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Abstract

This paper provides a solution of a generalized eigenvalue problem
for a fractional integrated processes. To this end two random matrices
are constructed in order to take into account the stationarity proper-
ties of the differences of a fractional p-variate integrated process. The
matrices are defined by some weight functions and the difference orders
are assumed to vary in a continuous and discrete range. The asymp-
totic behavior of these matrices is obtained imposing some conditions on
the weight functions. Using Bierens (1987) and Andersen et al. (1983)
results, a generalized eigenvalues problem is solved.
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1 Introduction and preliminaries

This paper proposes a solution of a generalized eigenvalues for fractional inte-
grated process. The eigenvalue problem is solved by considering a combination
of two random matrices constructed by taking into account the stationarity
properties of the differences of a fractional p-variate integrated process. The
random matrices are defined using weight functions and the difference orders
are assumed to vary in a continuous and discrete range. The continuous case is
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general since it takes into account the whole set of information. A discretiza-
tion of the continuous case based on the set of the rational number Q, dense
in R, is also provided and not irrelevant number of difference orders is con-
sidered. The asymptotic behavior of these random matrices are then obtained
and a solution of a generalized eigenvalues is given.
The paper is organized as follows. Section 2 presents the data generating pro-
cess. In Section 3 the convergence of random matrices is studied. Last Section
concludes.

2 Data generating process

In this section the data generating process is described. We consider a p-variate
fractional, non explosive, non stationary integrated process Yt satisfying the
following definition.

Definition 2.1 Given p ∈ N, a p-variate time series {Yt} is a fractional
integrated process with fractional degree of integration 1/2 < d ≤ 1 if

Yt =
∞∑

j=0

cjεt−j with cj =
Γ(j + d)

Γ(j + 1)Γ(d)
, (1)

where {εt}t>0 is an i.i.d. p-variate vector sequence with zero mean. We denote
Yt ∼ I(d).

The following Assumptions are required.

Assumption 2.2 There exists a p-squared matrix of lag polynomials in the
lag operator L such that

εt =
∞∑

j=0

Cjvt−j =: C(L)vt, t = 1, . . . , n, (2)

where vt is a p-variate stationary white noise process.

Assumption 2.3 The process εt can be written as in (2), where vt are i.i.d.
zero-mean p-variate gaussian variables with variance equals to the identity ma-
trix of order p, Ip, and there exist C1(L) and C2(L) p-squared matrices of lag
polynomials in the lag operator L such that all the roots of detC1(L) are outside
the complex unit circle and C(L) = C1(L)−1C2(L).

The lag polynomial C(L) − C(1) attains value zero at L = 1 with fractional
algebraic multiplicity equals to d. Thus there exists a lag fractional polynomial

D(L) =
∞∑

k=0

DkL
ζk , Dk, ζk ∈ R, ∀ k = 1, . . . , +∞,
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such that C(L)− C(1) = (1− L)dD(L) and ζk is increasing.
Therefore, we have

εt = C(L)vt = C(1)vt + [C(L)− C(1)]vt = C(1)vt + D(L)(1− L)dvt. (3)

Let us define wt := D(L)vt. Then substituting wt into (3), we obtain

εt = C(1)vt + (1− L)dwt. (4)

(4) implies that, given Yt ∼ I(d), we can write recursively

Yt = Y0 + (1− L)2−dwt − (1− L)1−dw0 + C(1) · (1− L)1−d
t∑

j=1

vj. (5)

Assumption 2.4 Let us consider Rr the matrix of the eigenvectors of C(1)C(1)T

corresponding to the r zero eigenvalues. Then the matrix RT
r D(1)D(1)T Rr is

nonsingular.

Assumption 2.4 implies that Yt cannot be integrated of order d̄, with d̄ > d. In
fact, if there exists d̄ > d such that Yt ∼ I(d̄), then the lag polynomial D(L)
admits a unit root with algebraic multiplicity d̄ − d, and so D(1) is singular.
Therefore RT

r D(1)D(1)T Rr is singular, and Assumption 2.4 does not hold.

3 Convergence of a pair of random matrices

and their generalized eigenvalue

In this section two random matrices which takes into account the stationary
and nonstationary part of the data generating process are constructed using
the α-th differences of Yt. Depending on the choice of α, ∆Yt can be stationary
or non stationary:

• if α < d− 1/2, then ∆αYt is nonstationary;

• if d− 1/2 ≤ α ≤ d + 1/2, then ∆αYt is stationary.

The difference orders are assumed to vary in a continuous and discrete range.

3.1 The continuous case

In this section the entire set of the admissible differences of Yt is considered.
Fixed α ∈ (−∞, d + 1/2], the α-th difference of the process Yt is opportunely
weighted by some functions depending on α. Then, all these terms are aggre-
gated by integrating on α. The random matrices are assumed to be dependent
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on an integer number m ≥ p.
Let us fix k = 1, . . . , m, and define the functions

Fk : [0, 1] → R; (6)

Gk,α : [0, 1] → R, α ∈ (−∞, d− 1/2);

Hk,α : [0, 1] → R, α ∈ [d− 1/2, d + 1/2].

Moreover, we consider a couple of sequences:

{φ1(n, α)} ⊆ R, α ∈ (−∞, d− 1/2), n ∈ N;

{φ2(n, α)} ⊆ R, α ∈ [d− 1/2, d + 1/2], n ∈ N.

By using the previous definitions of functions and sequences, two random ma-
trices are constructed:

Am :=
m∑

k=1

an,ka
T
n,k; (7)

Bm :=
m∑

k=1

bn,kb
T
n,k, (8)

where

an,k :=
Mnonst

n /
√

n√∫ ∫
Fk(x)Fk(y) min{x, y}dxdy

; (9)

bn,k :=

√
nM st

n√∫
Fk(x)2dx

, (10)

and

Mnonst
n =

1

n

n∑

t=1

Fk(t/n)∆d−1Yt +
∫ d−1/2

−∞

[
φ1(n, α)

n∑

t=1

Gk,α(t/n)∆αYt

]
dα; (11)

M st
n =

1

n

n∑

t=1

Fk(t/n)∆dYt +
∫ d+1/2

d−1/2

[
φ2(n, α)

n∑

t=1

Hk,α(t/n)∆αYt

]
dα, (12)

The main result of this work is obtained by an asymptotic analysis of a
particular combination of the random matrices. These random matrices are
defined on the basis of the weight functions F ’s, G’s and H’s.1 Two definitions
are proposed in order to describe three functional classes in which the weight
functions lies.

Definition 3.1 Let us fix m ∈ N, k = 1, . . .m.

1Differently from our approach, that follows Bierens’ one, one could adopt Breitung
(2002), that is based on functionals of the partial sums of the process.
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(i) There exists a function θ1 : (−∞, d− 1/2) → R and φ1 : N× (−∞, d−
1/2) → R such that

α 7→ θ1(α), θ1 ∈ L1(−∞, d− 1/2)

and

∣∣∣
√

nφ1(n, α)
n∑

t=1

Gk,α(t/n)
∣∣∣ ≤ θ1(α), ∀α ∈ (−∞, d− 1/2), ∀n ∈ N.

(ii) For each α ∈ (−∞, d− 1/2), it results

lim
n→+∞

√
nφ1(n, α)

n∑

t=1

Gk,α(t/n) = 0; (13)

(iii) There exists a function θ2 : [d − 1/2, d + 1/2] → R and φ2 : N × [d −
1/2, d + 1/2] → R such that

α 7→ θ2(α), θ2 ∈ L1[d− 1/2, d + 1/2]

and

∣∣∣nφ2(n, α)
n∑

t=1

Hk,α(t/n)
∣∣∣ ≤ θ2(α), ∀α ∈ [d− 1/2, d + 1/2], ∀n ∈ N.

(iv) For each α ∈ [d− 1/2, d + 1/2], it results

lim
n→+∞nφ2(n, α)

n∑

t=1

Hk,α(t/n) = 0; (14)

The functional classes Gm,α and Hm,α are

Gm,α :=
{
Gk,α : [0, 1] → R | (i), (ii) hold

}
. (15)

Hm,α :=
{
Hk,α : [0, 1] → R, | (iii), (iv) hold

}
. (16)

Definition 3.2 Consider the following conditions:

1√
n

n∑

t=1

Fk(t/n) = o(1) as n → +∞; (17)

1

n
√

n

n∑

t=1

tFk(t/n) = o(1) as n → +∞; (18)

∫ ∫
Fi(x)Fj(y) min{x, y}dxdy = 0, i, j ∈ N, i 6= j; (19)
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∫
Fi(x)

∫ x

0
Fj(y)dxdy = 0, i, j ∈ N, i 6= j; (20)

∫
Fi(x)Fj(x)dx = 0, i, j ∈ N, i 6= j. (21)

The functional class Fm is

Fm :=
{
Fk : [0, 1] → R, Fk ∈ C1(0, 1) | (17) − (21) hold, k = 1 . . . ,m

}
. (22)

Bierens (1997) shows that the functional class Fm is not empty. He points out
that if one define

F̄k : R → R

such that
F̄k(x) = cos(2kπx), (23)

and taking the restriction
Fk := F̄k|[0,1],

then Fk ∈ Fm.
Moreover Gm,α andHm,α are not empty and contain a huge number of elements.
Therefore it is not restrictive to assume that the weights G’s and H’s belong
to these spaces. Some properties of Gm,α and Hm,α are showed in order to
evidence the big cardinality of these spaces.

Proposition 3.3 Gm,α and Hm,α are closed with respect to the linear com-
bination.

Proof.
We provide only the proof for the functional space Gm,α, being the one for
Hm,α analogous.
Given k = 1, . . . , m and α ∈ (−∞, d− 1/2), let us consider

Gj
k,α : [0, 1] → R, j = 1, . . . , N, N ∈ N

such that Gj
k,α ∈ Gm,α.

Define

Gk,α :=
N∑

j=1

qjG
j
k,α, qj ∈ R, ∀ j = 1, . . . , N.

Conditions (i) and (ii) of Definition 3.1 can be rewritten by indexing with j
the sequence φ1 and the function θ1, for j = 1, . . . , N , where N ∈ N,

(i) There exists a function θj
1 : (−∞, d− 1/2) → R and φj

1 : N× (−∞, d−
1/2) → R such that

α 7→ θj
1(α), θ1 ∈ L1(−∞, d− 1/2)

and
∣∣∣
√

nφj
1(n, α)

n∑

t=1

Gj
k,α(t/n)

∣∣∣ ≤ θj
1(α), ∀α ∈ (−∞, d− 1/2).
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(ii) For each α ∈ (−∞, d− 1/2), it results

lim
n→+∞

√
nφj

1(n, α)
n∑

t=1

Gj
k,α(t/n) = 0; (24)

Condition (ii) is fulfilled for Gk,α. In fact, by choosing φ1 such that

φ1(n, α) = o(φj
1(n, α)), ∀ j = 1, . . . , N, as n → +∞,

then

lim
n→+∞

√
nφ1(n, α)

n∑

t=1

Gk,α(t/n) = lim
n→+∞

√
nφ1(n, α)

n∑

t=1

[ N∑

j=1

qjG
j
k,α(t/n)

]
=

=
N∑

j=1

qj

[
lim

n→+∞
√

nφ1(n, α)
n∑

t=1

Gj
k,α(t/n)

]
= 0.

Furthermore, by using φ1 as above it results

∣∣∣
√

nφ1(n, α)
n∑

t=1

Gk,α(t/n)
∣∣∣ =

∣∣∣
√

nφ1(n, α)
n∑

t=1

[ N∑

j=1

qjG
j
k,α(t/n)

]∣∣∣ ≤

≤
N∑

j=1

|qj|
∣∣∣
√

nφ1(n, α)
n∑

t=1

Gj
k,α(t/n)

∣∣∣ ≤
N∑

j=1

|qj|θj
1(α).

Since L1 is closed with respect to the linear combinations, then

N∑

j=1

|qj|θj
1(α) ∈ L1(−∞, d− 1/2),

and condition (i) holds.
As a consequence of the previous result, the following topological property of
Gm,α and Hm,α can be obtained.

Corollary 3.4 Gm,α and Hm,α are convex sets.

Proof.
Only the proof for the functional space Gm,α is provided.
For k = 1, . . . ,m and α ∈ (−∞, d− 1/2), we define a couple of functions

Gj
k,α : [0, 1] → R, j = 1, 2.

such that Gj
k,α ∈ Gm,α.

Define q1, q2 ∈ [0, 1] such that q1 + q2 = 1, and the convex linear combination
function

Gk,α := q1G
1
k,α + q2G

2
k,α.

Since Proposition 3.3 implies Gk,α ∈ Gm,α, we have the thesis.
Now we wish to show a sufficient condition to characterize Gm,α and Hm,α.
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Theorem 3.5 Fix α ∈ (−∞, d + 1/2] and k = 1, . . . , m. Define %k,α :
[0, 1] → R, and assume that there exists M > 0 such that

|%k,α(x)| ≤ M, ∀ x ∈ [0, 1].

Then:

• %k,α belongs to Gm,α if α ∈ (−∞, d− 1/2);

• %k,α belongs to Hm,α if α ∈ [d− 1/2, d + 1/2].

Proof.
We denote % as H and G when α ∈ [d− 1/2, d + 1/2] and α ∈ (−∞, d− 1/2)
respectively.
Standard analysis provides that

lim
n→+∞

1

n

n∑

t=1

Gk,α(t/n) =
∫ 1

0
Gk,α(x)dx. (25)

Fixed α ∈ (−∞, d− 1/2], the sequence {ψ1(n, α)}n∈N is defined such that

φ1(n, α) =
1

n3/2
· ψ1(n, α), (26)

lim
n→+∞ψ1(n, α) = 0. (27)

Moreover we assume that ψ1(n, α) ∈ L1(−∞, d− 1/2], ∀n ∈ N.
By (26), we have

∣∣∣
√

nφ1(n, α)
n∑

t=1

Gk,α(t/n)
∣∣∣ =

∣∣∣ψ1(n, α)
1

n

n∑

t=1

Gk,α(t/n)
∣∣∣ =

= |ψ1(n, α)|
∣∣∣ 1
n

n∑

t=1

Gk,α(t/n)
∣∣∣ ≤ |ψ1(n, α)|

∣∣∣ 1
n
· n ·M

∣∣∣ = M |ψ1(n, α)|.

By assuming θ1(α) = |ψ1(n, α)|, condition (i) of Definition 3.1 holds.
Furthermore, it results

0 ≤
∣∣∣
√

nφ1(n, α)
n∑

t=1

Gk,α(t/n)
∣∣∣ ≤ M |ψ1(n, α)|.

Using (27) and a comparison principle, we obtain

lim
n→+∞

√
nφ1(n, α)

n∑

t=1

Gk,α(t/n) = 0.
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(ii) of Definition 3.1 holds, and Gk,α ∈ Gm,α.
Now, fixed α ∈ [d − 1/2, d + 1/2], a sequence {ψ2(n, α)}n∈N is defined such
that

φ2(n, α) =
1

n2
· ψ2(n, α), (28)

lim
n→+∞ψ2(n, α) = 0. (29)

Furthermore, we assume that ψ2(n, α) ∈ L1[d− 1/2, d + 1/2], ∀n ∈ N.
By (28), some algebra gives

∣∣∣nφ2(n, α)
n∑

t=1

Hk,α(t/n)
∣∣∣ =

∣∣∣ψ2(n, α)
1

n

n∑

t=1

Hk,α(t/n)
∣∣∣ ≤

≤ |ψ2(n, α)|
∣∣∣ 1
n

n∑

t=1

Hk,α(t/n)
∣∣∣ ≤ |ψ2(n, α)|

∣∣∣ 1
n
· n ·M

∣∣∣ = M |ψ2(n, α)|.

By assuming θ2 = |ψ2|, condition (iii) of Definition 3.1 holds.
Furthermore (29) and a comparison principle give

lim
n→+∞nφ2(n, α)

n∑

t=1

Hk,α(t/n) = 0.

Then, (iv) of Definition 3.1 is satisfied, and so Hk,α ∈ Hm,α.

3.1.1 Asymptotic results

This section presents the main asymptotic results. Two random vectors de-
pendent on the weight functions F ’s are defined as follows:

Ψk :=

∫ 1
0 Fk(x)W (x)dx√∫ 1

0

∫ 1
0 Fk(x)Fk(y) min{x, y}dxdy

,

Φk :=
Fk(1)W (1)− ∫ 1

0 fk(x)W (x)dx
∫ 1
0 Fk(x)2dx

,

where fk is the derivative of Fk.
Moreover, the following p-variate standard normally distributed random vec-
tors is considered:

Ψ∗
k :=

(
RT

p−rC(1)C(1)T Rp−r

) 1
2 RT

p−rC(1)Ψk,

Φ∗
k :=

(
RT

p−rC(1)C(1)T Rp−r

) 1
2 RT

p−rC(1)Φk,

Φ∗∗
k := (RT

r D(1)D(1)T Rr)
− 1

2 RT
r D(1)Φk,
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and we construct the matrix Vr,m as

Vr,m := (RT
r D(1)D(1)T Rr)

1
2 V ∗

r,m(RT
r D(1)D(1)T Rr)

1
2 ,

with

V ∗
r,m =

( m∑

k=1

γ2
kΦ

∗∗
k Φ∗∗T

k

)
−

( m∑

k=1

γkΦ
∗∗
k Ψ∗T

k

)( m∑

k=1

Ψ∗
kΨ

∗T
k

)−1( m∑

k=1

γkΨ
∗
kΦ

∗∗T
k

)
,

where

γk =

√∫ 1
0 F 2

k (x)dx√∫ 1
0

∫ 1
0 Fk(x)Fk(y) min{x, y}dxdy

.

The following result summarizes the eigenvalue problem and provide a non-
parametric solution for it.

Theorem 3.6 Assume that Fk ∈ Fm, Gk,α ∈ Gm,α and Hk,α ∈ Hm,α.
If Assumptions 2.2, 2.3 and 2.4 are true, then:

(I) suppose that λ̂1,m ≥ . . . ≥ λ̂p,m are the ordered solutions of the generalized
eigenvalue problem

det
[
Am − λ(Bm + n−2A−1

m )
]

= 0, (30)

and λ1,m ≥ . . . ≥ λp−r,m the ordered solutions of

det
[ m∑

k=1

Ψ∗
kΨ

∗T
k − λ

m∑

k=1

Φ∗
kΦ

∗T
k

]
= 0. (31)

Then we have the following convergence in distribution

(λ̂1,m, . . . , λ̂p,m) → (λ1,m, . . . , λp−r,m, 0, . . . , 0);

(II) let us consider λ∗1,m ≥ . . . ≥ λ∗r,m the ordered solutions of the generalized
eigenvalue problem

det
[
V ∗

r,m − λ(RT
r D(1)D(1)T Rr)

−1
]

= 0. (32)

Then the following convergence in distribution holds

n2(λ̂p−r+1,m, . . . , λ̂p,m) → (λ∗21,m, . . . , λ∗2r,m).

Proof.
Due to Lemmas 1, 2 and 4 (Bierens, 1997), it is sufficient to study the asymp-
totic behavior of

√
nMnonst

n and nM st
n .

We have

lim
n→+∞

√
nMnonst

n = lim
n→+∞

1√
n

n∑

t=1

Fk(t/n)∆d−1Yt+
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+ lim
n→+∞

∫ d−1/2

−∞

[√
nφ1(n, α)

n∑

t=1

Gk,α(t/n)∆αYt

]
dα =: L1 + L2

By Bierens (1997), we have to show that L2 = 0.
Since Gk,α ∈ Gm,α, then the existence of the function θ1 (Definition 3.1-(i))
guarantees, that the Lebesgue Theorem on the dominate convergence holds.
Therefore we can write

L2 =
∫ d−1/2

−∞
lim

n→+∞

[√
nφ1(n, α)

n∑

t=1

Gk,α(t/n)∆αYt

]
dα.

Hence, the fractional lag-difference process ∆αYt is well defined. Definition
3.1-(ii) assures that L2 = 0, and the first part of the proof is complete.
Now,

lim
n→+∞nM st

n = lim
n→+∞

n∑

t=1

Fk(t/n)∆dYt+

+ lim
n→+∞

∫ d+1/2

d−1/2

[
nφ2(n, α)

n∑

t=1

Hk,α(t/n)∆αYt

]
dα =: L3 + L4.

By Lemmas 1, 2 and 4 (Bierens, 1997), we need L4 = 0.
Since Hk,α ∈ Hm,α, the existence of the function θ2 (Definition 3.1-(ii)) implies
that the hypotheses of the Lebesgue’s Theorem on the dominate convergence
are fulfilled. Thus we have

L4 =
∫ d+1/2

d−1/2
lim

n→+∞

[
nφ2(n, α)

n∑

t=1

Hk,α(t/n)∆αYt

]
dα.

The condition (ii) of the Definition 3.1 assures that L4 = 0.
The result is completely proved.

3.2 The discrete case

The analysis carried out in the previous subsection deals with all differences
of the fractional integrated process Yt. This section provides a discretization
of the continuous case using the Mn’s described by (11) and (12) and it is
made with respect to the difference order, named α, of the process Yt. The
discrete set of rational numbers Q, that is infinite, countable and dense in R
is used. The density property of Q in R permits to have a set of information
not too restrictive, maintaining the model in line with the general features of
the continuous case.
Fix k = 1, . . . ,m, where m ∈ N. Let us consider Fk as in (6), and

G̃k,α : [0, 1] → R, α ∈ (−∞, d− 1/2);
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H̃k,α : [0, 1] → R, α ∈ [d− 1/2, d + 1/2].

Moreover, we define two sequences:

{ζ1(n, α)} ⊆ R, α ∈ (−∞, d− 1/2);

{ζ2(n, α)} ⊆ R, α ∈ [d− 1/2, d + 1/2].

The terms Mn’s defined in (11) and (12) can be rewritten as

Mnonst
n =

1

n

n∑

t=1

Fk(t/n)∆d−1Yt +
+∞∑

j=1

[
ζ1(n, α1,j)

n∑

t=1

G̃k,α1,j
(t/n)∆α1,jYt

]
, (33)

and

M st
n =

1

n

n∑

t=1

Fk(t/n)∆dYt +
+∞∑

j=1

[
ζ2(n, α2,j)

n∑

t=1

H̃k,α2,j
(t/n)∆α2,jYt

]
, (34)

where

{α1,j}j∈N ≡ Q ∩ (−∞, d− 1/2)

and

{α2,j}j∈N ≡ Q ∩ [d− 1/2, d + 1/2].

A discrete version of the functional classes G’s and H’s is needed. We rewrite
Definition 3.1 in the discrete case as follows:

Definition 3.7 Let us fix m ∈ N, k = 1, . . .m.

(i)’ There exists a function θ1 : (−∞, d− 1/2) → R and φ1 : N× (−∞, d−
1/2) → R such that

α 7→ θ1(α), θ1 ∈ l1(−∞, d− 1/2)

and

∣∣∣
√

nφ1(n, α)
n∑

t=1

Gk,α(t/n)
∣∣∣ ≤ θ1(α), ∀α ∈ (−∞, d− 1/2).

(ii)’ For each α ∈ (−∞, d− 1/2), it results

lim
n→+∞

√
nφ1(n, α)

n∑

t=1

Gk,α(t/n) = 0; (35)
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(iii)’ There exists a function θ2 : [d − 1/2, d + 1/2] → R and φ2 : N × [d −
1/2, d + 1/2] → R such that

α 7→ θ2(α), θ2 ∈ l1[d− 1/2, d + 1/2]

and

∣∣∣nφ2(n, α)
n∑

t=1

Hk,α(t/n)
∣∣∣ ≤ θ2(α), ∀α ∈ [d− 1/2, d + 1/2].

(iv)’ For each α ∈ [d− 1/2, d + 1/2], it results

lim
n→+∞nφ2(n, α)

n∑

t=1

Hk,α(t/n) = 0; (36)

The functional classes Gd
m,α and Hd

m,α are

Gd
m,α :=

{
Gk,α : [0, 1] → R | (i), (ii) hold

}
. (37)

Hd
m,α :=

{
Hk,α : [0, 1] → R, | (iii), (iv) hold

}
. (38)

The main properties of the discrete functional spaces Gd
m,α and Hd

m,α of Def-
inition 3.7 are the same of the continuous case. They are summarize in the
following three results.

Proposition 3.8 Gd
m,α and Hd

m,α are closed with respect to the linear com-
bination.

Corollary 3.9 Gd
m,α and Hd

m,α are convex sets.

Theorem 3.10 Fix α ∈ (−∞, d + 1/2] and k = 1, . . . , m. Define %k,α :
[0, 1] → R, and assume that there exists M > 0 such that

|%k,α(x)| ≤ M, ∀ x ∈ [0, 1].

Then:

• %k,α belongs to Gd
m,α if α ∈ (−∞, d− 1/2);

• %k,α belongs to Hd
m,α if α ∈ [d− 1/2, d + 1/2].

The proofs are analogous to the ones of Proposition 3.3, Corollary 3.4 and
Theorem 3.5 and are omitted.
Theorem 3.6 is translated in the discrete case.
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Theorem 3.11 Assume that Fk ∈ Fm, G̃k,αj
∈ Gd

m,αj
and H̃k,αj

∈ Hd
m,αj

and Assumptions 2.2, 2.3 and 2.4 are true. Then the thesis of Theorem 3.6
holds.

Proof.
Using the proof of Theorem 3.6, we have just to prove that

L̃2 := lim
n→+∞

+∞∑

j=1

[√
nζ1(n, α1,j)

n∑

t=1

G̃k,α1,j
(t/n)∆α1,jYt

]
= 0, (39)

and

L̃4 := lim
n→+∞

+∞∑

j=1

[
nζ2(n, α2,j)

n∑

t=1

H̃k,α2,j
(t/n)∆α2,jYt

]
= 0. (40)

Let us assume the existence of a couple of functions

γ1 : N → R, γ2 : (−∞, d− 1/2) → R,

such that ζ1(n, α1,j) = γ1(n) · γ2(α1,j). Consider the partial sums of the series
in (39) as

L̃µ
2 := lim

n→+∞ γ1(n)
√

n
µ∑

j=1

[
γ2(α1,j)

n∑

t=1

G̃k,α1,j
(t/n)∆α1,jYt

]
= 0. (41)

There exists K > 0 such that

∣∣∣γ2(α1,j)
n∑

t=1

G̃k,α1,j
(t/n)∆α1,jYt

∣∣∣ ≤

≤ K ·
∣∣∣γ2(α1,j)

n∑

t=1

G̃k,α1,j
(t/n)

∣∣∣. (42)

By using Definition 3.7-(i)′, then there exist a nonnegative function θ1 and
M > 0 such that

(42) ≤ θ1(α1,j),
+∞∑

j=1

θ1(α1,j) = M < +∞.

Hence, by assuming that γ1 ∼ o(nη) with η > 1/2, as n → +∞, we obtain

0 ≤ |L̃2| ≤ M ·
∣∣∣ lim

n→+∞ γ1(n)
√

n
∣∣∣ = 0. (43)

Analogously, by using the conditions (iii)′ and (iv)′ in Definition 3.7, it is easy
to show that (40) holds.
The proposition is completely proved.
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4 Conclusions

In this paper we solve a generalized eigenvalues problem for fractional inte-
grated process by constructing two random matrices. Such matrices are con-
structed by taking into account the stationarity properties of the differences of
a fractional p-variate integrated process. The random matrices are defined by
some weight functions and the difference orders are assumed to vary in a con-
tinuous and discrete range. The asymptotic behavior of the random matrices
are thus obtained.
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