
Quality & Quantity
 

Roots and Effects of Financial Misperception in a Stochastic Dominance Framework
--Manuscript Draft--

 
Manuscript Number:

Full Title: Roots and Effects of Financial Misperception in a Stochastic Dominance Framework

Article Type: Original paper

Keywords: Stochastic Dominance, Behavioral Finance,
Derivatives Pricing, Mispricing, Structured Products.

Corresponding Author: Roy Cerqueti, Ph.D.
University of Macerata
Macerata, MC ITALY

Corresponding Author Secondary
Information:

Corresponding Author's Institution: University of Macerata

Corresponding Author's Secondary
Institution:

First Author: Roy Cerqueti, Ph.D.

First Author Secondary Information:

Order of Authors: Roy Cerqueti, Ph.D.

Rosella Castellano

Order of Authors Secondary Information:

Abstract: This work deals with the issue of investors' irrational behavior and
financial products' misperception. The theoretical analysis of the
mechanisms driving erroneous assessment of investment performances
is explored. The study is supported by the application of Monte
Carlo simulations to the remarkable case of structured financial
products. Some motivations explaining the popularity of these
complex financial instruments among retail investors are also
provided. In particular, investors are assumed to compare the
performances of different projects through stochastic dominance
rules. Unreasonably and in contrast with results obtained by the
application of the selected criteria, investors prefer complex
securities to standard ones. In this paper, introducing a new
definition for stochastic dominance which presents asymmetric
property, we provide theoretical and numerical results showing how
investors distort stochastic returns and make questionable
investment choices. Results are explained in terms of framing and
representative effects, which are behavioral finance type arguments
showing how decisions may depend on the way the available
alternatives are presented to investors.

Suggested Reviewers: Rita D'Ecclesia
Full Professor, University of Rome Sapienza
rita.decclesia@uniroma1.it
She works on option pricing, derivatives and finance. She has also  a great expertise
on behavioral finance.

Powered by Editorial Manager® and Preprint Manager® from Aries Systems Corporation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSBU Research Open

https://core.ac.uk/display/294785836?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Roots and Effects of Financial Misperception in a Stochastic

Dominance Framework

Rosella Castellano & Roy Cerqueti∗

University of Macerata

Department of Economic and Financial Institutions

Via Crescimbeni, 20 - 62100 - Macerata, Italy

Tel.:+39 0733 2583246; Fax: +39 0733 2583205

Email:{castellano,roy.cerqueti}@unimc.it

Abstract

This work deals with the issue of investors’ irrational behavior and financial products’ misper-

ception. The theoretical analysis of the mechanisms driving erroneous assessment of investment

performances is explored. The study is supported by the application of Monte Carlo simula-

tions to the remarkable case of structured financial products. Some motivations explaining the

popularity of these complex financial instruments among retail investors are also provided. In

particular, investors are assumed to compare the performances of different projects through

stochastic dominance rules. Unreasonably and in contrast with results obtained by the applica-

tion of the selected criteria, investors prefer complex securities to standard ones. In this paper,

introducing a new definition for stochastic dominance which presents asymmetric property, we

provide theoretical and numerical results showing how investors distort stochastic returns and

make questionable investment choices. Results are explained in terms of framing and represen-

tative effects, which are behavioral finance type arguments showing how decisions may depend

on the way the available alternatives are presented to investors.

Keywords: Stochastic Dominance, Behavioral Finance, Derivatives Pricing, Mispricing, Struc-

tured Products.

JEL Classification: C65; D81; G24.

∗Corresponding author

1

Manuscript
Click here to download Manuscript: Submitted.tex 

http://www.editorialmanager.com/ququ/download.aspx?id=4853&guid=59492564-996b-4c8a-a40c-e46c6499f1af&scheme=1


1 Introduction

The importance of making choices based on the expected performances of economic and financial

variables is out of question and the correct way to do it represents the focus of an endless scientific

debate. In this respect, decision theory can be seen as the field that describes and formalizes the

process of making a choice among several possible uncertain alternatives.

Surprisingly, the decision process is not always driven by rationality, and several papers provide ev-

idence related to the occurrence of unreasonable choices and preference inversions. Camerer (1989)

reports that 31.6% of subjects reverses preferences, when the same choice is presented in an identical

manner twice, while Starmer and Sugden (1989) estimate that the percentage of preference reversal

is 26.5% and, according to Wu (1994) it falls in a range of 5–45%. Hey and Orme (1994) find that

around 25% of decisions are inconsistent when an individual faces twice the same choice problem

and she/he can declare indifference. Moreover, Hey (2001) provides experimental evidence that the

variability of the subjects’ responses is generally higher than the difference in the predictive error

of various deterministic decision theories. Starting from this point, Blavatskyy (2007) argues the

necessity of abandoning the expected utility theory for a new decision-making paradigm that con-

siders random errors performed by the deciders.

Furthermore, in a rational financial market, given an identical set of opportunities, two different

individuals should operate the same choices, once the decision rule is fixed. Unexpectedly, the de-

cision rule is often violated and choices toward the objectively-measured less attractive situations

are often registered. This evidence plays a central role in financial theories which are grounded on

psychological and human judgment of investors.

In this paper we provide theoretical results, supported by numerical analysis, on how investors dis-

tort stochastic returns and, unreasonably, prefer complicated financial derivatives to standard ones.

Our arguments are applied to the analysis of structured financial products which have features par-

ticularly appropriate for our study.

Ritter (2003) highlights the causes of investors’ irrationality through some specific effects. Some

are of particular interest. The framing effect explains how decisions depend crucially on the way

in which the available alternatives are represented. Tversky and Kahneman (1981), and Bazerman

(1983) present the same experiment, in a slightly different fashion. People are grouped in two similar

populations, P1 and P2, and a choice between a gamble A or a secure plan B is proposed to each in-

dividual. A change in the frame of A and B implies a reversal of preferences, in terms of percentages

of choices in P1 and P2. The representativeness effect is first hypothesized by Reichenbach (1934)

who describes the attitude to overweight the importance of the most recent experiences. In a larger

sense, individuals who are affected by this effect guess that the salient global properties of a financial

or economic variable can be explored by performing a local analysis of the related phenomenon.

The psychological biases of investors should be tackled in quantitative models based on decision
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criteria. Kahneman and Tversky (1979) conduct psychological experimental researches to show that

investors distort subjectively probabilities and overweight rare events. They provide the constitutive

framework of prospect theory, for which Daniel Kahneman is one of the Nobel laureates in 20021.

A further important theoretical consequence of Kahneman and Tversky’ researches (1979) relies on

the formalization of the mechanism leading to irrational investors’ choices. In this context, the issue

of performance measures is of crucial importance.

The decision tool we deal with is the stochastic dominance (see Fishburn, 1964; Hadar and Russel,

1969; Hanoch and Levy, 1969; Rothschild and Stiglitz, 1970), since it undoubtedly represents one

of the most general way to compare financial products. The stochastic dominance criteria rely on

the distribution functions of the random amounts and take into account the whole set of their char-

acteristics (i.e.: fat tails, kurtosis, asymmetry, etc.). To the best of our knowledge, the most recent

monograph on stochastic dominance is provided by Sriboonchitta et al. (2010), who present also

several applications to economics and finance, but we mention also Levy (2006).

Stochastic dominance can be violated in a direct or indirect way. In the former case, investors pre-

fer project A instead of project B, even if A is dominated by B. In the latter case, project B is

underpriced with respect to a dominated project A or, alternatively, the transitivity property fails,

i.e. C dominates D and D dominates E, but E is preferred to C. The indirect violations are more

frequent than the direct ones, as argued in Birnbaum (1997) and references therein.

There is no need to specify that violations of stochastic dominance can be viewed as the founda-

tion of the process of misperception and associated irrational choices of investors. In this sense,

prospect theory can appropriately describe the biasing mechanisms through violations of the first

order stochastic dominance, as in the original Kahneman and Tversky’s setting. To solve the prob-

lem related with first order stochastic dominance violation, cumulative prospect theory is introduced

(Tversky and Kahneman, 1992). In the new setting, the Authors extend their previous theory to

the case of random amounts with a continuous set of realizations. In this framework, the proba-

bility distortion is interpreted as acting on the cumulative probability distribution rather than on

probabilities. Cumulative prospect theory improves prospect theory because it offers a broader anal-

ysis instrument through two key transformations -one for the values of outcomes and the other for

objective probabilities. Stott (2006) reviews the main transformations proposed in the literature

along with their properties. Chateneuf and Wakker (1999) give an axiomatization of preferences

for decisions under risk, i.e. when probabilities are transformed. In doing so, they follow the line

traced by Wakker and Tversky (1993), who propose the axiomatization of the cumulative prospect

theory. Under a more practical point of view, some contributions are worth noting. Dierkes et al.

(2010) evidence the usefulness of the cumulative prospect theory framework to empirically explore

the dependence of individuals’ investment strategies on the time horizons of different financial op-

1Amos Tversky passed away in 1996, but his valuable contribution is acknowledged in Kahneman’s Nobel lecture.

3



portunities.

In a behavioral finance perspective, the violation of stochastic dominance is not necessarily a weak-

ness for describing the decision-making mechanisms, because people often choose dominated lotteries.

On the other hand, empirical evidence shows that investors usually violate higher order stochastic

dominance rather than the first order one, because of their sensitivity to risk.

The subjective preferences of investors and human intervention in comparing amounts are respon-

sible of the violation of the stochastic dominance. The cumulative prospect theory does not admit

first order stochastic dominance violation, but higher orders may continue to be violated.

Our paper deals with the violation of stochastic dominance in the case of structured products. We

elaborate a theoretical model to describe how the cumulative probability distributions of random

returns are distorted by investors. In particular, we advance two proposals: the random sums may

be perturbed by a deterministic trend or a lump sum. The former case concerns a global rereading of

random amounts, while the latter relies on a investors’ local misunderstanding of some realizations.

In order to formalize the inversion of stochastic dominance, we follow the route traced by Levy and

Wiener (1998) and Levy and Levy (2002, 2004)2, and introduce a new definition of the decision

criteria at hand. The theoretical results are validated via numerical simulations.

Some contributions in the literature are worth mentioning. Tversky and Kahneman (1986), Birn-

baum and Navarette (1998) and Leland (1998) deal with the problem of direct violations and pro-

vide also an explanation of the motivation driving these violations. In particular, they propose a

behavioral-finance argument grounded on the scarce transparency of how the stochastic dominance

rules should be used to order a set of financial projects.

Following Tversky and Kahneman (1986), Birnbaum and Navarette (1998) and Leland (1998), we

propose a possible motivation for the misrepresentation of structured products through a behavioral-

finance type argument. In particular, we show that the presentation by investment banks (or insur-

ance companies) of optimistic prospectuses related with complex products to investors may represent

the ground of the erroneous perception mechanism. In doing this, we merge framing and represen-

tativeness effects in an unified framework. This merging constitutes the basis of the misperception

mechanism (see also Wang and Fishbeck, 2004 for the analysis of the incidence of framing effects on

decisions, with a particular reference to prospect theory). It is worth noting the asymmetric behavior

of the financial institutions in framing in a more attractive fashion only the complex products. This

aspect must be considered when defining the new stochastic dominance rule, that should present

asymmetric properties.

Some papers are particularly close to our perspective. Berger and Smith (1998) focus on the prospect

theory based on framing effect. In particular, the authors propose an experiment on three simulta-

neous framing tactics and develop arguments on their main effects and interactions. The problem is

2The authors introduce the concepts of prospect stochastic dominance and Markowitz stochastic dominance.
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presented in a rather qualitative fashion and perhaps it can be well inserted in the field of marketing.

Breuer and Prest (2007) deal with the behavioral finance-type analysis of the structured products,

and show that these financial instruments are preferred by investors who underestimate the volatil-

ity of the underlying securities. Bernard et al. (2011) discuss the overpricing of some structural

products due to too optimistic framing of the prospectuses proposed by investment banks to retail

investors. The work of Bernard et al. (2011) is framed in the standard mean-variance theory, which

is much more restrictive than stochastic dominance. Moreover, the authors analyze a misperception

driven by a lump sum and neglect the case of a global misrepresentation of random returns. In

this respect, we will show that the presence of misperceived isolated gains does not allow to change

investor’s mind and drive the decision process.

To sum up, this paper contributes to the existing literature in some directions. First, we deal with

the problem of misperception of structured financial products, which is quite neglected in financial

studies. Despite the scarce attention paid to this topic, it represents a really important issue since

structured products are very popular mainly among retail investors and households (Bernard et al.

2011; Carlin, 2009) . Second, a behavioral finance-type discussion on our results, based on the main

features of structured financial products, is addressed. In particular, the misperception concerning

structured products follows from a merge of framing and representativeness effects, in that it can be

interpreted as a consequence of reticent prospectuses proposed by financial institutions to investors.

In a more general context, we argue that investments banks and insurance companies are morally re-

sponsible of some irrational investors’ behaviors. Third, we analyze some peculiar types of distortion

of random amounts. In particular, in accordance with some classical models of time series analysis,

we assume that random sums may be perturbed via a deterministic trend or a lump sum. Fourth,

we refer to stochastic dominance decision rules and, in this respect, we propose a new definition of

asymmetric stochastic dominance by considering the investors’ misperception of random amounts.

The rest of the paper is organized as follows. Section 2 is devoted to the statement of the theoretical

results regarding the violation of stochastic dominance and provides a new definition of stochastic

dominance. Section 3 is related with the main features of structured financial products and presents

techniques and results of the numerical analysis. In Section 4 our findings are discussed, together

with some concluding remarks.

2 Theoretical framework

In this section the statement of theoretical results regarding the violation of stochastic dominance

in a cumulative prospect theory framework is presented. In doing so, a new definition of stochastic

dominance rules is provided.

Consider a random variable X on a probability space (Ω,F , P ) with a cumulative function FX . Fix
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r ∈ R and define

A
(n)
X (r) =





FX(r), if n = 1;

∫ r

−∞ A
(n−1)
X (t)dt, if n ≥ 2.

(1)

In order to be self-contained, it is worth to recall the definition of stochastic dominance.

Definition 1. Consider n ∈ N and two random amounts X and Y .

X dominates stochastically of order n Y (X >n Y , hereafter) if and only if




A
(n)
X (r) ≤ A

(n)
Y (r), ∀ r ∈ R

and

∃ r∗ ∈ R such that A
(n)
X (r∗) < A

(n)
Y (r∗).

(2)

Fix n ∈ N and consider two random amounts X and Y , such that X >n Y . If an investor has

a particular subjective perception of profit and losses related to Y , then the n-th order stochastic

dominance may be violated and the investor may prefer Y instead of X . Substantially, the random

amount Y is perceived as a random amount Yp, that can be viewed as a perturbation of Y and such

that Yp >n X . The distortion of Y is attained by introducing a rule R which transforms Y in Yp.

More formally, R is a two variable function which transforms the support and density function of Y

into the support and density function of a different random variable, named Yp.

In the theoretical approach, the definition of a subjective concept of stochastic dominance criteria,

based on the perturbing rule R, is introduced.

Definition 2. Consider n ∈ N, two random amounts X and Y and a perturbing rule R.

Y R-dominates stochastically of order n X (Y >nR X, hereafter) if and only if Yp >n X, where Yp

is the perturbation of the random amount Y generated by the rule R. Conversely, X >nR Y if and

only if X >n Yp.

It is worth noting that Definition 2 is based on the misperception of just one of the two projects

to be compared. This asymmetry represents the main difference between the proposed new concept

and the definitions given by prospect and Markowitz stochastic dominance (Levy and Wiener, 1998;

Levy and Levy, 2002; 2004) that are based on particular transformations of both the investments

to be compared. The proposed approach is motivated by the necessity to take into account decision

rules which are based on the misperception of only one of the investments under scrutiny. As we

will see, this is suitable with the structured products case.

It is also worth noting that, analogously to the stochastic dominance rule, relation>nR is a semiorder

among the random amounts.

This paper, in line with the classical literature on time series analysis, treats two remarkable cases:

Yp is obtained by perturbing Y with a lump sum or a deterministic trend. The related rules will be

denoted hereafter as R1 and R2, respectively.
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2.1 Lump sum

Define a random mass Z as follows:

Z =





z̄, with probability π;

0, with probability 1− π.
(3)

where z̄ ∈ R
+, π ∈ (0, 1) and Z independent from Y 3.

The random sum Yp is defined through the rule R1 as follows: Yp = Y + Z.

The following result holds true.

Proposition 3. For each n ∈ N, we have

A
(n)
Yp

(r) =





(1− π)A
(n)
Y (r), if r < z̄;

π + (1− π)A
(n)
Y (r), if r ≥ z̄ and n = 1;

π(r−z̄)n−1

n−1 + (1− π)A
(n)
Y (r), if r ≥ z̄ and n ≥ 2.

(4)

Proof. The result is straightforward, by invoking the induction principle and by definition of Yp.

Proposition 4. Fix n ∈ N and assume that X >n Y . It doesn’t exist z̄ ∈ R
+ and π ∈ (0, 1) such

that Y >nR1 X.

Proof. The cases n = 1 and n ≥ 2 are separately treated.

• Assume n = 1.

Since X >1 Y , we have

A
(1)
X (r) ≤ A

(1)
Y (r), ∀ r ∈ R and ∃ r∗ ∈ R |A

(1)
X (r∗) < A

(1)
Y (r∗).

By definition of Yp through the lump sum Z, we can write:

A
(1)
Yp

(r) =





(1 − π)A
(1)
Y (r), if r < z̄;

π + (1− π)A
(1)
Y (r), if r ≥ z̄.

(5)

When Y >1R1 X , then the following system is satisfied:




(1− π)A
(1)
Y (r) ≤ A

(1)
X (r), if r < z̄;

π + (1− π)A
(1)
Y (r) ≤ A

(1)
X (r), if r ≥ z̄.

(6)

Second equation of system (6) brings to

π ≤
A

(1)
X (r)−A

(1)
Y (r)

1−A
(1)
Y (r)

, with r ≥ z̄, (7)

that is satisfied only when π = 0, since the second term of (7) is not positive. Therefore, it doesn’t

exist z̄ ∈ R
+ and π ∈ (0, 1) such that Y >1R1 X

3It is worth noting that the limiting cases for π are trivial: when π = 0, then Z = 0, while π = 1 implies that

Z = z̄.

7



• Assume n ≥ 2.

By Proposition 3 we have that the following system has to be fulfilled, in order to have Y >nR1 X :





π ≥ max

{
sup
r≥z̄

[
A

(n)
X

(r)−A
(n)
Y

(r)
(r−z̄)n−1

n−1 −A
(n)
Y

(r)

]
; 1− inf

r<z̄

[
A

(n)
X

(r)

A
(n)
Y

(r)

]}

z̄ > sup
r>z̄

{
r − [(n− 1)A

(n)
Y (r)]

1
n−1

}
.

(8)

Since

sup
r>z̄

{
r − [(n− 1)A

(n)
Y (r)]

1
n−1

}
= +∞,

then the second condition of (8) cannot be true, and this completes the proof.

Proposition 4 states that the distortion of Y through a lump sum cannot be responsible of the

inversion of stochastic dominance between X and Y . This result will be discussed in a more detailed

way at the end of the section.

2.2 Deterministic trend

The rule R2 is introduced by the definition of an increasing function t : R → R, that can be viewed

as a deterministic trend affecting the realizations of the random sum Y . The intervention of the

function t on Y drives the definition of the perturbed random amount Yp through the cumulative

probability function of Y :

FYp
(r) = FY (r − t(r)). (9)

The following result is trivial, but it is useful to formalize it in order to provide a precise analysis of

the first order stochastic dominance in this context.

Proposition 5. Assume that X >1 Y . If the function t is such that A
(1)
Y (r − t(r)) ≤ A

(1)
X (r), for

each r ∈ R, and there exists r∗ ∈ R such that A
(1)
Y (r∗ − t(r∗)) < A

(1)
X (r∗), then Y >1R2 X.

For the stochastic dominance of order greater than 1 no general results can be explicitly for-

malized. We then restrict the analysis only to the most frequent cases, well-known in the financial

econometric literature: constant trend and linear trend.

• Constant trend

In this case t(r) = t ∈ R, for each r ∈ R.

Proposition 6. For each n ∈ N, we have

A
(n)
Yp

(r) = A
(n)
Y (r − t) (10)
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Proof. We use the induction principle.

By definition, the thesis is true when n = 1.

Now, assume that (10) holds for n− 1. Then we have:

A
(n)
Yp

(r) =

∫ r

−∞
A

(n−1)
Yp

(s)ds =

∫ r

−∞
A

(n−1)
Y (s− t)ds =

∫ r−t

−∞
A

(n−1)
Y (s)ds = A

(n)
Y (r − t).

By using Proposition 6 we derive a sufficient condition to reverse the stochastic dominance

criterion.

Proposition 7. Fix n ∈ N and assume that X >n Y . Moreover, assume that




A
(n)
Y (r − t) ≤ A

(n)
X (r), ∀ r ∈ R

and

∃ r∗ ∈ R such that A
(n)
Y (r∗ − t) < A

(n)
X (r∗).

(11)

Then Y >nR2 X.

Proof. By Proposition 6 and by Definition 2 we obtain the thesis.

• Linear trend

In this case there exists an α 6= 0 such that t(r) = αr, for each r ∈ R.

Proposition 8. For each n ∈ N, we have

A
(n)
Yp

(r) =
1

(1− α)n−1
A

(n)
Y (r − αr). (12)

Proof. Also in this case, the result is proved by using the induction principle.

For n = 1, the result is trivially true.

Assume that (12) holds for n− 1. Then

A
(n)
Yp

(r) =

∫ r

−∞
A

(n−1)
Yp

(s)ds =
1

(1 − α)n−2

∫ r

−∞
A

(n−1)
Y (s− αs)ds =

1

(1− α)n−2

∫ (1−α)r

−∞

A
(n−1)
Y (s)ds

1− α
=

1

(1 − α)n−1
A

(n)
Y (r − αr),

and the result is proved.

Proposition 8 implies the following sufficient condition for the inversion of the stochastic domi-

nance relation.

Proposition 9. Fix n ∈ N and assume that X >n Y . Moreover, assume that




1
(1−α)n−1A

(n)
Y (r − αr) ≤ A

(n)
X (r), ∀ r ∈ R

and

∃ r∗ ∈ R such that 1
(1−α)n−1A

(n)
Y (r∗ − αr∗) < A

(n)
X (r∗).

(13)

Then Y >nR2 X.
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Proof. The proof comes from Definition 2 and Proposition 8.

Theoretical results show that misperception is attained when the perturbation is due to the

introduction of a trend, while no stochastic dominance violation takes place when a lump sum is

introduced. This findings provide interesting information since a trend affects the entire set of

realizations of a random amount, while a lump sum is related only to an impulsive shock. Therefore,

when agents have a global misperception irrationally prefer the worst project. Conversely, the

presence of a misperceived adjunctive isolated gain in the dominated project is not able to invert

agents’ mind and drive the decision process. This result contrasts with that obtained by Bernard et

al. (2011), who considers the distortion through a lump sum as the responsible for the reversal of

preferences, due to the use of a local decision tool like the modified Sharpe ratio.

In a certain sense, these results were expected. Indeed, stochastic dominance involves the entire

probability distributions of stochastic returns. Hence, a local distortion -a lump sum- cannot be

responsible of inversion of preferences, while a global distortion -trend- can do the job.

3 Structured financial products

This section is devoted to the analysis of the structured products which, as we will see, represent a

paradigmatic example of our theoretical findings.

Structured products, also known as market-linked products, are generally pre-packaged investment

strategies based on derivatives written on a single security, a basket of securities, options, indices,

commodities, debt issuances and/or foreign currencies and, to a lesser extent, swaps. The variety of

products shows that there is no single and uniform definition for the term structured product.

The U.S. Securities and Exchange Commission4 (SEC) defines structured securities as ”securities

whose cash flow characteristics depend upon one or more indices or that have embedded forwards

or options or securities where an investor’s investment return and the issuer’s payment obligations

are contingent on, or highly sensitive to, changes in the value of underlying assets, indices, interest

rates or cash flows”. To this definition it may be added that a common feature of some structured

products is represented by a principal guarantee function, which offers protection of principal if the

security is held to maturity.

Structured products, usually issued by investment banks or affiliates, are created to meet specific

needs that cannot be satisfied by standardized financial products and are proposed as an alternative

to direct investments, as part of the asset allocation process, to reduce the risk exposure of a portfolio,

or to take advantage of current market trends. These investment tools are available at mass retail

level, since one of their attractions is the ability to customize a variety of assumptions into one

instrument.

4SEC, Rule 434 regarding certain prospectus deliveries
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The main disadvantages of structured products may include: credit risk (structured products are

unsecured debt from investment banks); lack of liquidity (structured products rarely trade after

issuance and anyone looking to sell a structured product before maturity should expect to sell it at

a significant discount5); high complexity (only few investors truly understand how the structured

product will perform relative to simply owning the underlying). At the latter point we can tie further

considerations related to the lack of pricing transparency. Since there is no uniform standard for

pricing, it is hard to compare the net-of-pricing attractiveness of alternative structured products and

investor cannot know for sure what are the implicit costs of the instrument. In addition, asymmetric

information exists since investment banks that build and manage complex products understand them

far better than investors who buy them. Overall, the more complex is a product, the more a retail

investor is willing to pay. Carlin (2009) concludes that retail investors often make purchases without

knowing exactly what they are buying and may also be unaware about overpricing.

The market-linked products considered in this paper and representing the subject of the numerical

application are globally-floored, in the sense that provide a guaranteed minimum return. Hence,

absent default risk, the final return will never be less than a prespecified floor which applies to

the entire life of the contract. Furthermore, using real world examples, capped contracts will be

considered. Capping the maximum ensures that the payoff is never too extreme and that the value

of the contract is not too outrageous.

The basic reasons why this type of structured contracts is considered here are essentially due to their

popularity among retail investors and their weird characteristics, which are not fully understood and

have not been widely studied in literature. In particular, via stochastic dominance, we will show

that the locally capped contract is dominated by the globally capped but, surprisingly, the former

is more popular than the latter. This popularity is highlighted by the fact that the percentage

of globally floored contracts listed in the AMEX, as April 2008, is about 45% for locally capped

contracts and about 10% for globally capped ones. To explain this irrational behavior, the prospect

theory perspective and the behavioral finance type discussion for misperception discussed in the

previous section are implemented.

3.1 Globally floored - locally/globally capped contracts

In many cases, the redemption amount paid out on guaranteed minimum return product depend

exclusively on the periodical performance of the underlying asset (i.e. the reference portfolio).

It is not uncommon to lock in gains at specific dates, capping the periodical returns at a given

maximum. At maturity, the payoff is given by a combination of periodic returns that are added6 to

5Because of this, structured products tend to be more of a buy-and-hold investment decision rather than a means

of getting in and out of a position with speed and efficiency.
6It is worth to notice that there are two common types of globally-floored locally-capped contracts, the compound

contracts, where returns in each year are compounded, and the simple contracts where the returns are periodically
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the guaranteed redemption amount and paid out to investors.

The final payoff, YT , for this globally floored - locally capped contract is given by (Boyle and Tset,

1990, Boyle et al., 2009):

YT = Y0

{
(1 + F ) + max

[
0,

nT∑

k=1

min

(
c,

Stk

Stk−1

− 1

)
− F

]}
(14)

with T representing the maturity of the contract; Y0 the amount paid at the inception date, t = 0;

F the global floor (guaranteed minimum return at maturity); c the local cap (maximum allowed

periodical return) and Stk ∈ [0, T ] the price of the reference portfolio at the prespecified dates tk.

The maximum and minimum payoffs of this contract are given respectively by Y0 (1 + nT · c) and

Y0 (1 + F ).

This market-linked product is characterized by high complexity since its final pay-off is path-

dependent and cannot be easily replicated. From the point of view of the seller, aimed at minimizing

market risks, their main exposure is to volatility since this contract is very subtle in its dependence

on the assumed volatility model. The classical references to this phenomenon, which is not the focus

of this paper, are Avellaneda et al. (1995), Lyons (1995) and Wilmott (2000).

Conversely, a particular and simpler case is given when the redemption amount of a contract is made

up of a guaranteed minimum return (i.e. the floor rate) and a bonus return which varies according

to the performance of the reference portfolio between the issue and maturity dates. In this case,

the bonus return is calculated as a percentage of the difference by which the price of the reference

portfolio on the maturity date exceeds its price on the issue date. If the price falls, no bonus return

is paid out and the rate of return of the structured products is given by the floor rate. Briefly,

investors can profit from a rise in the price of the reference portfolio but, if this price drops, do not

have to bear the loss, since bearers only participates in the relative performance of the reference

portfolio up to a certain maximum value.

The issuer promises a final payoff proportionate to the change in the reference portfolio’s price. In

cases where the price of the reference portfolio decreases, the issuer guarantees a minimum redemp-

tion amount. At the same time, the issuer limits the investor’s participation in the instrument’s

performance by setting an upper limit (i.e., the global cap).

The standard final payoff, XT , for a globally floored - globally capped contract is given by (Boyle

and Turnbull, 1989; Bernard et al., 2011):

XT = X0

{
(1 + F ) + max

[
0,min

(
C,

ST

S0
− 1

)
− F

]}
, (15)

with T representing the maturity of the contract; X0 the amount invested at the inception date,

t = 0; F the global floor (guaranteed minimum return at maturity); C > F the global cap (maximum

allowed return); S0 and ST the price of the reference portfolio at the inception date and maturity,

added together to give the final payoff.
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respectively.

The initial investment of X0 yields a rate of return in the closed interval [F,C]. The cap becomes

operational only if the return of the reference portfolio in the interval [0, T ], computed as ST

S0
− 1,

exceeds the global cap rate C.

By no arbitrage, the current price of this contract can be replicated by a portfolio of three securi-

ties: a long position in a zero coupon bond which reaches maturity on T and has a face value of

X0 (1 + F ); a long position on X0

S0
European call options on the underlying reference portfolio with

strike S0(1 + F ) and maturity T ; a short position on X0

S0
European call options on the underlying

reference portfolio with strike S0(1 + C) and maturity T. It is worth noting that the maximum

pay-off of this contract is given by X0 (1 + C) , while the minimum pay-off is X0 (1 + F ). Hence, to

avoid arbitrage, it must be:

(1 + C) > erT > (1 + F ) , (16)

with r representing the risk-free rate.

3.2 Simulation results

The complex (globally floored - locally capped) and simple (globally floored - globally capped)

contracts described in the previous section show quite different properties. In particular, the first

one is characterized by a path-dependent final pay-off and there is no closed form solution to compute

its initial price. On the contrary, the simpler contract can be decomposed into a portfolio consisting

of a zero coupon bond and two standard call options. Thus, it may even be priced using standard

Black and Scholes’ formula.

Since the application of this work is based on a comparison of the two above described structured

products, we believe the two contracts should be priced and analyzed using the same numerical

methodology, in order to achieve more reliable results.

As per usual, in case of path dependency property required to determine the final payoff (i.e. Asian

options, barrier options, cliquet options and many other exotics), one of the most commonly used

approach is Monte-Carlo (MC) method since, as opposed to other numerical approaches, offers

a greater flexibility and becomes increasingly attractive compared to other methods of numerical

integration as the dimension of the problem increases.

The first building block of this application based on the globally floored - globally capped and

globally floored - locally capped (from now on simple contract and complex contract, respectively)

is represented by the fair determination of the global and local cap, C and c respectively. To find

these quantities, using Black-Scholes-Merton’s assumptions7, we take the expectation under the risk

7Despite the stringent assumptions of the Black-Scholes-Merton framework, Stoimenov and Wilkens (2005) and

Wilkens and Stoimenov (2007) used the celebrated approach to evaluate structured products issued in Germany.
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neutral distribution of the payoff, discounted at the risk free rate of return, assuming the price and

other contract parameters as given, and solving for the global and local caps that make the price of

the two contracts equal to an assigned level P̂ .

We apply here the standard lognormal model for the reference portfolio, St, so that the accumulation

factors St

St−1
are independent and identically lognormally distributed. The complex contract involves

the sum of lognormal random variables that, with a sufficiently large number of simulations, can

provide arbitrarily close to the true value of the contract (Boyle et al., 1997).

Using the assumption of no arbitrage, the expectation is taken with respect to a transformation of

the original probability measure (i.e. the risk-neutral measure; see Duffie, 2001, for a survey on the

subject).

The applied approach consists of the following steps.

• Select a given vector of parameters, ξ =
[
T X0 = Y0 F r σ δ S0 P̂

]
, where S0

is the current stock price, r is the riskless interest rate, δ and σ are respectively dividend

yield and volatility of the reference portfolio, T is the contract’s maturity, F is the minimum

guaranteed return, X0 is the amount invested, P̂ is the price of the contract at time zero.

• Select an integer q and a q-dimensional vector, Γ, whose elements are the values to be assigned

to the unknown global cap, C.

• Simulate sample paths of the underlying state variables (e.g., underlying reference portfolio

price) over the relevant time horizon, T , according to the risk-neutral measure. As in Black-

Scholes-Merton’s model, we assume the reference portfolio price follows a log-normal diffusion.

Independent replications of the terminal stock price under the risk-neutral measure can be

generated from the formula:

S
(i)
T = S0e

(r−δ− 1
2σ

2)T+σ
√
TZi i = 1, .....m (17)

where the Zi are independent samples from the standard normal distribution and m = 10, 000.

• Evaluate, for each element jth of the q−dimensional vector Γ =
(
Γ(j)

)
j=1,...,q

, the discounted

cash flows of the option component on each sample path, as determined by the structures of

the simple contracts:

P̂
(j)
simple =

1

m

m∑

i=1

e−rTX0

(
(1 + F ) + max

(
0,min

(
Γ(j),

S
(i)
T

S0
− 1

)
− F

))
, j = 1, ..., q. (18)

More realistic assumptions (i.e. stochastic volatility and interest rate; jumps in the stochastic process describing the

underlying dynamics, credit risk, etc.) could be considered, but this is not the focus of this work.

14



• Average the discounted cash flows over sample paths and find j∗ ∈ {1, ..., q} such that Γ(j∗)

minimize the distance of the risk neutral price P̂
(j)
simple from the given price P̂ . Lastly, denote

P̂simple = P̂
(j∗)
simple.

Similarly, we find the local cap level, c, of the complex contract, implementing an appropriate

discretization for (17). Using the given vector of parameters, ξ, and the q-dimensional vector,

γ =
(
γ(j)

)
j=1,...,q

, whose elements are the values to be assigned to the unknown local cap, c, we find

j∗ ∈ {1, ..., q} such that γ(j∗) minimize the distance of the risk neutral price P̂complex from the given

price P̂ :

P̂complex = P̂
(j∗)
complex =

1

m

m∑

i=1

e−rTY0

{
(1 + F ) + max

[
0,

nT∑

k=1

min

(
γ(j∗),

S
(i)
tk

S
(i)
tk−1

− 1

)
− F

]}
.

(19)

To perform the numerical analysis we choose the same vector of parameters, ξ =
[
T X0 = Y0 F r σ δ S0 P̂

]
,

for both simple and complex contracts. The contracts share the same underlying, S, whose dy-

namics are described by (17), with parameters r = 0.05, δ = 0.02, σ = 0.15 and S0 = 10.

Simple and complex contracts have the same maturity (T = 5 years), same initial investment

(X0 = Y0 = 1, 000) and guaranteed minimum return (F = 0.1). The initial price of both contracts

is P̂simple = P̂complex = 920. The complex contract is based on a quarterly sum cap (n = 4) and

its estimated fair cap producing an initial value P̂complex = 920 is ĉ = 0.0867. The fair global cap

level, producing an initial value P̂simple = 920, is Ĉ = 0.3053. The parameters selected for the

application correspond to standard market assumptions. However, results hold also for different

vectors of parameters, ξ.

Given the vector of parameters, ξ, the second building block of the analysis relies on the simulation

of the final payoffs for the simple contract, XT , and complex contract, YT . In addition, here, we

implement stochastic dominance rules in order to classify, according to their final performances, the

two contracts representing the subject of the analysis.

Using (17) and (15), with Γ(j∗) = Ĉ and m = 10, 000 replications, we obtain the empirical proba-

bility distribution for the globally capped contract, XT . Using an opportune discretization for (17)

and (14) , with γ(j∗) = ĉ and m = 10, 000, we get also the empirical probability distribution for YT .

INSERT FIGURE 1 ABOUT HERE.

Caption of Figure 1: Simulated PDFs of the globally and locally capped contracts.

Figure 1 shows the empirical probability distribution functions of the payoffs of the simple (glob-

ally capped, left side), XT , and complex (locally capped, right side), YT , contracts. The complex

contract has a very high probability of yielding the minimum guaranteed return, F = 10%, with a

probability mass of 62.32%. The probability of attaining a return greater than 70% is 0.79%, while

the probability of the maximum attainable return in the right tail, ĉnT = 173, 4%, is practically
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equal to 0.

It is worth to notice that the sum of 20 quarterly returns will be equal to 173, 4% if and only if all

consecutive quarterly returns exceed the local cap level, ĉ = 0.0867, so that the probability of this

event is virtually quite impossible.

On the other hand, the simple contract has a distribution characterized by two probability masses:

one at the minimum guaranteed return F = 10%, with probability 51.65%, and the other at the

maximum attainable return, Ĉ = 30.53%, with probability 30.56%. Thus, investors have a proba-

bility of only 17.79% of obtaining an intermediate return between these two extremes. As it can be

seen, returns are almost uniformly distributed in the central part of the distribution (as shown in

the graph on the left side of Figure 1).

In order to evaluate the random amounts of the two considered contracts via the stochastic dom-

inance criteria discussed in previous section, two distinct prospects for the simple and complex

contracts, with cumulative density functions respectively given by F̂X and F̂Y , are determined.

Given (1) and definition 2, we have that X dominates stochastically Y of order n ∈ N (X >n Y ) if

and only if: 



Â
(n)
X (r) ≤ Â

(n)
Y (r), ∀ r ∈ R

and

∃ r∗ ∈ R such that Â
(n)
X (r∗) < Â

(n)
Y (r∗).

(20)

In order to verify (20), we check whether X dominates Y of order n by invoking the Law of Large

Number on a rather large number of simulations. Firstly, we run the algorithm described in the first

building block to obtain j = 1, ...,K (K = 10, 000) prospects, named X(j) and Y (j). In practice, we

compute:

Ψ
(n)
K =

1

K

K∑

j=1

1
(
D̂

(n)
j (r) ≤ 0, ∀r ∈ R and ∃r∗ : D̂

(n)
j (r∗) < 0

)
(21)

where:

D̂
(n)
j (r) = Â

(n)

X(j)(r) − Â
(n)

Y (j)(r) (22)

and 1(·) denotes the indicator function.

Results can be summarized as follows: global X is not dominated neither dominates local Y of the

first order; in 55% of cases we have X >2 Y and in 100% of cases we obtain X >3 Y.

Applying (20) to the simulated cumulative density functions of simple and complex contracts we ob-

tain results that partially contradict what really happens on real markets and highlight the problem

of investors’ irrational choices. In particular, even though market data suggest that the complex

contract, Y, is more popular than the simpler contract, X, we find that the stochastic dominance

criteria predict that consumers should prefer the simpler contract, X .

The results of the numerical analysis clearly point out that investor which are risk-averse and ex-

pected utility maximizers tend to prefer contract X to contract Y . Therefore, the popularity of
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the locally capped contracts with respect to the globally capped ones is counterintuitive and can

be explained only through the investors’ irrational behavior. Since first order stochastic dominance

requires that investors prefer higher returns to lower ones, implying an utility function with non

negative first derivative, on the ground of the obtained results, we conclude that for this type of

investors we cannot say which is the preferred product. On the contrary, the analysis of second order

stochastic dominance, positing diminishing marginal utility (sufficient for risk aversion), and third

order stochastic dominance, implying the empirical attractive feature of increasing absolute risk

aversion (non-negative third derivative), provide significant results in favor of the simple contract.

It is worth to notice here that the interpretation of the results may be even stronger where it is con-

sidered that many empirical studies find that structured products are more overpriced the harder

they are to evaluate (Wilkens and Stoimenov, 2007; Carlin, 2009; Ruf, 2011; only to cite a few) and

that in our numerical analysis we assume thats simple and complex contracts are both fairly priced.

The third building block of the application is based on the implementation of the misperception

algorithm describing the mechanism that push retail investors to chose complex products, instead of

simple ones. As remarked in the previous section, the misperception algorithm is applied only to one

of the two considered projects since we assume that the complex product, Y , is misperceived. Given

the theoretical results illustrated in the previous section, we will consider rule R2 in the particular

case of constant trend, t(r) = t ∈ R, ∀ r ∈ R to perturbate the empirical cumulative distribution

function of the contract Y and to map Y into Yp.

The misperception algorithm allows us to find the minimum constant trend, t∗, such that FY (r − t∗) ≤

FX (r) for each r ∈ R. The optimal t∗ will provide an inversion of the investors’ preferences according

to first and second order stochastic dominance.

The approach consists in the following steps:

• Given j = 1, ...,K prospects obtained in the second building block, select an integer v and a

v-dimensional vectors, ∆ = (∆(l))l=1,...,v, whose elements are the values to be assigned to the

unknown constant trend, t.

• Perturbate Y through ∆ and set the vector Yp =
(
Y

(l)
p

)
l=1,...,v

.

• Run the algorithm described in the first building block to obtain X(l), with l = 1, ..., v.

• Evaluate, for each element lth of the v−dimensional vector ∆, the stochastic dominance criteria

as determined by the perturbation of the complex contract, Y . In particular, in order to verify

the R2-stochastic dominance, we compute:

Φ(n)
v =

1

v

v∑

l=1

1

(
R̂2D

(n)

l (r) ≤ 0, ∀r ∈ R and ∃r∗ : R̂2D
(n)

l (r∗) < 0

)
(23)

where:

R̂2D
(n)

l (r) = Â
(n)

Y
(l)
p

(r)− Â
(n)

X(l)(r). (24)
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• Find the minimum value l∗ ∈ {1, ..., v} such that Y
(l)
p >n X(l).

Running the procedure for n = 1, 2, we find that: with t∗ = 0.453 the perturbated complex

contract dominate for the first order stochastic dominance the simple one, Y >1R2 X, in the 71% of

the K cases; with t∗ = 0.4672 we have Y >1R2 X, in the 100% of the K cases and with t∗ = 0.0316

the perturbated complex contract dominate for the second order stochastic dominance the simple

contract, Y >2R2 X.

Results imply that if investors erroneously perceive that the probability mass (62.32%) of the complex

contract return is concentrated in correspondence of 46.72% in such a way that the most likely final

wealth is given buy YT = 1613.92, they select the complex contract in light of the first stochastic

dominance criteria.

4 Results and concluding remarks

In this paper the issue of misperception is tackled, with a particular reference on why and how

it takes place. A theoretical analysis, supported by simulations, is presented. The misperception

mechanism is implemented to explain the popularity of some complex structured financial prod-

ucts. In particular, the preference accorded by investors to locally-capped contracts with respect to

globally-capped ones may be motivated by the framing effect, which is a trick commonly exploited

by financial institutions to pursue profit targets.

Some points need to be emphasized, in order to highlight the main findings of this paper.

• Simulation results allows to state an hypothesis to formalize the misperception mechanism for

locally-capped contracts. It is undoubtedly true that a violation takes place, since the complex

contracts are unreasonably more popular than the simple ones. An explanation of the reasons

why global caps are misperceived is obtained by analyzing the main features of this type of

financial product and developing a behavioral finance argument.

We recall that the presence of a guaranteed minimum return and the easy access to these

products make them suitable for retail investors and households. The behavior of this type

of agents is generally driven by their confidence on the financial institutions proposing the

investments. In this respect, the intervention of investment banks and insurance companies

in retail investors’ decisions plays a key role. Financial institutions pursue profit targets and

therefore may present financial products in a rather fraudulent fashion, exploiting the fram-

ing effect on investors’ choices. Structured financial products, with a particular focus on the

locally-capped contracts, can be seen as a case of misperception due to framing. Financial

institutions usually show to potential investors some prospectuses on the future performances

of the instument with local cap. Clearly, not all the possible scenarios can be shown, because
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of the randomness of the evolution of the underlying. Scenarios may vary depending on two

variables: the expected returns at the expiration date and their probabilities of occurrence.

A fair and honest proposal should reflect either optimistic and pessimistic outcomes, and the

sample of scenarios should be opportunely weighted with their related occurrence probabilities.

Almost all developed Countries regulates this aspect, by introducing some devoted regulations.

For instance, the Federal Act on Collective Investment Schemes (the so-called CISA) entered

into force in Switzerland on January 1st, 2007, establishing some transparency and simplifica-

tion criteria introduced to guarantee a conscious understanding of structured products. CISA

provides also a guideline to the contents of the prospectuses that financial institutions should

submit to investors’ attention. A further example can be found in the Prevention of Fraud

(Investments) Act, issued in UK in 1959 and aimed at protecting investors by the introduction

of penalties for fraudulently inducing investors to invest their money. In a larger sense, this

rule induces banks and insurance companies to propose structured financial products without

reticences on their negative admissible future performances. Unfortunately, the reality is quite

different and the state securities acts are systematically violated. It is also worth noticing that

the mispricing of complex structured products is commonly accepted to be one of the roots of

the actual financial crisis since they are subject also to credit risk and their true implicit risk

is not fully disclosed to investors. The prospectuses that investment banks propose to their

clients are often too optimistic and the framing effect may push investors to purchase these

products, even if they are reasonably unsuitable for a wide part of households. Some details

on this are presented in Bernard et al. (2011), where some samples of real prospectuses for

locally-capped contracts are reported. Furthermore, in Illinois the lawyers Burke and Stolt-

mann are preparing arbitration claims to recover losses against Wall Street brokerage firms for

the selling of structured products8. They deeply investigate this phenomenon and conclude

that such investments were not clearly presented to investors and inappropriately pitched as

100% safe and secure.

To conclude, we think that financial institutions are sometimes morally responsible for the

negative consequences due to investors’ misperception, in the sense that they frame in an

unclear way the main characteristics of such investments to pursue profit targets. Bernard

et al. (2011) report some real examples extracted from the prospectus proposed by several

investment banks.

• The introduction of a new definition of stochastic dominance is needed to capture the selective-

ness of the distortions in evaluating different projects. With this respect, we propose stochastic

dominance rules based on the misperception of one of the investments to be compared. This

asymmetry is grounded on the evidence, discussed partially above, that investment banks may

8More information on http://www.structuredproductfraud.com/
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emphasize some positive aspects and be reticent on other remarkable characteristics of the

investments. In this case, it is rather obvious that just one of such investments will be misper-

ceived by the client. In this direction, it would be an intriguing development of this work the

replication of the original Kahneman and Tversky’s experiment. One may subgroup people

in two identical populations P1 and P2 and propose two gambles, say G1 and G2, with G1

stochastically dominating by G2. Letting G2 always fairly presented, one could present G1

fairly to P1 and frame G1 with optimistic scenarios for population P2. By repeating the ex-

periment for a large number of optimistic prospectuses, an empirical analysis of the stochastic

dominance inversion by comparing the behaviors of P1 and P2 may be performed. One can

also get information on the risk attitudes of the population P2. Moreover, if the misperception

is hypothesized to depend on a deterministic trend rule on G1 as in our approach, it is possible

to deduce the minimal levels of trend parameters allowing the violation of n-th order stochastic

dominance.

• Misperception is theoretically attained when the complex contracts are distorted by the intro-

duction of a trend, while no stochastic dominance violation takes place when a lump sum is

introduced. This finding provide an interesting information on the nature of the human judg-

ment implemented by investors, when the performance measure is the stochastic dominance.

A trend affects the entire set of realizations of a random amount, while a lump sum is related

to an impulsive shock. Therefore, investors having a certain global misperception irrationally

prefer the worst project. Conversely, the presence of an isolate gain in the dominated invest-

ment is not able to invert subjects’ mind and drive the decision process. A future theoretical

research in this direction concerns the introduction of different misperception rules.
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