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Abstract

This paper deals with the theoretical analysis of the long-term memory property of time

series generated by the aggregation of heterogeneous terms. The diversity is captured by the

different features regarding the persistence of each component. It is shown that the memory of

the aggregation is driven by the one related to some key components. The argument is carried

out by developing an equilibrium model for asset prices in a financial market with heterogeneous

agents.

1 Introduction

The evolution of an economic system is strongly related to the agents populating the system itself.

In this regard, it is worth to focus attention to the important role played by the diversity between

units.

The analysis if the diversity have become a remarkable aspect of the decision theory for what con-

cerning the selection of multiple elements belonging to different families of candidates (Yager, 2010).
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In some other contexts, diversity rules the connection among heterogeneous agents to share infor-

mation and collaborate or compete (Gifford and Agah, 2009). In this respect, the diversity may also

be an indicator of the performance of the strategies in a dynamic optimization framework (Pelta et

al., 2009).

In this paper, we deal with a complex multi-agent system apt to implement the theoretical analysis

of the persistence properties of a financial time series. More precisely, we investigate the presence of

long memory in the time series of the price of an asset traded in a financial market. The concept of

diversity introduced in our model mirrors in the heterogeneity of the agents. In this respect, agents

are heterogeneous in the rule adopted to evaluate the future realizations of the asset price and in the

way to implement such a rule. The former aspect captures the subjectivity of the beliefs, while the

latter takes into account how the agents physically trade, with particular reference to the technical

analysis of the market.

The concept of long memory is raised in time series empirical analysis in terms of the persistence

of observed autocorrelations. The long memory property is fulfilled by a time series when the au-

tocorrelation decays hyperbolically as the time lag increases. This statistical feature is, therefore,

strongly related to the long-run predictability of the phenomenon.

Long memory models were first introduced into the physical sciences in 1950, when some research

into applied statistics reported instances of long memory within hydrologic and climatologic data.

The earliest studies in this field were carried out by Hurst (1951, 1957), Mandelbrot and Wallis

(1968), Mandelbrot (1972), and McLeod and Hipel (1978) among others.

In recent years, quantitative studies of financial markets have shown the persistence properties of the

financial time series. In this respect, the long memory of the volatility has been evidenced through

the analysis of various speculative returns (Ding and Granger, 1996a and Bollerslev and Mikkelsen,

1996) in power transformations of foreign exchange rate returns (Ding and Granger, 1996b) and also

in stock price time series (Ausloos and Ivanova, (1999) and Vandewalle and Ausloos, (1998)). For

what concerns the persistence of the prices, this property has been tackled by Wei and Leuthold

(2000) in the context of the agricultural futures, while Lo (1991) and Cheung and Lai (1993) focus

on the evidence of long memory in certain stock prices and analyze also the gold market returns.

Fung et al. (1994) show no consistent pattern of persistence in S&P 500 index futures prices.

In this paper, a theoretical structural microeconomic model is constructed and developed. We

provide the mathematical analysis of the exact relationship between the model parameters which

support the presence of long memory at the aggregate level.

We proceed by adopting the approach of the agent-based structural model of Kirman and Teyssiere

(2002). The market is populated by heterogeneous agents, and their aggregation affects the structure

of the asset price dynamics. In particular, each agent carries out price forecasts using a short term

approach, but collective behavior can exhibit long-memory property. In this context, we extend
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some existing results (see Zaffaroni 2004, 2007a, 2007b) about long-memory property arising due to

the aggregation of micro units, by enlarging the class of probability densities of agents’ parameters.

As already stated above, the concept of diversity contained in our model pertains to agents’ hetero-

geneity. In this respect, two cases of heterogeneity are developed:

• The first case concerns agents wearing two different hats at the same time: the asset price

forecasts are driven by a fundamentalist and a chartist one. An agent is fundamentalist if

she/he believes that the price of an asset is determined by its fundamental value. In contrast,

chartists carry out technical analysis of the market and do not take the fundamentals into

account (see Brock and Hommes (1998) for a financial market populated by fundamentalist

and chartist investors).

• The second case relies to agents performing different types of technical analysis of the market.

In this respect, we highlight the distinction between impulsive traders and long period investors.

The former type of agents takes position in a market for a very short horizon, while the trading

strategies of the latter type are performed in a long time horizon.

The rest of the paper is organized as follows: Section 2 introduces the economic model; Section

3 contains the analysis of the long memory property, with a particular reference to the diversity

among agents. Last section concludes and outlines some further research lines. The proofs of the

main results are relegated to the Appendix.

2 The model

The basic features of the market model we are going to set up, are the existence of two groups of

agents, with heterogeneity inside each group.

Let us consider a market with N agents who can invest either in a risk-free or in a risky asset. The

risk free bond has a constant interest rate r ∈ (0, 1).

Let Pt the price of the risky asset and Pi,t the estimate of it carried out by the agent i at time t.

The change of the price at time t + 1 forecast by the i-th agent, conditioned to her/his information

at time t, Ii,t, is given by ∆Pi,t+1|Ii,t .

We assume that the market is not efficient, i.e. we can write the following relationship:

E(Pt+1|It) = ∆Pt+1|It + Pt (1)

where E is the expected value operator and It is the information available up to time t.

The behavior of the investors is due to analysis of the market data (using a typical chartist approach)

and to the exploration of the behavior of market fundamentals (using a fundamentalist approach).

Moreover, the forecasts are influenced by an error term, common to all the agents:

(∆Pi,t+1|Ii,t) = (∆P c
i,t+1|Ii,t) + (∆P f

i,t+1|Ii,t) + ut, (2)
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where (∆P c
i,t+1|Ii,t) is the contribution of the chartist approach, (∆P f

i,t+1|Ii,t) is associated to the

fundamentalist point of view and ut is a stochastic term representing an error in forecasts, i.e. ut is

i.i.d. with mean 0 and variance σ2
u.

As a first step, we assume without loss of generality1 that all the agents have the same weight in

the market and that the price Pt of the asset in the market at time t is given by the mean of the

asset price of each agent at the same time. So we can write

Pt =
1
N

N∑

i=1

Pi,t. (3)

Equation (3) is a type of market clearing price condition.

We now describe the price formation mechanism of the agents.

The chartists glean information from the time series of market prices. The i-th agent’s price change

forecast is assumed to be given by the following linear combination:

∆P c
i,t+1|Ii,t = α

(1)
i (Pi,t − Pi,t−1) + α

(2)
i Pt, (4)

with α
(1)
i , α

(2)
i ∈ [0,+∞), ∀ i = 1, . . . , N . Formula (4) encapsulates the idea of a stochastic relation-

ship providing the estimated change in prices by relying on a linear combination of the two previous

price forecasts, adjusted to the actual market price obtained at the relative time.

The fundamentalist approach takes the analysis made by the investors about market fundamental

value into account.

The fundamental variables P̄i,t can be described by the following random walk:

P̄i,t = P̄i,t−1 + εt, εt ∼ N(0, σ2
ε ). (5)

The fundamental prices observed by the agent i at time t, P̃i,t, are assumed to be biased by a

stochastic error:

P̃i,t = P̄i,t + ᾱi,t,

with ᾱi,t = βiPt, where the n-ple (β1, . . . , βN ) is drawn by sampling from the cartesian product

(1− ξ, 1+ ξ)N , ξ > 0, equipped with the relative product probability measure. The definition of ᾱi,t

takes into account the fact that the error in estimating depends on the adjustment performed by each

agent of the market price. More precisely, the observation of the fundamental prices is affected by

the subjective opinion of the agents about the influence of the market price on the fundamental. If

βi > 1, then agent i guesses that the market price is responsible for an overestimate of fundamental

prices. Otherwise, the converse situation applies.

Moreover, the forecasts of the fundamentalist agents are based on fundamental prices and their

forecasts about market prices at the previous data. So we can write

∆P f
i,t+1|Ii,t = ν(P̃i,t − Pt), (6)

1It is easy to prove that our arguments continue to hold, also when the agents have different sizes in the market

(see Cerqueti and Rotundo, 2010).
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with ν ∈ R. Thus

∆P f
i,t+1|Ii,t = νP̄i,t + ν(βi − 1)Pt. (7)

Remark 1. By comparing (4) and (7), it must be α
(2)
i = ν(βi − 1). We state this condition for the

remaining part of the paper.

Let us define di,t to be the demand of the risky asset of the agent i at the date t.

The estimated wealth of the agent i at time t + 1 is given by Wi,t+1, and it is given by:

Wi,t+1 =
(

1 +
Pi,t+1 − Pi,t

Pi,t

)
Pi,tdi,t + (Wi,t − Pi,tdi,t)(1 + r). (8)

By (8), the expression of Wi,t+1 can be rewritten as:

Wi,t+1 = ∆Pi,t+1di,t + Wi,t(1 + r)− rPi,tdi,t. (9)

Each agent i at time t optimizes the mean-variance utility function

U(Wi,t+1|Ii,t) = E(Wi,t+1|Ii,t)− µV(Wi,t+1|Ii,t),

where V is the usual variance operator, and thus:

E(Wi,t+1|Ii,t) = (∆Pi,t+1|Ii,t)di,t + Wi,t(1 + r)− rPi,tdi,t

and

V(Wi,t+1|Ii,t) = V(Pi,t+1|Ii,t)(di,t)2.

Each agent i maximizes her/his expected utility with respect to her/his demand di,t, conditioned to

her/his information at the date t. For each agent i the first order condition is

(∆Pi,t+1|Ii,t)− rPi,t − 2µV[(Pi,t+1|Ii,t)]di,t = 0,

By the first order conditions we obtain

di,t = bi,tPi,t + gi,t(∆Pi,t+1|Ii,t)

with

bi,t =
−r

2µV((Pi,t+1|Ii,t))
; gi,t =

1
2µV((Pi,t+1|Ii,t))

.

Let Xi,t be the supply function at time t for the agent i. We have the following equilibrium relation:

Xi,t = bi,tPi,t + gi,t(∆Pi,t+1|Ii,t). (10)

Let us denote

γi,t =
Xi,t

bi,t
, c = −1

r
=

gi,t

bi,t
, λi :=

−cα
(2)
i

1 + cα
(1)
i

. (11)
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By (2), (4), (7) and (10) we get:

Pi,t =
1

1 + c
· 1− λi

1− λiL

{
γi,t − cνP̄i,t − ut

}
, (12)

where L is the backward time operator, i.e. LPi,t = Pi,t−1.

Condition (3) and equation (12) allow us to write the market price as

Pt =
1
N

N∑

i=1

[ 1
1 + c

· 1− λi

1− λiL

{
γi,t − cνP̄i,t − ut

}]
. (13)

The parameter λi is particularly relevant in describing the heterogeneity of the agents. Indeed, it

provides information on the technical analysis of the market performed by the i-th agent. As we

will see below, the λ’s play a central role in determining the persistence properties of the price.

3 Diversity and long term memory

This section shows the long-term memory property of market price time series. In particular, we

focus on the theoretical conditions on the parameters distribution and on the stochastic processes

that are needed for long memory.

In order to proceed, the following technical assumption is needed:

Assumption 2. α
(2)
i < r.

The relation between the indices i and t in defining the process γi,t is outlined in the following

Assumption.

Assumption 3. There exist N random variables w1, . . . , wN and a stochastic process zt, independent

on ut, such that:

• E[wj ] = ω̄ ∈ R, for each j = 1, . . . , N ;

• wi is independent on λi, for each i = 1, . . . , N ;

• zt are i.i.d., with mean 0 and variance σ2;

• for each i = 1, . . . , N and t ≥ 0, it results γi,t = zt · wi.

Assumption 3 states that in our model the excess of demand compensates, on average, the excess

of supply. The diversity in our model mirrors in the distributional hypotheses on the agent-based

random variables λ’s. As already stressed above, the parameter λi provides a description of the

forecast rule used by the i-th agent when wearing a chartist hat. In this respect, homogeneity means

that λi are identically distributed, while heterogeneity holds otherwise.

In determining the distributional hypothesis on the λ’s, we basically take into account two types of

investors: impulsive traders and long run traders. The former type of agents performs an analysis
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of the market, following a chartist approach, only in rare situation. The latter type of agents deals

with a technical analysis of the market continuously in time.

We initially analyze homogeneity among agents, and then move to heterogeneity.

The first result concerns the case of a very general two-parameter distribution, able to describe

several types of agents as the value of the parameters varies. For the proof, see the Appendix.

Theorem 4. Let us assume that there exists a, b ∈ (0,+∞) such that λi are sampled by a B(a, b)

distribution, for each i = 1, . . . , N .

Then, as N → +∞, the long-term memory property for Pt holds, with Hurst’s exponent HB ≤ 1/2.

As the parameters of the Beta distribution vary, several types of continuous-time traders may

be described. Furthermore, the proof of Theorem 4 evidences that the distributional hypothesis on

λ may be relaxed. The following Corollary states immediately:

Corollary 5. Assume that:

E[λk
i ] ∼ O(c)k−1−b + o(k−1−b) as k → +∞. (14)

Then, as N → +∞, the long-term memory property for Pt holds, with Hurst’s exponent HB ≤ 1/2.

We now move from homogeneity to agents gathered in several groups. Each group has its own

impact on the market and exhibits organized heterogeneity among its components.

By a mathematical perspective, this assumption is equivalent to the study of the aggregate of a

mixture of absolute continuous distributions for the parameters λ’s.

More precisely, we introduce a group of investors that concentrate their attention in a small set of

events, i.e. the behavior of these agents is given by not assuming a position for the most part of the

market traffic, and take part heavily in some particular and rare situations. We formalize this kind

of behavior by using Dirac measures δx(y) as follows:

δx(y) =





1, for x = y,

0, for x 6= y.

The proof of next result is contained in the Appendix.

Theorem 6. Consider b1, . . . , bk ∈ (0, +∞) and A1(N), . . . , Ak(N) ⊆ {1, . . . , N} such that λi are

sampled by B(a, bj) distribution, for each i ∈ Aj(N), j = 1, . . . , k.

Moreover, consider dk+1, . . . , dn ∈ (0, 1) and Ak+1(N), . . . , An(N) ⊆ {1, . . . , N} such that λi ∼ δdi ,

for each i ∈ Aj(N), j = k + 1, . . . , n.

Assume that there exists pj ∈ (0, 1) such that

lim
N→+∞

cardAj(N)
N

= pj , ∀ j = 1, . . . , n.

Furthermore, assume that λi are sampled by independent random variables.

Then, as N → +∞, Pt has the long term memory, with Hurst’s exponent HD ≤ 1/2.
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4 Conclusions and further developments

In this work we analyze the role of the diversity of agents in exploring long term memory of fi-

nancial time series. The agents are supposed to drive actively the price formation of an asset, and

heterogeneity mirrors in the way to make forecasts (chartist and fundamentalist) and in the way to

technically analyze the market (distribution of the parameters λ’s).

We extend some results present in the literature about the arise of the long memory property due

to the aggregation of independent micro units.

We prove that the persistence of the price process cannot be explained by the contributions due to

spot traders. This finding is completely compatible with the evidence: the occurrence of an impul-

sive phenomenon cannot be responsible for long-run equilibrium properties.

This model has a natural extension in the study of the persistence properties of the price dynamics in

presence of correlation among agents. In this respect, we aim at entering the endogenous correlation

structure of the agents, by measuring the impact of a hierarchical structure in price persistence as

well as the presence of a contagion effect.
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Appendix

Proof of Theorem 4

To prove the result, we need to rewrite the process Pt as the sum of three components:

Pt = Γ1
t + Γ2

t + Γ3
t , (15)

where 



Γ1
t = 1

N(1+c)

N∑

i=1

1− λi

1− λiL
γi,t;

Γ2
t = −cν

N(1+c)

N∑

i=1

1− λi

1− λiL
P̄i,t;

Γ3
t = − 1

N(1+c)

N∑

i=1

1− λi

1− λiL
ut.

(16)

By definition of the model, the processes Γ’s are independent. Hence, we can analyze separately the

long term memory property of the Γ’s.

Denote as λ and w the random identically distributed random variables λi and wj . Furthermore,

denote as F the joint cumulative distribution function of (λ,w) and FΛ be the marginal distribution

of λ.

In the limit for N →∞ we have

Γ1
t = lim

N→+∞
1

N(1 + c)

N∑

i=1

1− λi

1− λiL
γi,t = − 1

1 + c

∫ 1

0

1− λ

1− λL
wztdF (λ,w) =

= − 1
1 + c

ω̄

∫ 1

0

1− λ

1− λL
ztdFΛ(λ) = − 1

1 + c
ω̄

∫ 1

0

(1− λ)
∞∑

k=0

(λL)kztdFΛ(λ) =

= − 1
1 + c

ω̄

∞∑

k=0

∫ 1

0

(1− λ)λkzt−kdFΛ(λ) = − 1
1 + c

ω̄

∞∑

k=0

[ ∫ 1

0

(1− λ)λkdFΛ(λ)
]
zt−k =:

∞∑

k=0

akzt−k,

(17)

where

ak ∼
∫ 1

0

(1− λ)λk−1dFΛ(λ) = E[λk]−E[λk+1].
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Since λ ∼ B(a, b), we have:

ak ∼ k−b−2. (18)

Therefore, Γ1
t faces the same asymptotic behavior of an I(d) process, with d = −b− 1. Since b > 0,

we have that Γ1
t can be represented as an integrated process of order d < −1. Hence, Γ1

t does not

have the long-term memory property.

For what regards the process Γ3
t , fixed h > 0, we have

E
[
Γ3

t Γ
3
t−h

]
= E

[ 1
N
· −c

1 + c

N∑

i=1

1− λi

1− λiL
ut · 1

N
· −c

1 + c

N∑

j=1

1− λj

1− λjL
ut−h

]
=

= E
[ c2

(1 + c)2

∞∑
m=0

∫ 1

0

(1− λ)λmut−mdF (λ)
∞∑

l=0

∫ 1

0

(1− µ)µlut−h−ldF (µ)
]

=

=
1

β(a, b)
· c2σ2

u

(1 + c)2

∞∑

l=0

∫ 1

0

(1− λ)1+bλ2l+h+a−1dλ =

=
1

β(a, b)
· σ2

u

(1 + c)2

∞∑

l=0

Γ(h + a + 2l)Γ(b + 2)
Γ(h + a + b + 2l + 2)

∼ 1
β(a, b)

· σ2
u

(1 + c)2
h−1−b. (19)

Then, Rangarajan and Ding (2000) assures that: as N → +∞, the long-term memory property for

Γ3
t holds, with Hurst’s exponent H3 as follows:

• b > 1 implies H3 = 1/2:

• b ∈ (0, 1) and the following equation holds:

+∞∑

h=−∞
E[Γ3

t Γ
3
t−h] = 0, (20)

imply H3 = (1− b)/2. In this case it results H3 < 1/2, and the process Γ3
t is mean reverting.

Since

P̄i,t =
t−1∑

j=0

εt−j + P̄i,0,

then P̄i,t is a stationary process, and the arguments carried out for Γ3
t can be replicated to state

that the long memory property holds for Γ2
t as N → +∞. The Hurst exponent is H2.

By Granger (1980), we have that

HB = max{H2,H3}. (21)

Proof of Theorem 6

The process Pt can be disaggregated as follows:

Pt =
k∑

j=1

Φj
t +

n∑

j=k+1

Ψj
t , (22)
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where




Φj
t = 1

N

∑

i∈Aj(N)

[ 1
1 + c

· 1− λi

1− λiL

{
γi,t − cνP̄i,t − ut

}]
, j = 1, . . . , k;

Ψj
t = 1

N

∑

i∈Aj(N)

[ 1
1 + c

· 1− λi

1− λiL

{
γi,t − cνP̄i,t − ut

}]
, j = k + 1, . . . , n.

(23)

In order to proceed, we need to study the behavior of the k−th moments of the Dirac distribution,

with k ∈ N.

A direct computation gives:

E
[
(δx)k

]
=

∫ +∞

−∞
ξkδx(ξ)dξ = xk.

Therefore, the terms related to the processes Ψ’s do not contribute to the long memory of the process

Pt.

By Theorem 4, we have that the process Φj
t has an Hurst exponent Hj ≤ 1/2. Since the λ’s are

independent and by Granger (1980), we obtain that

HD = max{H1, . . . ,Hk} ≤ 1/2, (24)

and this completes the proof.
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