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Zusammenfassung / Abstract: 

Determining size and structure of a company’s workforce is one of the most challenging tasks in human 

resource planning, especially when considering a long-term planning horizon with varying demand. In 

this paper an approach for integrated staffing and scheduling in a strategic long-term context is presented 

by applying evolutionary bilevel optimization. For demonstration, the example of determining the 

number of employees in different categories over the period of one year in a midsized call center of a 

utility is used. In doing so, two contrary objectives were optimized simultaneously: reduce the overall 

workforce costs and retain a high scheduling quality. The results show that the proposed approach could 

be used to support corporate decision making related to strategic workforce planning, not only for call 

centers but for any other kind of workforce planning involving personnel scheduling. 

 

 

Schlüsselwörter:  Personnel Scheduling, Staffing, Integrated Staffing and Scheduling, 

Bilevel Optimization, Metaheuristics
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Evolutionary Bilevel Approach for Integrated Long-Term Staffing and Scheduling 

Julian Schulte • Maik Günther • Volker Nissen 

Abstract Determining size and structure of a company’s workforce is one of the most challenging tasks in human 

resource planning, especially when considering a long-term planning horizon with varying demand. In this paper 

an approach for integrated staffing and scheduling in a strategic long-term context is presented by applying 

evolutionary bilevel optimization. For demonstration, the example of determining the number of employees in 

different categories over the period of one year in a midsized call center of a utility is used. In doing so, two 

contrary objectives were optimized simultaneously: reduce the overall workforce costs and retain a high scheduling 

quality. The results show that the proposed approach could be used to support corporate decision making related 

to strategic workforce planning, not only for call centers but for any other kind of workforce planning involving 

personnel scheduling. 

1 Introduction and Related Work 

Companies are challenged by the question of how to organize size and structure of their workforce in order to 

manage upcoming workload most cost-effectively. This is especially the case when entirely new business units are 

established, existing units are restructured or current and future demand strongly deviate from each other. Examples 

of a changing workload are found, among others, in the utility sector. Rising requirements for customer service 

combined with strong cost pressure require measures for utilities to create a cost-efficient workforce structure. 

Therefore, in this paper the problem of determining the ideal size and structure of a typical inbound call center of 

an utility is examined. However, it may be noted that the methodology applied in this paper is not limited to the 

considered call center, but rather can be applied to problems of other companies and business units. 

When considering size and structure (e.g. skill-mix and contract types) of a company’s workforce, the purpose 

of staffing is to determine the adequate future number of employees needed in different categories. As this is 

already not an easy task with only one type of employee, it gets even more challenging when looking at a 

heterogeneous workforce due to different types of skills or contracts [7]. Scheduling, as another crucial task in 

workforce planning, is concerned with getting the right people to the right place at the right time. It is easily 

recognizable that staffing decisions have direct impact on scheduling quality. Hence, it is reasonable not to look at 

staffing and scheduling decisions as two consecutive tasks but to employ an integrated planning approach.  
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In the literature, the number of contributions addressing integrated staffing and scheduling is rather limited, 

especially compared to literature concentrated on staffing or scheduling problems [7, 16, 25]. There are, however, 

several approaches differing in methodology and considered planning horizon. Avramidis et al. [2] for example 

provide a simulation-based algorithm that simultaneously optimizes the staffing and scheduling over one day in a 

multi-skill call center. They focus on how many agents of each type are needed based on the arrival rates and type 

of calls at a given day. In the model presented by Brunner and Edenharter [8] a column generation based heuristic 

is applied to identify the weekly demand of physicians with different experience levels. Even though the authors 

are targeting a long-term planning horizon of one year, they solve each week independently. Beliën and 

Demeulemeester [3] propose a branch-and-price approach considering a planning horizon of four weeks with the 

aim of reducing staffing costs by integrating both processes, operation room scheduling, which determines the 

required nurse staffing level, and nurse scheduling. A branch-and-price methodology with a planning horizon of 

four weeks was also used in the integrated model developed by Maenhout and Vanhoucke [16], with the purpose 

of identifying optimal staffing and scheduling policies in a hospital. In a more recent contribution published by 

Beliën et al. [4], an enumerative MILP algorithm is proposed for optimizing the team sizes of an aircraft 

maintenance company in order to minimize the overall labor costs for a period of six weeks. 

The proposed methods already deliver detailed insight into the needed workforce at a given day, week or 

month and therefore a necessary basis for further workforce planning. However, the planning horizons considered 

are short when a strategic perspective is taken. Thus, the approaches so far cannot provide information about the 

required overall workforce, especially when considering a long-term period, e.g. one year, with varying demand 

as well as factors like overtime/flextime and holidays of employees. To fill this gap, in this paper an approach for 

integrated staffing and scheduling in a strategic long-term context using evolutionary bilevel optimization is 

presented.  

Bilevel optimization can be seen as a form of hierarchical optimization problem. More specifically, an upper-

level optimization problem has another optimization problem within its constraints and therefore is dependent on 

the results of the lower-level problem. This hierarchical relationship is closely related to the problem of Stackelberg 

[22], where a follower (lower-level problem) optimizes his objective based on the given parameters determined by 

the leader (upper-level problem). The leader, on the other hand, optimizes his own objective under consideration 

of the follower’s possible reactions [10]. In the case of integrated staffing and scheduling, staffing will be treated 

as upper-level problem with the objective to minimize the overall labor costs, i.e. adjusting number and 

qualification of employees, but at the same time maximizing the quality of personnel schedules. Scheduling, as the 

lower-level optimization problem, has the objective to maximize scheduling quality based on the staffing decisions 

made at the upper-level. The quality in this case is assessed by a fitness function that considers the match of staffing 

demand and allocation of employees with certain skills at given time intervals as well as employee overtime.  

Evolutionary bilevel optimization was successfully applied in various practical applications in fields such as 

economics, transportation, engineering and management, but, to the best of our knowledge, not yet in workforce 

planning and scheduling problems (see [20] for a comprehensive review). Evolutionary Algorithms (EA) are a 

common metaheuristic approach to compute good solutions in an acceptable amount of time, especially when 

working with real world problems that otherwise cannot be solved to optimality within reasonable computation 

time [17]. This also applies to workforce planning and scheduling problems, with Genetic Algorithms (GA) as the 

most often used class of metaheuristics in this domain [7, 25]. Due to its widespread usage and successful 

application to similar problems, GA were chosen in our case, both to solve the upper-level staffing and the lower-

level scheduling problem.  

The remainder of the paper is structured as follows: In Section 2 the problem of integrated staffing and 

scheduling is presented. Section 3 describes the applied evolutionary bilevel approach. In Section 4 the 

computational results will be discussed. Finally, the conclusions and suggestions for further research are presented 

in Section 5. 

2 Problem Description 

In this section, the problem of integrated staffing and scheduling in the environment of a German utility is 

presented. We consider a strategic context in which the company has to make its overall workforce planning one 

year in advance to assure that all required employees with the right qualification are available. Due to internal 

restrictions of the utility, the presented problem is derived and abstracted from a real world problem commonly 

found in strategic workforce planning.  
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2.1 Bilevel Optimization 

Bilevel optimization problems are proven to be strongly NP-hard [14] and can generally be formulated as follows 

[10, 20, 24]: 

 

min
𝑥 ∈ 𝑋 

𝐹(𝑥, 𝑦) 

subject to 𝐺(𝑥, 𝑦) ≤ 0  
 

  min
𝑦 ∈ 𝑌 

𝑓(𝑥, 𝑦) 

  subject to 𝑔(𝑥, 𝑦) ≤ 0 
 

where 𝑥 is the vector of decision variables determined by the upper-level problem and 𝑦 is the vector determined 

by the lower-level problem. Besides, 𝐹(𝑥, 𝑦) and 𝑓(𝑥, 𝑦) are the objective functions and G(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) the 

constraints of the upper- and lower-level problem. For each vector 𝑥, 𝑦 will be the optimization result of the lower-

level problem min 𝑓(𝑥, 𝑦). Therefore, min 𝑓(𝑥, 𝑦) could also be denoted as 𝑦(𝑥) [27]. Thus, the result of the upper-

level problem is dependent on the result of the lower-level problem, which in turn is dependent on the vector 𝑥 

given by the upper-level problem. 

For the considered problem of integrated staffing and scheduling, 𝑥 will be the staffing decision made at the 

upper-level determining the number of employees of each type (combination of skill set and contract type). Based 

on the given workforce structure, the personnel scheduling will be conducted yielding schedules for each day of 

the planning horizon. Hence, the objective function at the upper-level min 𝐹(𝑥, 𝑦) depends on the costs due to 

staffing decisions as well as the quality 𝑦(𝑥) of the created schedules at the lower level. 

2.2 Staffing Problem 

The here considered call center has a need of three different skill types 𝑠 ∈ 𝑆 with 𝑆 =
 {agent, support, supervisor}. The skills are considered to be categorical, which means they determine the tasks 

that can be performed by each employee. However, it is possible to cross-train employees so they can perform 

more than one type of task [7]. The qualification of an employee can therefore be seen as set of different skill 

combinations 𝑞 ⊆ 𝑆. The contract type 𝑡 ∈ 𝑇 of an employee determines his average weekly working time.  

Within its staffing decision, the company has to predefine feasible employee types 𝐸̅ (see Table 1). Each 

employee type 𝑒̅𝑞𝑡 ∈ 𝐸̅ is defined by its qualification 𝑞 and contract type 𝑡. Furthermore, each employee type 𝑒̅𝑞𝑡 

is linked to costs 𝑐𝑒̅𝑞𝑡 that arise for employing one employee of this type over the considered planning horizon. 

Here, the costs of each employee type are represented by a relative factor summing up annual wages, payroll taxes, 

overhead and training costs. The number of employees of each type is represented by the decision variable 𝑥𝑒̅𝑞𝑡. 

The setting of the staffing problem is shown in Table 1. 

The objective here is, as part of the upper-level problem, to minimize the overall staffing costs (2a) subject 

to the output of the lower-level problem (2b). 

 

Table 1 Setting of the staffing problem 

 

 

 

 

 

 

 

 

 

 

  

 Contract type Qualification Costs 

 40 h agent 1 

 20 h agent 0.6 

 40 h support 1.1 

 20 h support 0.65 

 40 h agent - support 1.3 

 20 h agent - support 0.75 

 40 h supervisor 1.4 

 

(1) 
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Parameters (staffing) 

𝑆  set of skills (index 𝑠) 

𝑞  qualification of an employee (𝑞 ⊆ 𝑆) 

𝑇  set of contract types (index 𝑡) 

𝐸̅  set of employee types (index 𝑒̅𝑞𝑡) 

𝑐𝑒̅𝑞𝑡  costs for an employee of type 𝑒̅𝑞𝑡 

Decision variable (staffing) 

𝑥𝑒̅𝑞𝑡   number of employees of type 𝑒̅𝑞𝑡 

Staffing problem (upper level) 

min 
𝑥

𝐹 ( ∑ 𝑥𝑒̅𝑞𝑡  𝑐𝑒̅𝑞𝑡

𝑒̅𝑞𝑡∈𝐸̅

, 𝑦(𝑥))  (2a) 

 

with 
 

𝑥𝑒̅𝑞𝑡 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟      ∀ 𝑒̅𝑞𝑡 ∈ 𝐸̅  

𝑞 ⊆ 𝑆, 𝑡 ∈ 𝑇  

 

subject to 

(3a) – (3i) (2b) 

2.3 Scheduling Problem 

The scheduling problem presented in this paper considers the daily staff scheduling of a call center over a planning 

horizon of one year. Each week of the planning horizon 𝑤 ∈ 𝑊 is partitioned into periods 𝑝 ∈ 𝑃, representing the 

operating days of the call center. Moreover, each operating day again is segmented into time intervals 𝑖 ∈ 𝐼. In this 

practical case, a planning horizon 𝑊 = {1, . . . , 52} with operating days 𝑃 = {1, . . . , 5} and, due to the strategic 

context, hourly planning intervals 𝐼 = {8, . . . , 17} were chosen, representing the operating times 8 a.m. to 6 p.m.  

The set of employees 𝐸 is determined by the staffing decision at the upper-level with a concrete employee 

for each 𝑥𝑒̅𝑞𝑡. It is assumed that the company has a predefined set of possible shift patterns 𝑀 (see Table 2) with 

𝑏𝑚𝑖  determining whether a shift pattern is covering a specific time interval. In addition, variable 𝑛𝑒𝑠 determines if 

an employee’s qualification contains skill 𝑠. It is assumed that each employee has six weeks of holidays each year. 

Therefore it is possible for employees not to be available at certain periods which is determined by variable 𝑎𝑝𝑤
𝑒 . 

 

Table 2 Possible shift patterns 

        

Shift start (a.m.) 8 8 8 10 10 10 12 

Shift duration (h) 4 8 10 4 6 8 4 

 

The assignment of an employee 𝑒 ∈ 𝐸 to a shift 𝑚 on day 𝑝 in week 𝑤 with skill 𝑠 is controlled by using the 

binary decision variable 𝑦𝑚𝑝𝑤
𝑒𝑠 . An employee can only be assigned if he is available and has the required skill (3b) 

- (3c). Furthermore, one employee can only be assigned to one shift each day (3d). 

For each time interval 𝑖 on day 𝑝 in week 𝑤 and each skill 𝑠 a certain staffing level 𝑑𝑖𝑝𝑤
𝑠  has to be satisfied. 

The number of planned employees of each skill at time interval 𝑖 is determined by variable 𝑒𝑖𝑝𝑤
𝑠  (3e). If a deviation 

|𝑒𝑖𝑝𝑤
𝑠 − 𝑑𝑖𝑝𝑤

𝑠 | arises from the staffing target, penalty points are generated by the function 𝑃𝑑 (3f). An additional 

penalty is added if no employees are planned but required or vice versa.  
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To compensate overtime and minus hours, each employee has a flextime account 𝑢𝑒𝑤, which is updated on a 

weekly basis. Therefore, the deviation of the employee’s actual working time  𝑙𝑒𝑤  (3g) and the average weekly 

working time  ℎ𝑒 is added to his flextime account (3h). However, to provide an equal workload distribution and to 

ensure that employees are staffed according to their contract types, the penalty function 𝑃𝑢 generates penalty points 

based on how far employees exceeded or fall below their average weekly working time 𝑢𝑒𝑤 ℎ𝑒⁄  (3i). The weekly 

penalty is calculated by multiplying the absolute flextime value times the percentage of deviation. 

It has to be noted that both penalty functions have to be carefully balanced, as otherwise employees might 

fall far beyond their contractual working hours (if over-/understaffing is too expensive) or, on the other side, 

flextime will not be used at all. 

The objective here is to minimize the overall penalty points over the considered planning horizon (3a) subject 

to given constraints (3b) – (3i) described above.  

Parameters (scheduling) 

𝑊  set of weeks in planning horizon (index 𝑤) 

𝑃  set of periods in planning week w (index 𝑝) 

𝐼   set of time intervals in planning period 𝑝 (index 𝑖) 
𝐸  set of employees (index 𝑒) determined by the upper-level 

decision variable 𝑥𝑒̅𝑞𝑡 

𝑆  set of skills (index 𝑠) 

𝑀  set of shift patterns (index 𝑚) 

𝑏𝑚𝑖    1 if shift 𝑚 covering time interval 𝑖, 0 otherwise  

𝑛𝑒𝑠   1 if employee’s qualification contains skill 𝑠, 0 otherwise  

𝑎𝑝𝑤
𝑒    1 if employee e is available on day 𝑝 in week 𝑤, 0 otherwise  

𝑑𝑖𝑝𝑤
𝑠    demand of skill s at time interval 𝑖 on day 𝑝 in week 𝑤 

𝑒𝑖𝑝𝑤
𝑠    number of planned employees with skill s at time interval 𝑖 on day 𝑝 in  

  week 𝑤 

𝑃𝑑   demand penalty function 

𝑢𝑒𝑤  flextime account of employee 𝑒 in week 𝑤 

𝑙𝑒𝑤   actual working time employee 𝑒 in week 𝑤 

ℎ𝑒  average weekly working time of employee 𝑒 

𝑃𝑢   working time penalty function 

Binary decision variable (scheduling) 

𝑦𝑚𝑝𝑤
𝑒𝑠    1 if employee 𝑒 is assigned to a shift m on day 𝑝 in week 𝑤 with  

   skill 𝑠, 0 otherwise 

Scheduling problem (lower level) 

min
𝑦

𝑃𝑑 + 𝑃𝑢  (3a) 

 

with 

𝑛𝑒𝑠, 𝑏𝑚𝑖 , 𝑎𝑝𝑤
𝑒 , 𝑦𝑚𝑝𝑤

𝑒𝑠 ∈ {0, 1}    

   ∀ 𝑒 ∈ 𝐸, 𝑠 ∈ 𝑆, 𝑚 ∈ 𝑀, 𝑝 ∈ 𝑃, 𝑤 ∈ 𝑊 
 

 

subject to 

 

𝑦𝑚𝑝𝑤
𝑒𝑠 ≤  𝑎𝑝𝑤

𝑒      ∀ 𝑒 ∈ 𝐸, 𝑠 ∈ 𝑆, 𝑚 ∈ 𝑀, 𝑝 ∈ 𝑃, 𝑤 ∈ 𝑊 (3b) 

𝑦𝑚𝑝𝑤
𝑒𝑠 ≤  𝑛𝑒𝑠       ∀ 𝑒 ∈ 𝐸, 𝑠 ∈ 𝑆, 𝑚 ∈ 𝑀, 𝑝 ∈ 𝑃, 𝑤 ∈ 𝑊 (3c) 
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∑ ∑ 𝑦𝑚𝑝𝑤
𝑒𝑠

𝑚∈𝑀𝑠∈𝑆 

≤  1     ∀ 𝑒 ∈ 𝐸, 𝑝 ∈ 𝑃, 𝑤 ∈ 𝑊 (3d) 

𝑒𝑖𝑝𝑤
𝑠 = ∑ 𝑦𝑚𝑝𝑤

𝑒𝑠  𝑏𝑚𝑖  

𝑒 ∈ 𝐸

       ∀ 𝑠 ∈ 𝑆, 𝑚 ∈ 𝑀, 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃, 𝑤 ∈ 𝑊 (3e) 

𝑃𝑑 = ∑ ∑ ∑ ∑ ∑ |𝑑𝑖𝑝𝑤
𝑠 − 𝑒𝑖𝑝𝑤

𝑠 |  ∗  𝛾𝑑

𝑤 ∈ 𝑊𝑝 ∈ 𝑃

, 𝑤𝑖𝑡ℎ 

𝑖 ∈ 𝐼𝑒 ∈ 𝐸𝑠 ∈ 𝑆

 

𝛾𝑑 = {

500, 𝑒𝑖𝑝𝑤
𝑠 > 0 𝑎𝑛𝑑 𝑑𝑖𝑝𝑤

𝑠 = 0

500, 𝑑𝑖𝑝𝑤
𝑠 > 0 𝑎𝑛𝑑 𝑒𝑖𝑝𝑤

𝑠 = 0

1,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(3f) 

𝑙𝑒𝑤 = ∑ ∑ 𝑦𝑚𝑝𝑤
𝑒𝑠  𝑏𝑚𝑖  

𝑝∈𝑃𝑖∈𝐼

     ∀ 𝑒 ∈ 𝐸, 𝑚 ∈ 𝑀, 𝑤 ∈ 𝑊     (3g) 

𝑢𝑒𝑤 = 𝑢𝑒(𝑤−1) + (𝑙𝑒𝑤 −  ℎ𝑒𝑤), with  𝑢𝑒0 = 0 

    ∀ 𝑠 ∈ 𝑆, 𝑚 ∈ 𝑀, 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃, 𝑤 ∈ 𝑊 
(3h) 

𝑃𝑢 = ∑ ∑
𝑢𝑒𝑤

2

ℎ𝑒
𝑤∈𝑊𝑒∈𝐸

 (3i) 

3 Evolutionary Bilevel Approach 

3.1 Genetic Algorithms 

GA are population-based metaheuristics and rely on three basic principles. First, there is a set of solutions 

(population). Each solution (individual) is evaluated based on its quality (fitness) by applying an objective function 

(fitness function). Second, variation operators are applied in the process of creating new solutions (reproduction). 

This can be done by crossover (recombining two or more individuals) and/or mutation (random variation of an 

individual). Both variation operators are probabilistically applied and exist in many different variants. Finally, 

individuals with high fitness values are more likely to be selected for reproduction by a selection procedure (see 

[18, 19, 23] for more detailed information on metaheuristic optimization in general and GA in particular). The GA 

applied in this paper are based on the basic version shown in Algorithm 1. 

The individuals of the here applied GA are represented by matrices, with each row corresponding to an 

abstract employee type (upper-level algorithm) respectively a concrete employee (lower-level algorithm). The rows 

at the upper-level are encoded as 4-bit Gray strings, allowing a number between 0 and 15 employees for each type. 

At the lower-level, 3-bit Gray encoding is used to determine one of seven possible shift patterns for an employee’s 

working day or absence of the employee.  

For reproduction, one-point, uniform and two types of n-point crossover are used, each with a probability 

p=0.25. The first type of n-point crossover randomly selects half of the rows of each matrix and interchanges the 

entire rows between the two individuals. The second type interchanges one n-bit block of random size per row 

between the individuals. Moreover, bit flip mutation is used with each bit flipping with the probability of the given 

mutation rate (see Section 4.1). 

3.2 Multi-Objective Optimization 

Within the here discussed problem of integrated staffing and scheduling, two objectives have to be optimized. 

However, both objectives are in conflict with each other, as for example hiring multi-skilled, flexible part-time 

employees will yield high quality schedules but also increase the staffing costs and on the other hand, reducing the 

number of employees will reduce labor costs but also the scheduling quality. The resulting multi-objective problem 

can be solved by using the concept of Pareto efficiency, which will yield a set of Pareto optimal solutions (Pareto 

front). The final solution to be selected will therefore be a trade-off among the two considered objectives staffing 

costs and scheduling quality (see [9, 6, 19] for more detailed information on multi-objective optimization). 
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Algorithm 1 Overview of GA in pseudocode 

1: popsize ← desired population size 

2: generations ← number of generations to be evaluated 

3: 𝑃 ← build initial population of random individuals with size popsize 

4: Best ← select best individual according to fitness of initial population 

5: for generations times do  

6:  for each individual 𝑃𝑖 ∈ 𝑃 do 

7:  if 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑖 ) > 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐵𝑒𝑠𝑡) 

8:    𝐵𝑒𝑠𝑡 ←  𝑃𝑖  

9:  end if 

10: end for 

11: 𝑃′ ← { } 

12:  for popsize times do 

13:  Parent 𝑃𝑎 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙(𝑃) 

14:  Parent 𝑃𝑏 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙(𝑃) 

15:  Child 𝐶 ← 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑃𝑎 , 𝑃𝑏 ) 

16:  𝑃′ ← 𝑃′ ∪ {𝑀𝑢𝑡𝑎𝑡𝑒(𝐶)}  

17: end for 

18: 𝑃 ≔ 𝑃′ 
19: end for 

20: return Best  
 

3.3 Nested Bilevel Genetic Algorithm 

Within the context of integrated (long-term) staffing and scheduling problems, Maenhout and Vanhoucke [16] 

point out that most researchers (e.g. [1, 15, 11, 26, 3]), including themselves, iteratively alternate between the 

staffing and the scheduling problem as they are creating and evaluating personnel schedules based on certain 

staffing decisions. This was also noted by more recent research [12]. This basic procedure also applies for the 

evolutionary bilevel approach.  

Following the taxonomy given by Talbi [24], the here presented procedure can be defined as a nested 

constructing approach with metaheuristics on both levels. In this type of bilevel model, an upper-level 

metaheuristic calls a lower-level metaheuristic during its fitness assessment. In doing so, the upper-level heuristic 

determines the decision variable 𝑥 (here the number of employees for each type) as input of the lower-level 

algorithm, which in turn determines the decision variable 𝑦. Both variables are subsequently used to solve the 

bilevel problem at the upper-level. By the existence of a multi-objective optimization problem, non-dominated 

sorting is used to evaluate the fitness of each individual at the upper-level GA [21]. As a result, a Pareto front will 

be built of all non-dominated solutions evaluated at the upper-level (see Algorithm 2, line 10 and 11). An overview 

of the nested bilevel GA applied in this paper is shown in Algorithm 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One major issue when applying bilevel optimization are the long computation times. Preliminary experiments 

showed that after the evaluation of the first four weeks (of 52 in total) at the lower-level GA, it was already roughly 

possible to determine the quality of the staffing decision. Once the fitness of two individuals showed a deviation 

of at least 100% in the fourth week, the fitness development of both individuals did not tend to change. This 

behavior was used to implement termination criteria, which were applied at different points during the fitness 

Algorithm 2 Overview of nested bilevel GA in pseudocode 
1: initialization (see Algorithm 1, lines 1-3) 
2: Best ←  { }  
3: for generations times do  
4:  for each individual 𝑃𝑖 ∈ 𝑃 do 
5:  call lower-level GA with 𝑃𝑖  as input (see Algorithm 1) 
6: end for 
7: 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑃) 
8: 𝐴 ← 𝑃𝑎𝑟𝑒𝑡𝑜𝐹𝑟𝑜𝑛𝑡(𝑃) ∪ 𝐵𝑒𝑠𝑡 
9: 𝐵𝑒𝑠𝑡 ← 𝑃𝑎𝑟𝑒𝑡𝑜𝐹𝑟𝑜𝑛𝑡(𝐴) 
10:  reproduction (see Algorithm 1, lines 11-18) 
11: end for 
12: return Best 
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assessment of each individual at the lower-level problem. Once one criterion applies, the evaluation of the 

individual at the lower-level is terminated. 

In general, at each termination checkpoint the assessed individual is compared to all individuals included in 

the current 𝐵𝑒𝑠𝑡 Pareto front (upper-level problem). The first two checkpoints are set after the fourth and eighth 

week. Here, the assessment is terminated if the overall penalty of the assessed individual is higher by a factor of 

d=2 compared to any of the solutions of the 𝐵𝑒𝑠𝑡 Pareto front at the given weeks. However, as there is no point in 

keeping solutions with lower fitness and higher costs but, on the other hand, solutions with lower fitness and lower 

costs could be interesting, the termination only applies if the costs of the assessed individual are higher or equal to 

the compared individual. The last termination checkpoint is set after week twelve. Here, the assessment is 

terminated if the overall penalty deviates by a factor of d=3 regardless of the solution’s costs. To avoid termination 

due to outliers, two consecutive weeks are checked within the termination checkpoints. 

By applying these criteria it is possible to early identify irrelevant staffing decisions (e.g. too many employees 

or only one employee type) and to concentrate on more promising solutions. The experiments showed that by 

implementing these three termination checkpoints, the performance already increased significantly. However, to 

identify subsequent deviations there could also be implemented more checkpoints during the entire fitness 

assessment. 

4 Computational Results and Discussion 

4.1 Experimental Setup 

The parameters of both GA were set based upon preliminary studies. For the upper-level GA, a population size of 

20, a generation number of 40 and n=10 restarts were chosen, with each restart having a random initial population. 

The lower-level GA was configured with a population size of 50 and a generation number of 80. On both levels 

the mutation rate was set to 1/𝑣, with 𝑣 being the number of bits of the encoded individual. The fitness at the 

upper-level was evaluated by Eq. (2a), for the fitness evaluation at the lower-level Eq. (3a) was used. 

The optimization software was written in Julia [5] and all experiments were executed on Windows 10 

machines with Intel Core i5-2400K processors (4 cores, maximum clock rate 3.1 GHz) and 4 GB RAM. By 

applying the termination criteria the computation time could be reduced by 50%, however, despite parallel 

computation within the fitness assessment at the upper-level, each restart of the upper-level algorithm took about 

twelve hours.  

For this experimental study, the following scenario is assumed. The call center has an initial staffing level 

based on the estimated demand for the year 2017 (see Table 3, solution 1). For the coming year, the company 

expects a 20% increase in demand. The estimated demand for both years (aggregated agent hours) is shown in Fig. 

1. Furthermore, Fig. 2 shows the demand fluctuations in hourly resolution for an exemplary day. The data used for 

the experimental study was created by using a demand generator relying on slightly modified real world data (see 

[13] for more details on the used demand generator). The demand for the other two skills is calculated based on 

staffing ratios. In this concrete case, one support for each four and one supervisor for each eight agents is required. 

Moreover, it is assumed that each employee has six weeks of holidays. As the generation of employees is 

done automatically during the optimization procedure, the holidays of each employee are assigned randomly on a 

weekly basis. However, while doing so it is assured that at maximum 30% of each skill type can be on holidays at 

the same time, the holidays are equally distributed over the whole year and there are two consecutive weeks of 

holidays during the summer period (June until September).  
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4.2 Results and Discussion 

For the purpose of demonstration and because the Pareto fronts tend to show similar behavior over multiple runs, 

the upper-level optimization algorithm was executed n=10 times, with each restart yielding a set of Pareto optimal 

solutions. The combined solutions of all Pareto fronts are shown in Fig. 3. Without the consideration of outliers 

and solutions that did not pass the termination criteria, a total of 134 possible staffing decisions with different 

combinations of costs and scheduling penalties were found (based on the demand for 2018). For further discussion, 

15 solutions along the new Pareto front were selected. A detailed description of the selected staffing decisions can 

be found in Table 3. 

 
 

 

  

8

10

12

14

16

18

20

22

10 15 20 25 30 35 40 45 50

S
ta

ff
in

g
 c

o
st

s

Scheduling penalty (thousands)

combined Pareto fronts selected solutions

0

100

200

300

400

500

600

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

A
g

e
n

t 
h

o
u

r
s

Weeks

demand 2017 demand 2018

Fig. 2 Exemplary demand of a  single day Fig. 1 Weekly demand of agent hours over the planning 

            horizon  

0

2

4

6

8

10

12

8 9 10 11 12 13 14 15 16 17

#
 a

g
en

ts

Hours

demand

Fig. 3 Possible staffing decisions (n=10 optimization runs) 



Integrated Staffing and Scheduling (MISTA 2017)  Julian Schulte, Maik Günther, Volker Nissen 

 

— 11 — 

 

T
a

b
le

 3
 S

ta
ff

in
g

 d
ec

is
io

n
s 

an
d

 c
o

rr
es

p
o

n
d

in
g

 s
ch

ed
u

li
n
g

 q
u

al
it

y
 

St
af

fi
n

g 
co

st
s 

 

1
3

.4
 

1
3

.4
 

2
0

.2
 

1
8

.7
 

1
8

.1
5

 

1
7

.6
5

 

1
6

.5
5

 

1
5

.8
 

1
4

.9
 

1
4

.6
5

 

1
3

.7
 

1
3

.1
 

1
2

.9
 

1
2

.4
 

1
1

.2
5

 

1
0

.6
5

 

9
 2

 

P
en

al
ty

 

Fl
ex

ti
m

e
 

4
,0

8
 

4
,9

4
2

 

2
,1

7
4

 

2
,6

6
 

2
,2

1
2

 

2
,2

6
 

2
,7

2
4

 

3
,0

5
6

 

2
,4

8
2

 

3
,0

9
2

 

2
,4

4
 

3
,1

3
 

3
,9

9
6

 

4
,8

4
2

 

5
,0

7
6

 

4
,6

5
8

 

1
4

,8
0

4
 

U
n

d
er

st
af

fi
n

g 

7
,4

5
1

 

1
0

,7
3

4
 

4
,9

4
2

 

5
,3

8
7

 

6
,0

3
6

 

6
,5

7
 

6
,2

3
1

 

7
,3

4
4

 

9
,2

5
1

 

8
,6

4
7

 

1
0

,8
1

1
 

1
0

,8
2

7
 

1
1

,5
0

5
 

1
2

,4
8

4
 

1
3

,4
6

3
 

1
4

,9
1

8
 

1
6

,8
3

9
 

O
ve

rs
ta

ff
in

g 

3
,5

 

2
,5

2
9

 

4
,9

9
1

 

4
,5

0
4

 

4
,2

5
9

 

3
,9

0
3

 

4
,4

0
8

 

3
,7

3
5

 

2
,9

 

3
,1

6
8

 

2
,6

1
 

2
,5

8
 

2
,3

9
3

 

2
,4

3
3

 

2
,5

4
2

 

2
,1

4
3

 

2
,2

8
4

 

Su
p

er
vi

so
r 

4
0

h
 

3
 

3
 

3
 

3
 

3
 

3
 

3
 

3
 

3
 

3
 

3
 

3
 

3
 

3
 

3
 

3
 

3
 

A
ge

n
t 

- 
Su

p
p

o
rt

 

2
0

 h
 

1
 

1
 

3
 

2
 

1
 

1
 

0
 

0
 

2
 

1
 

2
 

0
 

0
 

2
 

0
 

0
 

0
 

4
0

 h
 

1
 

1
 

7
 

4
 

6
 

7
 

1
 

3
 

3
 

1
 

3
 

1
 

2
 

1
 

0
 

2
 

0
 

Su
p

p
o

rt
 2
0

 h
 

1
 

1
 

1
 

2
 

0
 

0
 

3
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

1
 

1
 

2
 

4
0

 h
 

1
 

1
 

0
 

1
 

2
 

0
 

1
 

1
 

1
 

2
 

1
 

2
 

1
 

2
 

2
 

0
 

1
 

A
ge

n
t 2

0
 h

 

4
 

4
 

5
 

4
 

2
 

1
 

0
 

1
 

2
 

2
 

0
 

4
 

5
 

2
 

2
 

2
 

1
 

4
0

 h
 

3
 

3
 

1
 

3
 

2
 

3
 

8
 

6
 

3
 

5
 

3
 

3
 

2
 

2
 

3
 

2
 

2
 

So
lu

ti
o

n
 

 

1
 (

in
it

. 2
0

1
7

) 

2
 (

in
it

. 2
0

1
8

) 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0

 

1
1

 

1
2

 

1
3

 

1
4

 

1
5

 

1
6

 

1
7

 

   



Integrated Staffing and Scheduling (MISTA 2017)  Julian Schulte, Maik Günther, Volker Nissen 

 

— 12 — 

The first two solutions shown in Table 3 represent the initial staffing level, optimized with the demand for 

2017 and 2018. Solutions 3 to 17 represent the optimized staffing levels based on the demand for 2018. When 

looking at the results of solution 2, due to the rising demand and therefore an insufficient number of employees, 

the penalty for understaffing and flextime increased and the overstaffing penalty decreased (compared to solution 

1). The resulting scheduling quality of solution 2 now is comparable to the quality of solutions 11 to 13, which 

furthermore show approximately the same cost level. In case the company wants to retain its service level of 2017 

(considering the understaffing penalty of solution 1), the current workforce should be developed towards the 

staffing level of solution 8. Taking a more general look on the results, it can be noted that no solution below the 

cost level of 9.2 passed the termination criteria within the fitness assessment. The low costs can simply be explained 

by the insufficient staffing level, resulting in high understaffing and flextime penalties. Looking at the staffing 

decisions in Table 3 from bottom to top, it can be seen that the scheduling quality grows with an increasing number 

of employees and increasing contractual working hours, and, hence, rising staffing costs. Furthermore, when 

comparing solutions 8 and 7 with 6 to 3, an increased employment of cross-trained and part-time workers can be 

noticed yielding the highest scheduling quality. However, no solution was found above the cost level of 20.85. 

This may indicate that there is a point at which scheduling quality cannot be increased under the given staffing and 

scheduling policies. Thus, measures to further improve the scheduling quality could be, for example, the 

introduction of new contract types (e.g. contracts with a working time of 30 or 12 hours per week) or more flexible 

shift patterns to better compensate varying demand over the day (e.g. short 2h shifts).  

5 Conclusion and Future Research 

In this paper, a model for strategic long-term staffing was presented considering varying demand, different types 

of employees regarding skills and contractual working times as well as compensation of overtime due to flextime 

policies. For this purpose, an evolutionary bilevel algorithm with GA on both levels was applied, optimizing the 

staffing decision at the upper-level and simultaneously evaluating the resulting workforce structure by the creation 

of personnel schedules over a planning horizon of 52 weeks. This integrated staffing and scheduling approach was 

demonstrated by the example of the yearly workforce planning of a midsized call center. The computational results 

indicate that the proposed procedure could be used to support corporate decision making related to strategic 

workforce planning. Due to the nested structure and independent formulation of the staffing and the scheduling 

problem, both problems could generically be replaced. Therefore, the model is not limited to the considered call 

center problem but could be used for any other kind of (strategic) workforce planning involving personnel 

scheduling.  

However, an important limitation arises from the fact that the optimization problem at the lower-level only 

was executed once, which leads to noisy results. Thus, there is a risk of discarding a possibly good solution due to 

one “unlucky” optimization run at the lower level. Moreover, it is hard to compare solutions being close to each 

other (e.g. solutions 4 to 6). These issues could be solved by restarting the lower-level algorithm multiple times, 

which in turn will lead to a massive increase of computation time. As this is a general challenge when applying 

bilevel optimization, further research should be aimed at executing the bilevel algorithm more efficiently, e.g. by 

applying more precise termination criteria, using distributed computation or approximation of the lower-level 

model. Other opportunities for further research are seen in comparing the here proposed approach to the methods 

presented in Section 1 (e.g. regarding speed and quality) as well as the consideration of uncertainty and unplanned 

events during the optimization procedure, such as illness, fluctuation or infra-annual hiring of employees.  

As stated in Section 4.2, there may be the need not only to optimize staffing decisions, but also staffing and 

scheduling policies. The study presented in this paper was limited to optimize the staffing decision as input of the 

scheduling problem. However, further research should be conducted addressing the possibility to optimize all 

framework conditions related to personnel scheduling, such as shift types, overtime and break regulations or any 

other type of adjustable constraints. This could potentially increase the solution quality attainable, but would in 

turn raise the complexity of the optimization problem considerably. 
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