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Abstract
Two vertices v and w of a graph G are called a pendant pair if the maximal number of edge-disjoint
paths in G between them is precisely min{d(v), d(w)}, where d denotes the degree function. The
importance of pendant pairs stems from the fact that they are the key ingredient in one of the
simplest and most widely used algorithms for the minimum cut problem today.

Mader showed 1974 that every simple graph with minimum degree δ contains Ω(δ2) pendant
pairs; this is the best bound known so far. We improve this result by showing that every simple
graph G with minimum degree δ ≥ 5 or with edge-connectivity λ ≥ 4 or with vertex-connectivity
κ ≥ 3 contains in fact Ω(δ|V |) pendant pairs. We prove that this bound is tight from several
perspectives, and that Ω(δ|V |) pendant pairs can be computed efficiently, namely in linear time
when a Gomory-Hu tree is given. Our method utilizes a new cut tree representation of graphs.
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1 Introduction

The study of pendant pairs is motivated by the well-known, simple and widely used minimum
cut algorithm of Nagamochi and Ibaraki [11], which refines the work of Mader [8, 7] in the
early 70s, and was simplified by Stoer and Wagner [12] and Frank [3]. The key approach
of this algorithm is to iteratively contract a pendant pair of the input graph in near-linear
time by using maximal adjacency orderings (also known as maximum cardinality search [13]).
Having done that n−1 times, one can obtain a minimum cut by just considering the minimum
degree of all intermediate graphs. In a break-through result, Kawarabayashi and Thorup [6]
succeeded to give a near-linear time deterministic minimum cut algorithm for simple graphs,
and this was later made faster by Henzinger et al. [4]. Hence, the algorithm of Nagamochi
and Ibaraki is not the most efficient, but its simplicity is unmatched so far.

This motivates the following question: How many (distinct) pendant pairs does a graph
with a given minimum degree possess? If there are many and, additionally, these could be
computed efficiently, this would lead immediately to an improvement of the running time of
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the Nagamochi-Ibaraki algorithm. Here, we aim for the fundamental and natural question
of finding a good lower bound on the number of distinct pendant pairs in graphs with a
given minimum degree. We will mainly consider simple graphs, as these allow us to prove
strong lower bounds (we give an example that shows that all bounds for multigraphs must
be considerably weaker).

As early as 1973, and originally motivated by the structure of minimally k-edge-connected
graphs, Mader proved that every graph with minimum degree δ ≥ 1 contains at least one
pendant pair [8]. This holds also for the vertex-connectivity variant of pendant pairs, which
nowadays is most easily proven by using maximal adjacency orderings. Later, Mader improved
his result by showing that every simple graph with minimum degree δ contains Ω(δ2) pendant
pairs [9].

Our main result in this paper sets the graph-theoretical prerequisite that the algorithmic
approach described above of finding many pendant pairs might actually work out. We
improve Mader’s result by showing that every simple graph that satisfies δ ≥ 5 or λ ≥ 4 or
κ ≥ 3 contains Ω(δn) pendant pairs; this exhibits a dependency on n := |V | instead of δ,
which is usually much larger. We prove that this result is tight with respect to the order of
the bound and with respect to every assumption.

We show how to compute Ω(δn) pendant pairs from a Gomory-Hu tree in linear time.
Clearly, computing a Gomory-Hu tree in advance does not match the best running time
O(m+ n), m := |E|, for finding one pendant pair; however, we conjecture that it is actually
possible to compute ω(1) pendant pairs in linear time. An affirmative answer to this would
already imply a speed-up for the Nagamochi-Ibaraki-algorithm.

Our results utilize a new cut tree representation of graphs named pendant tree.

2 A Note on the History of Maximal Adjacency Orderings

Mader’s proof for the existence of one pendant pair relies strongly on [7, Lemma 1], which
in turn uses special orderings on the vertices. Interestingly, these orderings are maximal
adjacency orderings and this fact exhibits an apparently forgotten variant of them, which
existed long before they got 1984 their first name (maximum cardinality search [13]).

We are only aware of one place in literature where this is (briefly) mentioned: [10, p. 443].
Mader’s existential proof can in fact be made algorithmic. A direct comparison between the
old and the modern variant however shows that the modern maximal adjacency orderings are
nicer to describe, as they work on the original graph, while Mader iteratively moves edges in
the graph in order to represent the essential connectivity information on the already visited
vertex set with a clique.

3 Preliminaries

All graphs considered in this paper are non-empty, finite, unweighted and undirected unless
specified otherwise. Let G := (V,E) be a graph. Contracting a vertex subset X ⊆ V

identifies all vertices in X and deletes occurring self-loops (we do not require that X induces
a connected graph in G).

For non-empty and disjoint vertex subsets X,Y ⊂ V , let EG(X,Y ) denote the set of all
edges in G that have one endvertex in X and one endvertex in Y . Let further X := V −X,
dG(X,Y ) := |EG(X,Y )| and dG(X) := |EG(X,X)|; if X = {v} for some vertex v ∈ V , we
simply write EG(v, Y ), dG(v, Y ) and dG(v). A subset ∅ 6= X ⊂ V of a graph G is called a
cut of G. Let a cut X of G be trivial if |X| = 1 or |X| = 1. Let the length and size of a
path be the number of its edges and vertices, respectively. Let δ(G) := minv∈V dG(v) be the
minimum degree of G. For a vertex v ∈ G, let NG(v) be the set of neighbors of v in G.
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For two vertices v, w ∈ V , let λG(v, w) be the maximal number of edge-disjoint paths
between v and w in G. A minimum v-w-cut is a cut X that separates v and w and satisfies
dG(X) = λG(v, w). Two vertices v, w ∈ V are called k-edge-connected if λG(v, w) ≥ k. The
edge-connectivity λ(G) of G is the greatest integer such that every two distinct vertices are
λ(G)-edge-connected. Let κ(G) be the vertex-connectivity of G, i.e. the minimum number of
vertices U such that G− U is disconnected. We omit parentheses for single elements (like
vertices or edges) in set subtractions.

We call a pair {v, w} of vertices pendant if λG(v, w) = min{dG(v), dG(w)}. In order to
increase readability, we will omit subscripts whenever the graph is clear from the context.

4 The Pendant Tree

We propose a new cut tree, which can be seen as a refinement of Gomory-Hu trees. The
idea is to partition the vertex set such that each part consists only of vertices that are
pairwise pendant, and impose a tree structure on these vertex subsets such that edges in this
tree correspond to cuts in the graph that separate some non-pendant pair. For the sake of
notational clarity, we will call the vertices of such trees blocks.

For a tree T whose vertex set partitions V and an edge AB ∈ E(T ), let CAB be the union
of the blocks that are contained in the component of T −AB containing A, and symmetrically,
CBA = V − CAB. We will consider T as a tree with edge weights as follows. For an edge
AB ∈ E(T ), let c(AB) := dG(CAB) be the size of its corresponding edge-cut in G.

I Definition 1. A non-pendant-pair covering tree, or simply pendant tree, T of a graph
G = (V,E) is a tree whose vertex set partitions V such that
(i) every two distinct vertices in a common block of this partition are pendant,
(ii) for every edge AB ∈ E(T ), there are vertices a ∈ A and b ∈ B such that {a, b} is

non-pendant, and
(iii) for every edge AB ∈ E(T ), there are vertices a∗ ∈ A and b∗ ∈ B such that c(AB) =

λG(a∗, b∗).

Note that T is an auxiliary tree which is not obtained from G by contracting vertex
subsets. The following lemma allows us to find a non-pendant pair for every two adjacent
blocks of a pendant tree very efficiently.

I Lemma 2. Let AB be an edge of a pendant tree T and let amax and bmax be vertices in A
and B of maximum degrees, respectively. Then {amax, bmax} is non-pendant.

Proof. By Condition (ii) of Definition 1, there are vertices a ∈ A and b ∈ B such that
λ(a, b) < min{d(a), d(b)}. Since {a, amax} and {b, bmax} are pendant, i.e.

λ(a, amax) = min{d(a), d(amax)} = d(a)

and λ(b, bmax) = d(b), a minimum a-b-cut of size less than min{d(a), d(b)} can neither
separate a from amax nor b from bmax. Hence,

λ(amax, bmax) ≤ λ(a, b)
< min{d(a), d(b)}
≤ min{d(amax), d(bmax)}. J

Condition (iii) of pendant trees gives the following lemma.

ISAAC 2018
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I Lemma 3. Let AB be an edge of a pendant tree T and let amax be a vertex in A of
maximum degree. Then c(AB) < d(amax).

Proof. Let bmax be a vertex of maximum degree in B and let a∗ ∈ A and b∗ ∈ B be such
that c(AB) = λ(a∗, b∗) due to Condition (iii). By transitivity of the edge-connectivity λ, we
have

λ(amax, bmax) ≥ min{λ(amax, a∗), λ(a∗, b∗), λ(b∗, bmax)}
= min{d(a∗), λ(a∗, b∗), d(b∗)}
= λ(a∗, b∗)
= c(AB),

where the first equality follows from the fact that {amax, a∗} and {bmax, b∗} are pendant.
According to Lemma 2, λ(amax, bmax) < d(amax), which gives the claim. J

We will construct a pendant tree by contracting edges in a Gomory-Hu tree. We recall
that, given a graph G, a Gomory-Hu tree T of G is a tree on the vertex set V (G), such
that for every pair of vertices a 6= b in G, there is an edge e in the a-b-path in T with
that EG(VT (Ce), VT (Ce)) is a minimum a-b-cut in G, where Ce is a component obtained by
deleting e in T and we denote by VT (Ce) the set of vertices in G which are in the component
Ce. In particular, λG(a, b) = dG(VT (Ce)). Here we see a Gomory-Hu tree not a tree on the
vertex of G, but on the partition of V (G) in which every part is a singleton.

I Proposition 4. Given a Gomory-Hu tree of a graph G, a pendant tree of G can be computed
in linear time.

Proof. Let T be a Gomory-Hu tree of G. Throughout the algorithm we maintain that every
pair of distinct vertices in a block is pendant. We check iteratively for every edge AB in T ,
whether there is a non-pendant pair {a, b} with a ∈ A and b ∈ B. We contract AB in T and
set the new block as A ∪B if and only if there is no such non-pendant pair. We claim that
there is such a non-pendant pair if and only if min{dG(amax), dG(bmax)} > c(AB), where
amax and bmax are vertices in A and B with maximum degrees, respectively. The sufficiency
is clear (see also Lemma 2), and it suffices to show that if min{dG(amax), dG(bmax)} ≤ c(AB),
then {a, b} is pendant for all a ∈ A and b ∈ B.

Thus suppose min{dG(amax), dG(bmax)} ≤ c(AB). Without loss of generality, let
dG(amax) ≤ c(AB), which implies dG(a) ≤ c(AB) for all a ∈ A. Let a ∈ A and b ∈ B.
By the property of Gomory-Hu trees, there are vertices a∗ ∈ A and b∗ ∈ B such that
λG(a∗, b∗) = c(AB); in particular, dG(b∗) ≥ dG(a∗) = c(AB). Then {a, b} is pendant, since

λG(a, b) = min{λG(a, a∗), λG(a∗, b∗), λG(b∗, b)}
= min{dG(a), dG(a∗), c(AB), dG(b∗), dG(b)}
= min{dG(a), dG(b)}.

The first equality comes from the transitivity of local edge-connectivity, the second comes
from the fact that every vertex pair of a block is pendant, and the third holds, because
dG(b∗) ≥ dG(a∗) = c(AB) ≥ dG(a).

It is not hard to see that the algorithm has a linear running time. J

In particular, Proposition 4 implies that every graph has a pendant tree as it is known
that a Gomory-Hu tree always exists.
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The best known running time for a deterministic construction of a Gomory-Hu tree
is still based on the classical approach that applies n − 1 times the uncrossing technique
to find uncrossing cuts on the input graph, and hence in O(nθflow), where θflow is the
running time for a maximum flow subroutine (by Dinits’ algorithm [2, 5], θflow = O(n2/3m)).
Non-deterministically, Bhalgat et al. [1] showed that a Gomory-Hu tree of a simple un-
weighted graph can be constructed in expected running time Õ(nm), where the tilde hides
polylogarithmic factors.

Therefore, by our construction above, we conclude the following.

I Corollary 5. Given a simple graph G, a pendant tree of G can be computed deterministically
in running time O(n5/3m), and randomized in expected running time Õ(nm).

The next section gives several helpful lemmas that will be used in counting pendant pairs.

5 Large Blocks of Degree 1 and 2

For a tree T whose vertex set partitions V , let Vk be the set of blocks of T having degree k
in T and let V>k :=

⋃
k′>k Vk′ . We call the blocks in V1 leaf blocks. In T , the set V2 induces

a family of disjoint paths; we call each such path a 2-path. We will prove that the leaf blocks
of pendant trees as well as the blocks that are contained in 2-paths are large.

I Lemma 6. Let T be a pendant tree of a simple graph G. Then every leaf block A of T
satisfies |A| > δ(G).

Proof. Let p := |A| ≥ 1 and let B be the block adjacent to A in T . By Lemma 3, we have
maxv∈A d(v) > c(AB) ≥

∑
v∈A(d(v)− (p− 1)) ≥ maxv∈A d(v) + δ(p− 1)− p(p− 1), where

the last inequality singles out the maximum degree. Therefore, p > 1 and p > δ. J

Let amax be a vertex of maximal degree in a leaf block A with neighbor B. Since
c(AB) < d(amax), A must actually contain a vertex that has all its neighbors in A, as
otherwise each of the d(amax) incident edges of amax would contribute at least one edge to
the edge-cut, either directly or by an incident edge of the corresponding neighbor of amax.
This gives the following corollary of Lemma 6, which was first shown by Mader.

I Corollary 7 ([9]). Let T be a pendant tree of a simple graph G. Then every leaf block A
contains a vertex v with N(v) ⊆ A. Hence, every pair in {v} ∪N(v) is pendant.

This already implies that simple graphs contain
(
δ+1

2
)

= Ω(δ2) pendant pairs. Note that
Lemma 6 and Corollary 7 do not hold for graphs having parallel edges: for example, consider
a block A that consists of two vertices of degree δ, which are joined by δ − 1 parallel edges.
However, even if the graph is not simple, a leaf block A must always contain at least two
vertices due to Lemma 3.

I Corollary 8. Every leaf block of a pendant tree of a graph contains at least two vertices.

In simple graphs, we thus know that leaf blocks give us a large number of pendant pairs.
Since T is a tree, the number of leaf blocks is completely determined by the number of
blocks of degree at least 3, namely |V1| =

∑
A∈V>2

(dT (A)− 2) + 2. Thus, in order to prove
a better lower bound on the number of pendant pairs, we have to consider the case that
there are many small blocks of size o(δ) contained in 2-paths. The following two lemmas
prove that (i) for every two adjacent blocks A and B in a 2-path with |A|+ |B| > 2, we have
|A|+ |B| ≥ δ − 1 = Ω(δ) and (ii) if δ ≥ 5 and P is a subpath of a 2-path such that all blocks

ISAAC 2018



38:6 A Cut Tree Representation for Pendant Pairs

of P are singletons, then P contains at most two blocks. This will be used later to show
that the bad situation of many small blocks of size o(δ) can actually not occur. We omit the
proofs in this extended abstract.

I Lemma 9. Let T be a pendant tree of a simple graph G. Let AB be an edge in T with
A,B ∈ V2. If |A|+ |B| > 2, |A|+ |B| ≥ δ(G)− 1.

I Lemma 10. Let T be a pendant tree of a simple graph G with |V (T )| > 1. Let A = {vA} be
a block in Vr with neighborhood B1, . . . , Br ∈ V2 in T such that |A| = |B1| = · · · = |Br| = 1.
Let B′i 6= A be the block that is adjacent to Bi in T . Then d(vA) ≤ r2 − 2γ, where γ :=∑

1≤i<j≤r d(CB′
i
Bi
, CB′

j
Bj

) is the number of cross-edges. In particular, we have δ(G) ≤ r2

and λ(G) < r2. Moreover, if r = 2, κ(G) ≤ 2.

Setting r = 2 in Lemma 10 gives the following corollary for adjacent blocks of 2-paths.
Note that the proof of Lemma 10 allows to weaken the conditions of this corollary further if
the number of cross-edges is large.

I Corollary 11. Let G be simple and let AB and BC be edges in a 2-path of T . If δ(G) ≥ 5
or λ(G) ≥ 4 or κ(G) ≥ 3, then |A|+ |B|+ |C| > 3.

For every block A ∈ V2, let A be in V in2 if all of its neighbors are also in V2; otherwise,
let A be in V out2 . The blocks in V out2 are exactly the endblocks of 2-paths.

I Lemma 12. Let T be a tree. If |V (T )| > 1, then |V>2| ≤ |V1| − 2 and |V out2 | ≤ 4|V1| − 6.

Now we are ready to show that the blocks of 2-paths contain many vertices if δ(G) ≥ 5
or λ(G) ≥ 4 or κ(G) ≥ 3.

I Lemma 13. Let T be a pendant tree of a simple graph G satisfying δ(G) ≥ 5 or λ(G) ≥ 4
or κ(G) ≥ 3. Let P be a 2-path of T . Then∑

S∈V (P )

|S| ≥ (|V (P )| − 2)max{4, δ(G)}
3 + 2.

We will use these lemmas to count pendant pairs in the next section.

6 Many Pendant Pairs

We will use the results on large blocks of the previous section to obtain our main theorems,
Theorems 15 and 16. While the latter shows the existence of Ω(δn) pendant pairs, as
mentioned in the introduction, the former gives the slightly weaker bound Ω(n), but in return
counts only pendant pairs of a special type.

I Definition 14. Let a set F of pendant pairs be dependent if V contains at least three distinct
vertices v1, . . . , vk such that {vi, vi+1} ∈ F for all i = 1, . . . , k, where we set vk+1 := v1;
otherwise, F is called independent.

Counting only independent pendant pairs allows us to deduce statements about the
number of vertices in the graph that is obtained from contracting these pairs (these are
not true for arbitrary sets of pendant pairs): Theorem 15 will prove for δ ≥ 5 that there
are at least δ

δ+12n ≥
5

17n = Ω(n) such independent pendant pairs. We will show that the
contractions imply not only an additive decrease of the number of vertices by at least 5

17n,
but also a multiplicative decrease by the factor δ (i.e. the number of vertices left is O(n/δ)).
We omit the proof in this extended abstract.
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I Theorem 15. Let G be a simple graph that satisfies δ(G) ≥ 5 or λ(G) ≥ 4 or κ(G) ≥ 3.
Let T be a pendant tree of G. Then G has at least δ

δ+12n = Ω(n) independent pendant pairs
each of which is in some block of T and whose pairwise contraction leaves O(n/δ) vertices in
the graph.

For arbitrary pendant pairs not requiring independence, we improve the lower bound Ω(n)
of Theorem 15 to Ω(δn) in the following theorem. This is done by grouping the blocks more
precisely. The main idea is that the blocks are of average size Ω(δ) and therefore contain
Ω(δ2) pendant pairs on average. As the number of blocks is O(n/δ), we thus expect that the
number of pendant pairs is Ω(nδ · δ

2) = Ω(δn).

I Theorem 16. Let G be a simple graph that satisfies δ(G) ≥ 5 or λ(G) ≥ 4 or κ(G) ≥ 3.
Then G contains at least 1

30δn = Ω(δn) pendant pairs.

Proof. Note that n > δ ≥ 3. If G does not contain a non-pendant pair, there are
(
n
2
)
≥ δn

30
pendant pairs in G. Otherwise, G contains a non-pendant pair. Let T be a pendant tree of
G; then |V (T )| ≥ 2.

For each 2-path P with |V (P )| ≥ 3, let P ∗ be a subpath obtained from P by deleting at
most two endblocks (i.e. blocks in P ∩ V out2 ) of P such that |V (P ∗)| is a multiple of 3. Then,
we split P ∗ into subpaths P ∗1 , . . . , P ∗|V (P∗)|/3, each of size 3. Now, let MP be a collection of
blocks that contains exactly one block Si ∈ V (P ∗i ) for every i = 1, . . . , |V (P∗)|

3 , such that Si
is of maximum size amongst other blocks in V (P ∗i ). By Corollary 11 and Lemma 9, every
block S ∈MP is of size at least max{2, (δ − 1)/2}.

Let V ∗2 := V2 −
⋃

2-path P,|V (P )|≥3 V (P ∗) ⊆ V out2 . For every leaf block S ∈ V1, let YS
be a collection of blocks that consists of S, at most four blocks from V ∗2 and at most one
block from V>2 such that the collections YS (S ∈ V1) form a partition of V1 ∪ V ∗2 ∪ V>2; such
allocation exists as |V ∗2 | ≤ |V out2 | ≤ 4|V1| and |V>2| ≤ |V1| (Lemma 12). For every S ∈ V1,
let DS be a block in YS of maximum size. Then, by Lemma 6, |DS | ≥ |S| > δ.

Now we can count the number of pendant pairs to obtain the desired lower bound, as the
blocks have average size Ω(δ). The number of pendant pairs in G is at least

∑
S∈V (T )

(
|S|
2

)

≥
∑
S∈V1

|DS |(|DS | − 1)
2 +

∑
2-path P, |V (P )|≥3

∑
S∈MP

|S|(|S| − 1)
2

≥ δ

2
∑
S∈V1

|DS |+
δ

10
∑

2-path P, |V (P )|≥3

∑
S∈MP

|S|

(as |DS | > δ, |S| ≥ max{2, δ−1
2 } and δ ≥ 3)

≥ δ

2 ·
1
6

∑
S∈V1∪V ∗2 ∪V>2

|S|+ δ

10 ·
1
3

∑
S∈V2−V ∗2

|S|

≥ 1
30δn = Ω(δn). J

We remark that the constants 1/12 and 1/30 in the proofs of the bounds of Theorems 15
and 16 can be improved for larger δ.

ISAAC 2018
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. . .

Figure 1 The bone graph G, whose only pendant pairs are the ones contained in the two K5

(those form the only leaf blocks of the pendant pair tree). Hence, G has exactly 20 pendant pairs.

7 Tightness

Clearly, any graph G contains at most n− 1 independent pendant pairs, hence the order of
the lower bound in Theorem 15 is best possible. The order of the number of vertices left
after contraction in Theorem 15 and that of the number of pendant pairs in Theorem 16 are
also tight; consider the unions of n

δ+1 many disjoint cliques Kδ+1.
Each of the conditions δ ≥ 5, λ ≥ 4 and κ ≥ 3 in Theorems 15 and 16 is tight, as the

graph in Figure 1 can be arbitrarily large and satisfies δ = 4, λ = 3 and κ = 2 but has
only a constant number of pendant pairs. Also the simpleness condition in both results is
indispensable: Consider the path graph on n vertices whose two end edges have multiplicity
δ and all other edges have multiplicity δ/2. This graph has precisely 2 pendant pairs, each
at one of its ends.
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