakabe, K. Peculiar Localized State at

Zigzag Graphite Edge. J. Phys. Soc. Jpn. 1996, 65, 1920–1923.

6. Son, Y.-W.; Cohen, M. L.; Louie, S. G. Energy Gaps in Graphene Nanoribbons. Phys.

Rev. Lett. 2006, 97, 216803.

7. Chen, Y.-C.; de Oteyza, D. G.; Pedramrazi, Z.; Chen, C.; Fischer, F. R.; Crommie, M. F.

Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors.

ACS Nano 2013, 7, 6123–6128.

8. Ruffieux, P.; Wang, S.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.;

Shinde, P.; Pignedoli, C. A.; Passerone, D.; Dumslaff, T.; Feng, X.; Müllen, K.; Fasel, R.

21

Page 21 of 27

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



On-Surface Synthesis of Graphene Nanoribbons with Zigzag Edge Topology. Nature

2016, 531, 489–492.
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