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Abstract
We investigate the decidability of logical aspects of graphs that arise as Cayley-graphs of the so-
called queue monoids. These monoids model the behavior of the classical (reliable) fifo-queues.
We answer a question raised by Huschenbett, Kuske, and Zetzsche and prove the decidability of
the first-order theory of these graphs with the help of an – at least for the authors – new com-
bination of the well-known method from Ferrante and Rackoff and an automata-based approach.
On the other hand, we prove that the monadic second-order of the queue monoid’s Cayley-graph
is undecidable.

2012 ACM Subject Classification Theory of computation Ñ Logic, Theory of computation Ñ
Models of computation, Information systems Ñ Data structures

Keywords and phrases Queues, Transformation Monoid, Cayley-Graph, Logic, First-Order The-
ory, MSO Theory, Model Checking

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.9

1 Introduction

Data structures are one of the most important concepts in nearly all areas of computer
science. Important data structures are, e.g., finite memories, counters, and (theoretically)
infinite Turing-tapes. But the most fundamental ones are stacks and queues. And although
these two data structures look very similar as they have got the same set of operations on
them (i.e. writing and reading of a letter), they differ from the computability’s point of view:
if we equip finite automata with both data structures, then the ones with stacks compute
exactly the context-free languages (these are the well-known pushdown automata). But
if we equip a finite automaton with queues (in literature they are called queue automata,
communicating automata, or channel systems) then we obtain a Turing-complete computation
model (cf. [2, 3]). This strong model can be weakened with various extensions, e.g., if the
queue is allowed to forget some of its contents (cf. [1, 5, 22]) or if letters of low priority can
be superseded by letters with higher priority (cf. [12]).

One possible approach to analyze the difference of the behavior of the data structures is
to model them as a monoid of transformations. Then, finite memories induce finite monoids,
counters induce the integers with addition, stacks induce the polycyclic monoids (cf. [14,27]),

1 The presented work was conducted while the first author was affiliated with the Technische Universität
Ilmenau.
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and queues induce the so-called queue monoids which were first introduced in [13]. And
while the transformation monoids of the other data structures are very well-understood, we
still do not know much about the queue monoid. Further results on the queue monoid (with
and without lossiness) can be found in [17, 18]. Here, we only consider the reliable queue
monoids. Concretely, we study the Cayley-graph of this monoid.

Cayley-graphs are a natural translation of finitely generated groups and monoids into
graph theory and is a fundamental tool to handle these algebraic constructs in combinatorics,
topology, and automata theory. Concretely, these are labeled, directed graphs with labels
from a fixed generating set Γ of the monoid M. Thereby, the elements from M are the
graph’s nodes and there is an a-labeled edge (where a P Γ ) from x P M to y P M iff xa “ y

holds in M. For groups, we already know many results on their Cayley-graphs. For example,
the group’s Cayley-graph has decidable first-order theory if, and only if, its existential
first-order theory is decidable and if, and only if, the group’s word problem is decidable [19].
Moreover, a group’s Cayley-graph has decidable monadic second-order theory if, and only if,
the group is context-free (that is, if the group’s word problem is context-free) [19,23]. Besides
these results, Kharlampovich et al. considered in [15] so-called Cayley-graph automatic
groups (these are the groups having an automatic Cayley-graph in the sense of [16]) which
links to the rich theory of automatic structures.

Unfortunately, there are not that many studies on Cayley-graphs of monoids. In particular,
there are monoids with decidable word problem but undecidable existential first-order theory
of their Cayley-graph [20, 24]. For finite monoids the Cayley-graphs are finite and, hence,
the first- and second-order theories are complete for polynomial space and exponential space,
respectively [10]. For polycyclic monoids the Cayley-graphs are automatic, complete |A|-ary
trees (where A is the underlying alphabet) with an additional node every other node is
connected with (this is the zero element resp. error state). Therefore, due to [6, 20] the
Cayley-graphs monadic second-order theory is decidable (the first-order theory is even in
2EXPSPACE by [21]).

In this paper we want to consider logics on the Cayley-graph of the queue monoid.
Concretely, we will see that this graph’s first-order theory is decidable by giving a primitive
recursive (but non-elementary) algorithm which combines two well-known methods from
model theory in a (at least for the authors) new way: the method of Ferrante and Rackoff [8]
and an automata-based approach. This gives an answer on a question raised by Huschenbett,
Kuske, and Zetzsche [13]. There, they conjectured the undecidability of its first-order logic
implying that the graph is not automatic in the sense of [16]. Moreover, we will prove the
undecidability of the monadic second-order theory with the help of a well-known result from
Seese [28].

2 Preliminaries

Let A be an alphabet. We use ĺ to denote the prefix-relation and Ď for the suffix-relation
on A˚. If u “ vw we write v´1u “ w and uw´1 “ v. Thereby, v is the complementary prefix
of w wrt. u and w the complementary suffix of v wrt. u. For u, v P A˚ let u[ v denote the
largest suffix of u that is also a prefix of v.

For m,n, r P N we write m “r n iff m “ n or m,n ą r. The function exprpnq is
inductively defined by exp0pnq “ n and expr`1pnq “ 2exprpnq.
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Logic on Graphs and Words

Let A be a finite set of labels. An edge-labeled graph is a tuple G “ pV G, pEGa qaPAq where V is
the set of vertices and EGa Ď V ˆV is the set of a-labeled edges. A word-structure over A is a
tuple W “ pt0, . . . , n´1u,ďW , pPWa qaPAq where ďW is the usual order on t0, . . . , n´1u, and
pPWa qaPA is a partition of t0, . . . , n´ 1u (some of the sets PWa may be empty). Whenever we
use logic to describe properties of a word w then the formula is evaluated on the corresponding
word structure W .

Let τ “ tR1, . . . , Rm, c1, . . . , cnu where Ri is a relation symbol of arity ri and cj is a
constant symbol. First-order formulas (over the vocabulary τ) are build up from variables
and constant symbols txi | i P NuYtc1, . . . , cnu, the edge relation symbols tR1, . . . , Rmu, the
equality symbol “, the Boolean connectives t ,_,^,Ñu, quantifiers t@, Du, and the bracket
symbols tp, qu. We write G |ù ϕ to denote that the formula ϕ is satisfied by the structure G.
The quantifier rank qrpϕq of a formula ϕ is the maximal nesting depth of quantifiers within ϕ.
Two structures G and H are r-equivalent (denoted G ”r H) if they cannot be distinguished
by any formula of quantifier rank ď r. For a structure G and two tuples ~p, ~q P pV Gqm we
write ~p ”Gr ~q or say that ~p and ~q are r-equivalent in G whenever G |ù ϕp~pq ô G |ù ϕp~qq for
all first-order formulas ϕ with m free variables and quantifier rank at most r. For all the
above notations we adopt the convention that we omit superscripts whenever this should not
lead to any confusion. For instance we write ~p ”r ~q when the underlying structure G is clear
from the context.

The r-type of a structure G is the set of all first-order sentences ϕ of quantifier rank at
most r such that G |ù ϕ. It is well known that there are up to equivalence only finitely many
sentences of quantifier rank at most r. Hence the r-type of a structure can be characterized
by a sentence, which has also quantifier rank r.

Ehrenfeucht-Fraïssé-relations (resp. EF-relations) for a graph G “ pV, pEaqaPAq are a
system pErmqr,mPN where Erm is an equivalence relation on V m and the following is true for
all r,m P N and ~p, ~q P V m:

If pp1, . . . , pmqE0
mpq1, . . . , qmq then the mapping pi ÞÑ qi is a partial isomorphism, that is

pi “ pj ô qi “ qj and ppi, pjq P Ea ô pqi, qjq P Ea for all 1 ď i, j ď m and all a P A.
If ~pEr`1

m ~q then for every p P V there exists a q P V such that p~p, pqErm`1p~q, qq.

Ehrenfeucht-Fraïssé-relations are useful to identify r-equivalent tuples in a graph. This is
formalized in the following theorem.

I Theorem 2.1 ([7, 9]). Let G be a graph, pErmqr,mPN Ehrenfeucht-Fraïssé-relations for G,
and ~p, ~q m-tuples of nodes from G. If ~pErm~q then ~p ”r ~q.

3 Queue Monoid and its Cayley-Graph

Definition of the Monoid

The queue monoid models the behavior of a (reliable) fifo-queue whose entries come from
an alphabet A. Consequently, the state of a queue is a word from A˚. The basic actions
of our queue are writing of the symbol a P A of the queue (denoted by a) and reading the
symbol a P A from the queue (denoted by a). Thereby, A is a disjoint copy of A containing
all reading actions a and Σ :“ AZA is the set of all basic actions. To simplify notation, for
a word u “ a1a2 . . . an P A

˚ we write u for the word a1 a2 . . . an.
Formally, the action a P A appends the letter a to the state of the queue and the action

a P A tries to cancel the letter a from the beginning of the current state of the queue.
Thereby, if the state does not start with this symbol, the queue will end up in an error state

FSTTCS 2018
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which we denote by K. Note that in contrast to (partially) lossy queues which we considered
in [17,18], these queues cannot forget any part of their content. Hence, these ideas lead to
the following definition:

I Definition 3.1. Let K R A˚. The function ˝ : pA˚ Y tKuq ˆΣ˚ Ñ pA˚ Y tKuq is defined
for each s P A˚, a, b P A, and u P Σ˚ as follows:
(1) s ˝ ε “ s

(2) s ˝ au “ sa ˝ u

(3) bs ˝ au “
#

s ˝ u if a “ b

K otherwise
(4) ε ˝ au “ K ˝ u “ K

With the help of this function we may now identify sequences of actions that are acting
equally. This is finally used to define the monoid of queue actions.

I Definition 3.2. Let u, v P Σ˚. Then u and v act equally (denoted by u ” v) if s˝ u “ s˝ v

holds for each s P A˚. Since s ˝ uv “ ps ˝ uq ˝ v, the resulting relation ” is a congruence on
the free monoid Σ. Hence, the quotient QpAq :“ Σ˚{” is a monoid which we call the monoid
of queue actions or for short queue monoid. The neutral element of QpAq is rεs” “ tεu,
which we will denote simply by ε.

Note that the queue monoids QpAq for alphabets A of different size are not isomorphic.
Though, all of the following results hold for any alphabet A with |A| ě 2. Hence, we may fix
an arbitrary alphabet A from now on and write Q instead of QpAq.
I Remark. Let A “ tau be a singleton. Then a queue on this alphabet acts like a partially
blind counter since an ˝ a “ an`1 and an`1 ˝ a “ an. In other words, Qptauq is the bicyclic
semigroup.

Basic Properties

Now, we want to recall some basic properties considering the equivalence relation ”. The
first important fact expresses the equivalence in terms of some commutations of write and
read actions under certain contexts.

I Theorem 3.3 ([13, Theorem 4.3]). The equivalence relation ” is the least congruence on
the free monoid Σ˚ satisfying the following equations for all a, b P A:
(1) ab ” ba if a ‰ b

(2) aab ” aab

(3) baa ” baa J

A very frequently used notation is the following: the projections to write and read actions,
resp., are defined as wrt, rd : Σ˚ Ñ A˚ by wrtpaq “ rdpaq “ a and wrtpaq “ rdpaq “ ε for
all a P A. In other words, wrtpuq can be derived from u by deletion of all read actions and
rdpuq can be obtained from u by deletion of all the write actions and by suppression of the
overlines. Due to Theorem 3.3 all words contained in a single equivalence class of ” have
the same projections. Hence we use them for equivalence classes as well. Though, equality
of these projections of two words does not imply equivalence of these words. For example,
u “ aa and v “ aa have the same projections wrtpuq “ rdpuq “ a “ wrtpvq “ rdpvq but are
not equivalent since we have

ε ˝ aa “ ε ‰ K “ ε ˝ aa .
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The non-equivalence of the two words above is very easy to prove. Also (non-)equivalence
of two arbitrary words is decidable in polynomial time: for this purpose we compute normal
forms of the equivalence classes of ”. We do this by ordering the equations from Theorem 3.3
from left to right resulting in a terminating and confluent semi-Thue system R [13, Lemma 4.1].
Then, for any word u P Σ˚ there is a unique, irreducible word nf puq with uÑ˚ nf puq, the
so-called normal form of u resp. of its equivalence class rus” . In this word nf puq the read
actions from u are moved to the left as far as the equations from above allow.

I Example 3.4. Let a, b P A with a ‰ b and u “ abbab. Then we have

abbab
p1q
ÝÝÑ ababb

p1q
ÝÝÑ aabbb

p3q
ÝÝÑ aabbb .

Since we cannot apply any rule from Theorem 3.3 anymore, we have nf puq “ aabbb.

From the definition of R we obtain that a word is in normal form if it starts with a
sequence of read operations followed by an alternating sequence of write and read actions,
where all of the read actions a appear straight behind the write action a. Finally, the normal
form ends with a sequence of write actions. Concretely, the set of all normal forms is

NF :“ tnf puq |u P Σ˚u “ A
˚
taa | a P Au˚A˚ .

Let u P Σ˚. Then the normal form nf puq is uniquely defined by three words u1, u2, u3 P A
˚

such that nf puq “ u1a1a1 . . . ananu3 where u2 “ a1 . . . an. Thereby, we denote the word u1
by λpuq, the word u2 by µpuq, and u3 by %puq. Hence, we can define the characteristics of u
(rus” , resp.) by the triple χpuq :“ pλpuq, µpuq, %puqq. Hence, from these characteristics χpuq
we can obtain the projections of u on its write and read actions as well: wrtpuq “ µpuq%puq

and rdpuq “ λpuqµpuq.
From now on, we will use these characteristics to represent the elements of Q. In

other words, we may understand Q as a triple of words (i.e., pA˚q3) with a special type
of concatenation. The concatenation of any transformation u P Σ˚ with a single letter is
described in the lemma below.

I Lemma 3.5. Let u P Σ˚ and a P A. Then we have

χpuaq “ pλpuq, µpuq, %puqaq and χpuaq “ prdpuqas´1, s, s´1wrtpuqq

where s “ µpuqa[ wrtpuq.

Iterating Lemma 3.5 we obtain the following Theorem:

I Theorem 3.6 ([13, Theorem 5.3]). Let u, v P Σ˚. Then χpuvq “ prdpuvqs´1, s, s´1wrtpuvqq
where s “ µpuqrdpvq [ wrtpuqµpvq. J

In other words, the multiplication of two words u, v P Σ˚ can be understood as follows:
at first we move the read actions from rdpvq to the left such that each of its letters is directly
preceded by exactly one write action. If this is not possible (because λpvq is longer than
%puq) we move the letters from µpuqλpvq to the left until there is an alternating word of
write and read actions. Now, if there is an infix ab with a ‰ b all of these read actions move
one position to the left. We iterate this last step until there is no such infix. It is easy to
see, that the new alternating word contains equal subsequences of write and read actions,
respectively. Thereby, the read actions are the longest suffix of µpuqrdpvq and the write
actions the longest prefix of wrtpuqµpvq such that the equality of these subsequences holds
(this is µpuqrdpvq [ wrtpuqµpvq).

FSTTCS 2018
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The Monoid’s Cayley-Graph

In this subsection we first recall the definition of Cayley-graphs for arbitrary, finitely generated
monoids. Afterwards, we give some common properties as well as some special characteristics
of the queue monoid’s Cayley-graph.

I Definition 3.7. Let M be a monoid generated by a finite set Γ Ď M. The (right)
Cayley-graph of M is the edge-labeled, directed graph CpM, Γ q :“ pM, pEaqaPΓ q with
Ea “ tpx, yq P M | y “ xau for each a P Γ .

Similar to the right Cayley-graph, we may define the left Cayley-graph of M as the
edge-labeled, directed graph LCpM, Γ q “ pM, pFaqaPΓ q with Fa “ tpx, yq P M | y “ axu for
all a P Γ .
I Remark. There is a strong relation between left and right Cayley-graphs of a monoid
and Green’s relations which are first introduced and studied in [11]. Recall that xRy iff
xM “ yM for every x, y P M and, similarly, xLy iff Mx “ My. Then by [25, Proposition
V.1.1] we have xRy (xLy) if, and only if, x is strongly connected to y in CpM, Γ q (LCpM, Γ q,
resp.).

The concrete shape of the Cayley-graph of a monoid heavily depends on the chosen
set of generators. For example, t´1, 1u and t´2, 3u are generating sets of pZ,`q, but the
resulting Cayley-graphs are not isomorphic (even if we remove the labels). Though, the
chosen generating set has no influence on decidability and complexity of the FO and MSO
theory of the Cayley-graph since the both problems are logspace reducible on each other
(which we denote by «log):

I Proposition 3.8 ([20, Proposition 3.1]). Let Γ1 and Γ2 be two finite generating sets of the
monoid M. Then
(1) FOThpCpM, Γ1qq «log FOThpCpM, Γ2qq and
(2) MSOThpCpM, Γ1qq «log MSOThpCpM, Γ2qq. J

From now on we only consider the Cayley-graph of the queue monoid Q. To simplify
notation we write C instead of CpQ, Σq and LC instead of LCpQ, Σq. First we prove some
properties of C and LC.

I Proposition 3.9. The following statements hold:
(1) FOThpCq «log FOThpLCq and MSOThpCq «log MSOThpLCq.
(2) C is an acyclic graph with root ε.
(3) C has unbounded (in-)degree.

Proof. At first, we prove (1). Let the duality function δ : Σ˚ Ñ Σ˚ be defined as follows:

δpεq “ ε, δpauq “ δpuqa , and δpauq “ δpuqa

for all u P Σ˚ and a P A. In other words, δ reverses the order of the actions and inverts writing
and reading of a letter a. From [13, Proposition 3.4] we know u ” v iff δpuq ” δpvq. Hence,
δ is an anti-morphism on Q and pp, qq P Eα iff pδppq, δpqqq P Fδpαq for all p, q P Q and α P Σ.
Let ϕ P FOrpEαqαPΣs (ϕ P MSOrpEαqαPΣs, resp.). We construct ϕ1 by replacing any atom
“Eαpx, yq” in ϕ by “Fδpαqpx, yq”. Then C |ù ϕpq1, . . . , qkq ðñ LC |ù ϕ1pδpq1q, . . . , δpqkqq for
any q1, . . . , qk P Q. In particular, ϕ P FOThpCq iff ϕ1 P FOThpLCq (resp. ϕ P MSOThpCq iff
ϕ1 P MSOThpLCq). Finally, the converse reduction is symmetric to the one described above.

Now, we prove (2). Due to [13, Corollary 4.7] we have pRq iff p “ q for all p, q P Q. Then,
by the remark above p, q P Q are strongly connected iff p “ q, i.e., there are no cycles in C.
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b ba ba2 ban
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b b b b

b b b b

b b b b

Figure 1 C restricted to the nodes reachable by a- and b-edges, only.

Next, to prove (3) let n P N and a, b P A with a ‰ b. Set wk “ akpaaqn´kak for any
0 ď k ď n. Then wk ” w` (i.e. rwks “ rw`s) iff k “ ` for any 0 ď k, ` ď n. By Theorem 3.6
we have χpwkbq “ panb, ε, anq, i.e. wkb ” w`b for any 0 ď k, ` ď n. Hence, we have
prwks, ranba

nsq P Eb for all 0 ď k ď n, i.e., the node ranbans has in-degree ą n. J

By Gn we denote the nˆ n-grid for n P N. This is an undirected graph with n2 many
nodes which we denote by vi,j for any 1 ď i, j ď n. Thereby, we have an edge between vi,j
and vk,` if, and only if, |j ´ `| ` |i ´ k| “ 1 holds. Additionally, for a Γ -labeled, directed
graph G “ pV, pEaqaPΓ q we denote the unlabeled and undirected version by udpGq “ pV,Eq.
Here, we have an edge pv, wq P E if, and only if, there is an a P Γ such that pv, wq P Ea or
pw, vq P Ea. Then, in udpCq we can find Gn for any n P N:

I Proposition 3.10. Gn is an induced subgraph of udpCq for any n P N.

Proof. Let a, b P A be distinct. Then the submonoid M of Q generated by a and b is the free
commutative monoid on ta, bu by Theorem 3.3(1). Its Cayley-graph CpM, ta, buq is an infinite
grid with labeled, directed edges. Then, Gn is an induced subgraph of udpCpM, ta, buqq.
Since in C there are no edges with labels other than a or b between the nodes from M,
udpCpM, ta, buqq is an induced subgraph of udpCq as well implying our claim. J

With the help of a famous result from Seese (cf. [28]), we may now prove the undecidability
of the monadic second-order theory of the queue monoid’s Cayley-graph.

I Corollary 3.11. MSOThpCq is undecidable.

Proof. Due to [26] each planar graph is a minor of some grid Gn. Since each Gn is an
induced subgraph of udpCq by Proposition 3.10, each planar graph is minor of an induced
subgraph of udpCq. Hence, by [28, Theorem 5] MSOThpudpCqq is undecidable. Since udpCq is
first-order interpretable in C, MSOThpCq is undecidable as well. J

4 Combinatorics on Words

Before diving into the proof of the Cayley-graph’s first-order theory we have to prove some
combinatorial statements concerning words.

Let prefrpuq denote the maximal prefix of u of length at most r. In a first lemma we
prove that the complementary prefix and suffix of u resp. v wrt. u[ v can be shortened to
words of length at most 2r having the same prefixes and suffixes. In terms of C’s first-order
theory we only have to consider words u P Σ˚ having “short” λpuq and %puq.

FSTTCS 2018
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I Lemma 4.1. Let r P N and u, v, w P A˚ with uw [ wv “ w. Then there are words u1, v1
of length ď 2r such that

sufrpuwq “ sufrpu1wq,
sufrpwvq “ sufrpwv1q,
prefrpwvq “ prefrpwv1q, and
u1w [ wv1 “ w.

Proof. Set u1 “ sufrpuq. Additionally, if |v| ď 2r set v1 :“ v, and otherwise, set v1 :“
prefrpvq sufrpvq. Then the first three equations are obviously satisfied. Now assume u1w [
wv1 ‰ w, i.e., there is w1 P A˚ with |w1| ą |w|, w1 ĺ wv1, and w1 Ď u1w. Since |u1w| ď r`|w|

we have w1 ĺ w prefrpvq ĺ wv. Additionally, we have w1 Ď u1w Ď uw implying |uw [ wv| ě
|w1| ą |w|. This is a contradiction to the definition of w. J

I Remark. The condition uw[wv “ w in Lemma 4.1 cannot be simplified to u[ v “ ε. For
example, let u “ v “ a and w “ baa. Then only the first equation is satisfied.

A period of a word u is a word v such that u ĺ vω. Obviously every word u has a unique
smallest period, which we denote by

?
u. The left-exponent of u ‰ ε in v is the largest number

n such that v “ unw, and it is denoted by lexppu, vq. The right-remainder, v mod u, of v
with respect to u is defined as pulexppu,vqq´1v, that is the unique w such that v “ ulexppu,vqw.
In particular we have v “

?
v

lexpp
?
v,vq
pv mod

?
vq for every v P A˚. A word u is primitive

if there is no v with |v| ă |u| and u “ vn for some n P N. For v, w P A˚ let v∆w “ py, zq,
where y, z are minimal such that there exists an x with v “ xy and w “ xz. For ~v, ~w P pA˚qk
let ~v∆~w “ pv1∆w1, . . . , vk∆wkq P ppA˚q2qk and |~w|–

řk
i“1 |wi|.

I Definition 4.2. Let u P A˚ be a word. A word v P A˚ is a border of u (denoted by vă
Ďu) if

v ĺ u and v Ď u. A border-decomposition of u is a sequence of words ε “ u0, u1, . . . , un “ u

such that for all 0 ď i ă n it holds that ui ă
Ĺ ui`1. A border-decomposition u0, u1, . . . , un is

complete if there is no 1 ď i ă n and v P A˚ with ui ă
Ĺ v

ă
Ĺ ui`1.

Hence, a complete border-decomposition of u P A˚ is the sequence of all borders of u
ordered by word length. So, it is easy to observe that each word u P A˚ has exactly one
complete border-decomposition.

I Example 4.3. The complete border-decomposition of ababa is pε, a, aba, ababaq.

Let u P Σ˚ be any element from the C and pu0, . . . , unq be the complete border-
decomposition of rdpuq [ wrtpuq. Then the characteristics prdpuqu´1

i , ui, u
´1
i wrtpuqq describe

all the words having the same projections to write and read actions, resp., as u. In the
decidability proof of FOThpCq we consider these words since these are all close to each other
in C.

From the complete border-decomposition of a word w we derive the so called skeleton
of w containing the inner words v of all bordered words uvu in w.

I Definition 4.4. Let w P A˚ and ~w “ pw0, . . . , wnq be the complete border-decomposition
of w. The r-skeleton of w, denoted by Srpwq, is the word of length n over the alphabet
Γ “ Aďr with Srpwqris “ prefrpw´1

i wq for each 0 ď i ď n ´ 1. Note that w´1
i w is always

defined since wi ĺ w.

Note that it is convenient for our purpose to consider Srpwq to be a word over an alphabet,
which in itself consists of words of bounded length rather than to consider Srpwq as a sequence
of words.
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rwi

wi Srpwqris
w “

“ w

Figure 2 Definition of Srpwq.

I Example 4.5. Let u “ bababa and v “ ababab. Then u [ v “ ababa and the complete
border-decomposition of u[v is pε, a, aba, ababaq. The 2-skeleton of u[v is the word depicted
below.

ab ba ba

Skeletons will play a crucial role in Section 5. We will prove the decidability of the
Cayley-graph of a queue-monoid by translating back and forth between an Ehrenfeucht-
Fraïssé game played on the Cayley-graph (presented as EF-relations) and games played on
certain skeletons which are derived from the game played on the Cayley-graph.

I Lemma 4.6. Let r P N, w P A˚ and n P N be the length of Srpwq. Then a word v P A˚
can be constructed from w such that |v| “ Op2nrq and Srpwq “ Srpvq.

Proof. Let ~w “ pw0, . . . , wnq be the complete border-decomposition of w. At first, assume
|Srpwqrn´ 1s| ă r (i.e., the last component is small). Then there are two possibilities: on
the one hand w “ wn´1xwn´1 and |xwn´1| ă r. In this case we have |w| ă 2r “ Op2nrq.
On the other hand we have w “ xwn´1 “ wn´1y where |x| “ |y| ă mint|wn´1|, ru, i.e., the
prefix and the suffix wn´1 overlap in wn. Then it is easy to see that x is a period of wn´1
and of wn. Concretely, there is a prefix p of x and a number k P N such that w “ xkp and
wn´1 “ xk´1p. In particular, all word xip with 1 ď i ď k are borders of w which implies
k ď n. Hence we have |w| ď |x| ¨ pk ` 1q ď r ¨ pn` 1q “ Op2nrq. Therefore, in both cases we
are ready and we can assume |Srpwqrn´ 1s| from now on.

We construct v inductively as follows: We set v0 :“ ε. Now let a, b P A be distinct
with Srpwqr0s P aA˚. Then x ă

Ĺ Srpwqr0sb2n`r implies x “ ε. Hence, we set, for 0 ď i ă n,
vi`1 :“ vixivi where xi “ Srpwqris bn´iaibn`r. Finally, we set v :“ vn.

Before we can prove Srpwq “ Srpvq we need to prove the following two properties of
pv0, . . . , vnq:
(a) For each 0 ď i ď n

?
vi`1 “ vixi and

(b) ~v “ pv0, . . . , vnq is a complete border-decomposition of v.
Proof of (a). We observe that vixi is a period of vi`1 and we prove by induction on 0 ď i ď n

that this period is minimal. For i “ 0 this is trivial since v1 P aA
r´1b2n`r and a ‰ b. So

now let i ą 0. We suppose that there is a period p of vi`1 with |p| ă |vixi|. Then, for
yj :“ xjpb

n`rq´1 for 0 ď j ď i, the word vi`1 is an alternation of words yj and br`n which
are all of length r ` n. Note that by construction we have yj ‰ bn`r (since each yj contains
at least one a) as well as yj ‰ yk if j ‰ k for each 0 ď j, k ď i. Additionally, each second
occurrence of a yj-block is y1. We now consider two cases:

First, assume that |p| is not a divisor of n` r. If |p| ă n` r then the distance between
each two occurrences of a in pω is at most |p| ă n`r but vi`1 contains at least one bn`r-block.
Hence, we have |p| ą n` r. If t |p|n`r u is odd (cf. Fig. 3a), p starts with a and ends in a block
of the form bn`r, but does not contain all of these n ` r many b’s. Since p start with an
a, a first repetition of p this first a is different from the b at this position in vi`1, i.e., p is
not a period of vi`1. Otherwise, if t |p|n`r u is even (cf. Fig. 3b), then the prefix of p´1vi`1 of
length |p| contains at most one y1-block and this overlaps with a bn`r-block. Hence, there
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y1 bn`r y2 bn`r y1 bn`rba

a a

‰

p p

(a) Case
Y

|p|
n`r

]

is odd.

y1 bn`r y2 bn`r y1 bn`r

p y1 bn`r

a a

b

‰

(b) Case
Y

|p|
n`r

]

is even.

Figure 3

vi`1 “

u “

u “

xi

y

x

vi vi

m

Figure 4

is a position in the first repetition of p containing a b which is different from the a at this
position in vi`1.

Now, assume |p| is a divisor of n ` r. Then we can understand the blocks of length
n ` r as letters of the alphabet tbn`r, y1, . . . , yiu. Since there is no yi-block in vi we have
|p| ě |viyi|. Since p starts with y1 and yi is followed by bn`r, p has length at least |vixi|.

Proof of (b). By construction, it is easy to see that ~v “ pv0, . . . , vnq is a border-
decomposition of v “ vn. We prove now by induction on 0 ď i ă n that pv0, . . . , vi`1q is a
complete border-decomposition of vi. The case i “ 0 is easy to verify since v1 P aA

r´1b2n`r.
So, let i ě 1. Assume there is u P A˚ with vi ă

Ĺu
ă
Ĺ vi`1. Let u be of minimal length satisfying

this inequality. Then there are two possible cases:
First, suppose |u| ě |vixi| holds, i.e., the prefix and suffix u overlap in vi and the overlap

contains at most xi (cf. Fig. 4). Let x, y P A˚ such that u “ xxivi “ y. Then we have
|x| “ |y| and m :“ xxiy

ă
Ĺ u. Hence, by minimality of u we have |m| ď |vi| and therefore, by

induction hypothesis, m “ vk for some 0 ă k ď i. This implies

vk´1xk´1vk´1 “ vk “ m “ xxiy .

Since |x| “ |y| and |xi| “ |xk´1| we have xi “ xk´1, which is a contradiction to the
construction of the xi’s.

Now, suppose |u| ă |vixi|. If |u| ě |vi`1|
2 (i.e., the prefix and suffix u in vi overlap) then

there is a word m P A˚ such that m ă
Ĺ u holds. Hence, by minimality of u and by induction

hypothesis we have m “ vk for some 0 ď k ď i. Since |m| ă |xi| “ |x1| we have m “ ε, i.e.,
we have |u| “ |vi`1|

2 .
Suppose |u| ď |vi`1|

2 (i.e., the prefix and suffix u in vi do not overlap). Then there is a
word p P A˚ such that vi`1 “ pu. Since u is a prefix of vi`1 and |p| ą |vi`1|

2 , u also is a
prefix of p. Hence, p is a period of vi`1 and we have

|p| “ |vi`1| ´ |u| ă |vi`1| ´ |vi| “ |vixi| .
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This is a contradiction to property a stating that vixi is the minimal period of vi`1.
So, in both cases we have seen that there is no vi

ă
Ĺ u ă

Ĺ vi`1, i.e., pv0, . . . , vi`1q is a
complete border-decomposition.

Finally, let 0 ď i ă n. Then we have

Srpvqris “ prefrpv´1
i vq “ prefrpSrpwqris sq “ Srpwqris

for some s P A˚, i.e., Srpvq “ Srpwq. Additionally, we have |vi| “ 2|vi´1 ` 2n ` 2r for
1 ď i ď n and |v0| “ 0 which results in |v| “ |vn| “ p2n ´ 1qp2n` 2rq “ Op2nrq. J

Let V P pAďrq˚ be the r-skeleton of some word w P A˚. We call the word v P A˚

constructed in the proof of Lemma 4.6 the r-instantiation of V .

5 Decidability of the FO-Theory

Recall that the Cayley-graph of the queue monoid Q induced by A is denoted by C “

pQ, pEαqαPΣq. In order to ease the notation we let elements of C inherit some properties
from their projections to the read and write actions. For p, q P Q let |p| “ |prdppq,wrtppqq|,
p∆q “ prdppq,wrtppqq∆prdpqq,wrtpqqq, and we call |p∆q| the (∆-)distance of p and q. Note
that ∆ defines a metric on C. Further for ~p “ pp1, . . . , pkq P Qk let Nrp~pq “ tq P Q | D1 ď
i ď k : |pi∆q| ď r _ |q| ď ru be the (∆-)neighborhood of ~p of radius r (r-neighborhood). Note
that we implicitly add the origin of C to ~p when we compute the neighborhood. Moreover
we define the notion of a border-decomposition and an r-skeleton for an element p P Q as
the border-decomposition and the r-skeleton of rdppq [ wrtppq.

Let us first give an intuitive outline of our decidability proof. We follow a classical proof
strategy due to Ferrante and Rackoff [8]. Roughly speaking we show that there is some fixed
primitive recursive function f : N Ñ N such that for every two pr ` 1q-equivalent tuples
~p, ~q P Qn and every p P Q there is a q in the fpr ` 1q-neighborhood of the tuple ~q such
that p~p, pq ”r p~q, qq. This implies that in order to evaluate a formula Qxϕp~pq where ϕ has
quantifier rank r and Q P tD,@u we can restrict the quantification of x to the fpr ` 1q-
neighborhood of ~p. Since the r-neighborhood of each element p P Q is finite and effectively
computable for every radius r, we can use the above observation to implement a decision
procedure for the theory of C. In order to achieve this goal we exploit the fact that first-order
logic cannot measure distances between two nodes that are more than exponentially far away
in the quantifier rank. Therefore our task for a given quantifier rank r ą 0 is to find for
every p that is far away from a tuple ~p an element p1 that is closer (but not yet too close) to
~p such that the neighborhoods of p and p1 of a suitably chosen radius are not distinguishable
with the remaining quantifier rank r ´ 1. What makes this task more complex than for most
other examples of Cayley-graphs with decidable first-order theory that can be found in the
literature is that the Cayley-graph of the queue monoid is in some sense less local. In fact,
the neighborhood-structure of an element p does not only depend on suffixes of bounded
length of rdppq and wrtppq (as it would be the case for instance for the direct product of two
free monoids). We solve this problem via the notion of skeletons. Our proof reveals that the
r-type of the 2r`1-neighborhood of an element p is basically determined by the pr ` 1q-type
of the 3 ¨ 2r`1-skeleton of rdppq [ wrtppq. This will be the core of our proof.

Let us start off by making some technical preparations in order to formulate the core
idea precisely.

I Definition 5.1. Let V be an r-skeleton. We say that q P Q is compatible with V if V has
an instantiation v such that rdpqq [ wrtpqq “ vx for some x P Aďr and |wrtpqq∆v| ď r.
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Intuitively, q being compatible to an r-skeleton V means that we can obtain an element q1
with r-skeleton V by deleting up to r many read actions and modifying the write actions
arbitrarily up to distance r. We use this notion in order to translate elements of the Cayley-
graph into positions of an r-skeleton. Next we describe how we translate back and forth
between elements of the Cayley-graph and positions in a skeleton. However we can not
guarantee that every element in close proximity to a given element p can be associated
with a position in the r-skeleton of p because small changes to the read and write actions
might change the border-decomposition dramatically. But we can modify r and p slightly to
circumvent this problem.

I Definition 5.2. For q P Q with |rdpqq| ě r let rcrpqq be the element q1 with wrtpq1q “ wrtpqq,
rdpq1q “ rdpqq sufrprdpqqq´1, and µpq1q “ rdpq1q [ wrtpq1q. In other words, rcr just cuts the
last r read actions and pushes read and write actions as far together as possible.

I Definition 5.3. Let p, q P Q and let U and V be the 3r-skeletons of rc2rppq and rc2rpqq,
respectively. If we suppose that pm1, . . . ,mkq are positions in V and pn1, . . . , nkq are
positions in U such that pU,m1, . . . ,mkq ”` pV, n1, . . . , nkq for some ` ě 1. For p1 P Q
with |p1∆p| ď r and |µpp1q| ě 2r we associate a position mk`1 in U as follows: Let
pu1, . . . , umq be the complete border-decomposition of rdprc2rppqq and pv1, . . . , vnq be the
complete border-decomposition of rdprc2rpqqq. As p1 has distance at most r from p we
have that rdpp1q “ rdprc2rppqqx for some x P Aď2r. Therefore there is an i ď m such that
µpp1q “ uix. Then i is the position that is associated with p1.

Now let nk`1 be such that pU,m1, . . . ,mk`1q ”`´1 pV, n1, . . . , nk`1q we associate an
element q1 with nk`1 as follows: Let q1 be the element with rdpq1q “ rdprc2rpqqqu

´1
mk`1

µpp1q,
wrtpq1q∆wrtprcrpqqq “ wrtpp1q∆wrtprc2rppqq, and µpq1q “ vmk`1u

´1
nk`1

µpp1q. Note that q1 is
well defined since V rjs is labeled by pref2r`2pu´1

i µppqq. Therefore vj pref2r`1pv´1
i µppqq is a

prefix of wrtpq1q by construction.

Another important ingredient of our proof is to construct “small” r-equivalent words
from a given word w. This is routine since it can be achieved by a simple automata-theoretic
approach.

I Lemma 5.4 ([29]). From a given alphabet Γ , a word v P Γ˚, and r P N one can compute
an automaton A in time expr`1pfprqq with LpAq “ tw P Γ˚ | w ”r vu for some primitive
recursive function f .

Proof sketch. Construct a first-order formula ϕ that characterizes the r-type of v. From ϕ

compute an automaton Aϕ with LpAϕq “ tw P Γ
˚ | w ”r vu. One easily show via induction

on r that the size of the automaton A is at most expr`1p2, fprqq where fprq is an upper
bound for the size of the formula ϕ (which can be chosen to be primitive recursive). J

We use this idea to define a family of equivalence relations pErmqr,mPN. For r,m P N and
~p, ~q P Qm let ~pErm~q iff
(1) If |pi∆ε| ď 4 expr`2p2, fprqq then pi “ qi where f is the function from Lemma 5.4.
(2) |pi∆pj | “2r |qi∆qj | for all 1 ď i, j ď m and if |pi∆pj | ď 2r then also pi∆pj “ qi∆qj .
(3) There is a partition X1, . . . , Xk of t1, . . . ,mu such that for X ‰ X 1 P tX1, . . . , Xku it

holds that with min “ minX:
(a) If i P X, j P X 1 it holds that |pi∆pj | ą 2r (and therefore |qi∆qj | ą 2r).
(b) suf2r`m`2prdppiqq “ suf2r`m`2prdpqiqq and

suf2r`m`2pwrtppiqq “ suf2r`m`2pwrtpqiqq for all i P X.
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(c) For all j P X it holds that |pmin∆pj | ď
řr`m
s“r 2s (and therefore also |qmin∆qj | ď

řr`m
s“r 2s).

(d) Let U be the 3 ¨ 2r`m`1-skeleton of rc2r`m`2ppminq and V be the 3 ¨ 2r`m`1-skeleton
rc2r`m`2pqminq. Then for all j P X we have that either µppjq “ µpqjq or |µppjq| ě
2r`m`2 and pj is compatible with U and qj is compatible with V . Further if
m1, . . . ,mk are the positions in U that are associated with tpj | j P Xu and n1, . . . , nk
are the positions in U that are associated with tqj | j P Xu then pV,m1, . . . ,mkq ”r`1
pU, n1, . . . , nkq.

We show that pErmqr,mPN are indeed EF-relations for C.

I Lemma 5.5. For all m P Ną0 and all ~p, ~q P Qm: If ~pE0
m~q then the mapping pi ÞÑ qi is a

partial isomorphism.

Proof. We need to show that ppi, pjq P Ea ñ pqi, qjq P Ea for all i, j ď m and all a P Σ.
Let ~p, ~q P Qm with ~pE0

m~q. Suppose ppi, pjq P Ea for some a P Σ. Then |pi∆pj | “ 1. Hence
pi∆pj “ qi∆qj by (2). Let X1, . . . , Xk be the partition from Property 3. Since the distance
between pi and pj and between qi and qj is 1 we derive from Property (3a) that i and j
belong to the same X P tX1, . . . , Xku. Let ` “ minX. If |µppiq| ă 2m`2 then, by Property
(3d) and (3b), µppiq “ µpqiq. In this case ppi, pjq P Ea ô pqi, qjq P Ea obviously holds.
Otherwise there are 3 ¨ 2m`1-skeletons U, V such that pi and pj can be translated into
positions m1,m2 in U and qi and qj can be translated into position n1, n2 in V such that
pU,m1,m2q ”1 pV, n1, n2q. There are two possible types of configurations for pi and pj such
that they can be connected by an edge. First, it might be the case that rdppiq “ rdppjq,
wrtppiqa “ wrtppjq, and µppiq “ µppjq. In this case m1 “ m2 and therefore n1 “ n2, which
implies that rdpqiq “ rdpqjq, wrtpqiqa “ wrtpqjq, and µpqiq “ µpqjq. Therefore pqi, qjq P Ea.

Second, it might be that rdppiqa “ rdppjq (where a “ b), wrtppiq “ wrtppjq, and µppjqa´1

is the largest suffix w of µppiq such that wa is a prefix of wrtppiq. This property can be
translated into the formula of quantifier rank 1. Let pw0, . . . , wnq be the complete border-
decomposition of rc2m`2pp`q and v :“ w´1

m1
µppiq P A

ď3¨2m`1 . Then

ϕpx1, x2q

– x2 ď x1 ^
ł

sPAď3¨2m`1 :pvaqĺs

Pspx2q ^ @y :

¨

˝x2 ă y ă x1 Ñ
ľ

sPAď3¨2m`1 :vaĺs

 Pspyq

˛

‚.

Hence U |ù ϕpm1,m2q and since pU,m1,m2q ”1 pV, n1, n2q also V |ù ϕpn1, n2q and therefore
pqi, qjq P Ea. J

I Lemma 5.6. For all m, r P N and all ~p, ~q P Qm:

~pEr`1
m ~q ñ @p P QDq P Nexpr`3pgpr`mqq

p~qq : p~p, pqErm`1p~q, qq

for some primitive recursive function g.

Proof. Let f be the primitive recursive function from Lemma 5.4. Let ~p, ~q P Qm with
p~p, ~qq P Er`1

m and let X1, . . . , Xk be a partition of t1, . . . ,mu with the properties described in
(3). Consider p P Q. We distinguish three cases. If p has distance ď 4 expr`2p2, fprqq from ε

then we choose q “ p.
From now on suppose p has distance ą 4 expr`2p2, fprqq from ε. We consider the case that

p has distance ą 2r from every pi. Since the distance from ε is exactly |π1ppq|`2|µppq|`|%ppq|
it follows that |π1ppq| ą expr`2pfprqq or |µppq| ą expr`2pfprqq or |%ppq| ą expr`2pfprqq. Let
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pj qj
2r`1 2r`1

p q

U “ u1 ¨ ¨ ¨ um``1 ¨ ¨ ¨ u|U | “ Vv1 ¨ ¨ ¨ vn``1 ¨ ¨ ¨ v|V |

pU,m1, . . . ,m`q ”r`2 pV, n1, . . . , n`q

Figure 5 Construction of q from p using U and V .

p1 “ rc2r`m`2ppq. Consider the 3 ¨ 2r`m`1-skeleton V “ S3¨2r`m`1pp1q. By Lemma 5.4 we can
find a 3 ¨ 2r`m`1-skeleton W of length at most pm` 1q expr`2pfpr` 1qq with V ”r`1 W and
3 ¨ 2r`m`1-instantiation w with |w| ď c ¨ 2pm`1q expr`2pfpr`1qq¨3¨2r`m`1

ď expr`3pgpr `mqq

(for a suitable primitive recursive function g). Using Lemma 4.1, words u, v of length at most
pm` 1q2r`m`3 such that
1. suf2r`m`2puwq “ suf2r`m`2prdppq suf2r`m`2prdppqq´1q

2. suf2r`m`2pwvq “ suf2r`m`2pwrtppqq
3. pref2r`m`2pwvq “ pref2r`m`2pwrtppqq
4. uw [ wv “ w

such that every element x with rdpxq “ uw and wrtpxq “ wv has distance ą 2r from every qi.
We choose to q to be such an element x. It remains to specify µpxq. if |µppq| ď 2r`m`2 then
choose µpqq “ µppq. Otherwise let pv0, v1, . . . , vmq be the complete border-decomposition of
p1 and let pw0, w1, . . . , wnq be the complete border-decomposition of w. Let i be the index
of µpp1q in pv0, v1, . . . , vmq. Because S3¨2r`m`1pp1q ”r`1 W there is a j P t0, . . . , nu such
that pS3¨2r`m`1pp1q, iq ”r pW, jq. Now choose µpqq “ wj . Finally extend the partition by
Xk`1 “ tm` 1u.

If p has distance ď 2r from some pi then let Y P tX1, . . . , Xku be such that i P Y and
let j “ min Y . Let U be the 3 ¨ 2r`m`1-skeleton of rc2r`m`2ppjq and V be the 3 ¨ 2r`m`1-
skeleton of rc2r`m`2pqjq. Since |pi∆pj | ď

řr`m
s“r`1 2s and |p∆pi| ď 2r we conclude that

|p∆pj | ď
řr`m
s“r 2s ď 2r`m`1. Hence, p is compatible with U . Let m1, . . . ,m` be the

positions in U that are associated with the elements tqs | s P Y u, m``1 the position in U
that is associated with p, and n1, . . . , n` be the positions associated with tqs | s P Y u in
V . Since pU,m1, . . . ,m`q ”r`2 pV, n1, . . . , n`q by Property (3d) there exists a n``1 with
pU,m1, . . . ,m``1q ”r`1 pV, n1, . . . , n``1q. From n``1 we compute the associated element q
in the p

řr
s“r`m 2sq-neighborhood of qj . The construction of q ensures that Properties (3b)

to (3) are fulfilled for p~p, pq and p~q, qq by adding `` 1 to Y . Hence p~p, pqErmp~q, qq. J

The Lemmata 5.5 and 5.6 ensure that Erm-equivalent tuples are also r-equivalent.

I Corollary 5.7. For all ~p P Qm, p P Q, and r P N there exists an element
q P Nexpr`3pgpr`mqq

p~pq with pC, ~p, pq ”r pC, ~p, qq for some polynomial f .

I Lemma 5.8. For every p P Q and every r there are at most |A|4rpmint|rdppq|, |wrtppq|u`rq
many elements in the r-neighborhood of a node p P Q.

Proof. Every element q in the r-neighborhood of p can be characterized by the tuple
p∆q “ pu, v, w, xq P pAďrq4 and µpqq. Once we have fixed p∆q P pAďrq4 (and therefore fixed
rdpqq and wrtpqq) there are at most mint|rdpqq|, |wrtpqq|u ď mint|rdppq|, |wrtppq|u ` r possible
values for µpqq. J

With this lemma we obtain our main result.
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Table 1 Comparison of the decidability of logics on Cayley-graphs of fundamental data structures.

Data Structure Transformation Monoid M FOThpCpM, Γ qq MSOThpCpM, Γ qq

finite monoid finite monoid PSPACE [10] PSPACE [10]
counter pZ,`q 2EXPSPACE [21] decidable [20]
stack polycyclic monoid 2EXPSPACE [21] decidable [6, 20]
queue queue monoid primitive recursive undecidable

I Theorem 5.9. FOThpCq is primitive recursive.

Proof. We use the standard model-checking algorithm for first-order logic but restrict
quantification to the expr`1p2, fprqq-neighborhood of the current variable assignment. The
correctness of this procedure is guaranteed by Corollary 5.7. We see that the values |rdppq|
and |wrtppq| are bounded by expr`3pgpr `mqq Hence, by Lemma 5.8 the algorithm needs to
consider at most |A|4rpexpr`3pgpr `mqq ` 1q many Elements, which leads to a runtime of
|ϕ| ¨ p|A|4rpexpr`3pgpr `mqq ` 1qqr, which is obviously a primitive recursive function. J

6 Conclusion and Open Problems

We studied the Cayley-graph of the queue monoid and the logics of these graphs. Concretely,
we have shown the decidability of the Cayley-graph’s first order theory and the undecidability
of the monadic second-order theory. This answers a question from Huschenbett et al. in [13].

In Table 1 is a comparison of our results compared to other fundamental data structures.
There are still some questions open relating to the queue monoid: in this paper we

have given a primitive recursive but non-elementary upper bound on the complexity of the
first-order theory of the queue monoid’s Cayley-graph. So, one may ask for tight upper and
lower bounds. Another open question concern the automaticity of the queue monoid. While
it is neither automatic in the sense of Khoussainov and Nerode [16] nor automatic in the
sense of Thurston et al. [4] due to [13], we still do not know whether the Cayley-graph of
the queue monoid is automatic. Finally, the decidability of the first-order theory of the
(partially) lossy queue monoid’s (cf. [17, 18]) Cayley-graph is left open as well and is worth
to be studied.
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