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Introduction

The name mathematical control theory has been introduced about half a

century ago. Although this fact, the nature of the optimal control problem

has been the focus of research in optimization since the fifteen century. The

precursor of the techniques involved in optimal control is commonly seen in

calculus of variations. For a very interesting survey of the early optimization

problems, we suggest (Yong and Zhou, 1999, Historical Remarks, pp. 92).

In the 1940s and at the beginning of the 1950s, the theory of differential

games has been developed in the U.S. and in the former Soviet Union for

military purposes. The statements of the Bellman Dynamic Programming

Method (Bellman, 1952, 1957) and the Pontryagin Theory (announced in

1956, see Pontryagin, 1959, 1986) are grounded in this scientific environ-

ment, and rely on a deterministic framework. Bellman was among the first

that pointed out the necessity to introduce randomness in the optimal con-

trol theory, and mentioned the stochastic optimal control theory (Bellman,

1958). Nevertheless, stochastic differential equations and Ito’s Lemma were

not involved in (Bellman, 1958), and the first paper dealing with the dif-

fusion systems, Markov processes and differential equations was (Florentin,

1961). Nowadays, the literature on this field grows continuously, with ap-

plications in economics, biology, finance, engineering and so on.
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Several monographs give a complete survey on the mathematical control

theory. For the deterministic case, we remind the reader to (Bardi and Ca-

puzzo Dolcetta, 1997). The stochastic control theory is described in (Borkar,

1989; Fleming and Soner, 1993; Krylov, 1980; Yong and Zhou, 1999).

The keypoint of the optimal control theory is represented by an optimization

problem, where the constraints are associated to some functions’ properties

(called controls α), that are elements of a certain functional space (called

admissible region A). Thus, the objective function J is a functional de-

pending on the controls. The optimum with respect to the controls of such

objective functional is called value function V .

The stochastic framework is related to the analysis of cases with admissible

region given by stochastic processes spaces.

Starting from the objective functional and the definition of the admissible

region, there are basically two methods to proceed: the Stochastic Maxi-

mum Principle (strongly related to the martingale theory) and the Dynamic

Programming (that let intervene the theory of differential equations). In

the first case, a set of necessary conditions for stochastic optimal controls

are provided through forward-backward stochastic differential equations for

adjoint variables and related stochastic Hamiltonian systems. In the latter

case, one has to prove an optimality principle, named Dynamic Program-
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ming Principle, and rely the value function to the (classical) solution (if it

exists, if it is unique) of a differential equation, named Hamilton Jacobi Bell-

man (HJB) equation. The HJB equation states formally, in the sense that

we derive it by assuming the right regularity of the value function. Since

the value function is generally not regular enough, a weak solution definition

is needed: the viscosity solution. For the concept of viscosity solution, we

remind to the seminal works (Crandall and Lions, 1981, 1983, 1987; Cran-

dall et al., 1984; Lions, 1981, 1983). For a complete survey, we remind the

reader to (Lions, 1982; Barles, 1994; Fleming and Soner, 2006, Chapter 2)

and the celebrated User’s Guide (Crandall et al, 1992).

Several papers establish existence and uniqueness results for both the value

function and the optimal control. Among the others, we recall (Fleming,

1968; Ahmed and Teo, 1974, 1975; Davis, 1975; Fleming and Pardoux,

1982). Furthermore, the prove of the optimality principle has been the

focus of some important research works. In (Davis and Varaiya, 1973),

dynamic programming conditions for a certain class of stochastic optimal

control problems have been obtained using the martingale method. The

Girsanov measure transformation method has been applied to the solutions

of the dynamical equations, in order to allow weaker requirements for the

optimality principle. In (Haussmann, 1975) a different approach is used, and
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the optimality principle has been proved by applying a result on extremals

due to Neustadt (Neustadt, 1969). In (Elliott, 1977) a semimartingale ap-

proach is adopted. Thus, by invoking the unique decomposition of special

semi-martingales, some strong hypotheses required by Davis and Varaiya

and Haussmann are avoided.

Different from the quoted papers, we show the validity of the optimality

principle by using analytical arguments. More precisely, our contribution

on the literature on this topic is an original step-by-step proof via Measur-

able Selection of a Dynamic Programming Principle, for a certain class of

stochastic control problems with exit time.

In presence of exit time, the objective functional is not easy to treat due

to the difficulty to prove the optimality principle. The main problems are

due to the measurability questions associated to the control processes in the

stochastic intervals. Therefore, in order to prove the dynamic programming

principle, we prove a measurable selection result, which has its roots in an

important result in functional analysis due to Jankov and von Neumann.

The Jankov-von Neumann’s Lemma implies in our case, as we shall see, a

regularity condition for a certain class of admissible controls. We report the

statement of the result of Jankov and Von Neumann, and we remind the

reader to (Bertsekas and Shreve, 1978, pp. 182) for further details.
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This paper is organized as follows. In the next section, the optimal con-

trol problem is formalized. In the third section the Measurable Selection

Theorem is proved. The fourth section presents the Dynamic Programming

Principle and its proof. Last section concludes the paper.

The optimal control problem

Consider a filtered probability space (Ω,F , {Ft}t≥0, P ) on which we define

a standard Brownian motion W with respect to {Ft}t≥0 under P . Here

{Ft}t≥0 represents the P -augmentation of the natural filtration generated

by W ; that is, Ft = σ{W (u)|u ∈ [0, t]} ∧N , where N is the collection of all

P -null sets or sets of measure zero under P .

Let us denote with T the set of the (optional) stopping times in [0, +∞],

i.e.

T := {τ : Ω → [0, +∞] | {τ ≤ t} ∈ Ft, ∀ t ≥ 0}. (1)

The controlled system is described by the following stochastic differential

equation with initial data




dX(t) = µ(X(t), α(t))dt + σ(X(t), α(t))dW (t),

X(η) = ζ

(2)

where X is a Markovian process and
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• η ∈ T ,

• t ∈ [[η, +∞), where ”[[” represents the lower bound of a stochastic

interval

• it results

X : [0, +∞)× Ω → B ⊆ Rn,

where B is the solvency region, and it is open and bounded;

• fixed t ∈ [0, +∞), X(t) is an Ft-measurable and square integrable

random variable with respect to P ;

• fixed ω ∈ Ω and η ∈ T , define X(η)(ω) := (X ◦ η)(ω), where ◦ is the

usual composition operator.

Denote the usual euclidean norm as || · ||. Then

• fixed η ∈ T , α ∈ A(η, ζ), that is the set of admissible Markov controls,

and it is defined as

A(η, ζ) :=
{
α : [[η, +∞)×Ω → A ⊆ Rn {Ft}t∈[[η,+∞)−progressively measurable,

such that E
[ ∫ +∞

η
e−δs||α(s)||ds

]
< +∞

}
, (3)

• ζ is an integrable random variable measurable with respect to Fη,
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• it results

µ : B ×A → Rn,

σ : B ×A → Rn×n;

• ∃L1 > 0 | ∀x, y ∈ B, α ∈ A,

||µ(x, α)− µ(y, α)|| ≤ L1||x− y||,

||σ(x, α)− σ(y, α)|| ≤ L1||x− y||.

• ∃L2 > 0 | ∀x ∈ B, α ∈ A,

||µ(x, α)|| ≤ L2(1 + ||x||),

||σ(x, α)|| ≤ L2(1 + ||x||).

Remark 1 By the regularity hypothesis on the drift and diffusion coeffi-

cients and standard stochastic theory, we ensure the existence and unique-

ness for the strong solution of the stochastic differential equation (2).

Consider B ⊆ Rn and define the exit time τ as

τ := inf
{
t ≥ 0 |X(t) /∈ B

}
. (4)

Remark 2 {τ ≤ t} is measurable with respect to the σ-field Ft, for each

t ≥ 0.
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We define the objective functional of the control process α.

First of all, we introduce the random variable J0 as

J0 : [0, +∞)×B ×A× Ω → R, (5)

such that

J0(t, x, α(·))(ω) :=
[ ∫ τ

t
f(X(s), α(s))e−δsds + h(X(τ))e−δτ

∣∣∣Ft

]
(ω), (6)

where X(t) = x,

f : B̄ ×A → R

and

h : B → R.

are the running and the terminal reward, respectively, B̄ is the closure of the

set B, and δ is the discount factor. Furthermore, suppose that f satisfies

a growth condition with respect to both the state and the control. More

precisely, there exists C > 0 and p ≥ 1 such that

|f(x, α)| ≤ C(1 + ||x||+ ||α||p), ∀ (x, α) ∈ B̄ ×A.

Now we have the instruments to introduce the objective functional as con-

ditional expectation of the random variable J0 under the measure P .

We assume

J(t, x, α(·)) := E
[
J0(t, x, α(·))

∣∣∣Ft

]
=
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= E
[ ∫ τ

t
f(X(s), α(s))e−δsds + h(X(τ))e−δτ

∣∣∣Ft

]
. (7)

Compounding the stochastic elements, we are able to define the objective

functional of the control problem analyzed in the case of random boundary

data using the dynamics, i.e. for the (2).

In consistent with the definition of the functional J in (7), we define the

objective functional of our control problem in the case of stochastic boundary

data as

J̄(η, ζ, α(·)) := E
[
J̄0(η, ζ, α(·))|Fη

]
. (8)

Here we consider a maximization problem. The value function of the prob-

lem is

V̄ (η, ζ) = sup
α∈A(η,ζ)

J̄(η, ζ, α(·)). (9)

Assume that V̄ (η, ζ) < +∞. Now we want to provide the definition of a

particular class of admissible controls, which is useful for later development.

Definition 3 Let us consider ε > 0.

Consider the state equation (2) with initial condition X(η) = ζ, where η ∈ T

and ζ is an integrable random variable measurable with respect to Fη.

An admissible control α ∈ A(η, ζ) is said to be ε-optimal for the initial

condition (η, ζ) if

J̄(η, ζ, α(·)) > V̄ (η, ζ)− ε, P − a.s.
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Remark 4 Let us fix (η, ζ) the random initial condition for (2).

By definition of sup, there exists an ε-optimal control for (η, ζ).

A Measurable Selection Theorem

To prove the Dynamic Programming Principle, we need a measurable selec-

tion theorem. The aim of this section is to develop the measurable selection

for our class of optimal control problems. To this end, we first need the de-

scription of the admissible region, with the main features of the admissible

controls, and the analysis of some interesting properties of the solution of

the state equation (2).

Let us fix (η, ζ) the initial data of the (2).

Define the space of functions

Ξ(η, ζ) :=
{
u : [[η, +∞)×Ω → Rn |u(.) is {Ft}t≥η progressively measurable

}
.

We formalize the main properties of the admissible region. The following

lemma is based on a result due to (Soner and Touzi, 2003), that can be

adapted to our setting.

Lemma 5 The set of admissible controls A(η, ζ) is a Borel subset of Ξ(η, ζ)

which satisfies the following conditions.
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• (A0) Define a weighted norm on A(η, ζ)

|| · ||w : A(η, ζ) → R+, (10)

such that

||α||w := E
[ ∫ +∞

η
e−δs||α(s)||ds,

∣∣∣ X(η) = ζ
]
, (11)

and consider Γ(η,ζ) the topology induced by the weighted norm (11) on

A(η, ζ). Then (A(η, ζ), Γ(η,ζ)) is a topological separable metric space.

• (A1) Closure under stopping time concatenation:

∀ τ1 ∈ T it results

ν := α11[[η,τ1) + α21[[τ1,+∞) ∈ A(η, ζ), ∀α1, α2 ∈ A(η, ζ).

• (A2) Stability under measurable selection:

Denote as BA(η,ζ) the Borel σ-field of A(η, ζ). ∀ θ1 ∈ T and any mea-

surable map

φ : (Ω,Fθ1) → (A(η, ζ),BA(η,ζ)),

there exists ν ∈ A(η, ζ) such that

φ(ω)(t, ω) = ν(t, ω) on [[θ1, +∞)× Ω, L × P − a.e.

where BA(η,ζ) is the set of the Borel subsets of A(η, ζ); L is the Lebesgue

measure on [[θ1, +∞).
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Proof. The proof is due to (Soner and Touzi, 2003) and standard stochastic

calculus.

The following result summarizes the main properties of the solution of the

state equation. As in Lemma 5, the following result is also grounded on

(Soner and Touzi, 2003).

Lemma 6 Let us denote the solution of (2) as Xα
η,ζ(t), to indicate the initial

data X(η) = ζ, η ∈ T and ζ is an integrable random variable, and the control

α.

• (SP1) Consistency in law with deterministic initial data:

E[f(Xα
η,ζ(s))|(η, ζ) = (t, z)] = E[f(Xα

t,z(s))],

where f is a Borel-measurable bounded function and s ≥ t.

• (SP2) Pathwise uniqueness:

∀ τ, θ ∈ T with θ ≤ τ , P -a.s., it results

Xα
τ,ζ = Xα

θ,γ , on [[τ, +∞)× Ω, where ζ = Xα
θ,γ(τ).

• (SP3) Causality:

∀α1, α2 ∈ A(η, ζ) such that α1 = α2 on [[θ, τ ]], where τ, θ ∈ T such

that P (τ ≥ θ) = 1,

Xα1
θ,γ = Xα2

θ,γ on [[θ, τ ]]× Ω.
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• (SP4) Measurability:

Xα
t,z is Borel measurable with respect to the variables t, z and α.

Proof. In order to prove this result, we remind the reader to (Soner and

Touzi, 2003).

The next result provides an useful generalization of the definitions of the

functional J̄ and of the value function V̄ given in (8) and (9).

Lemma 7 Let us consider α ∈ A and α̃ ∈ A such that, for each fixed η ∈ T ,

α(s + η) = α̃(s),

for each s ≥ 0.

Then

J̄(η, x, α) = e−δηJ̄(0, x, α̃) := e−δηJ(x, α̃), (12)

and

V̄ (η, x) = e−δηV̄ (0, x) := e−δηV (x), (13)

for each η ∈ T , x ∈ B and α control process.

The proof is omitted.

Remark 8 The formulas (12) and (13) allow to treat the case in which the

starting time is deterministic. In fact, a constant time is a special case of a

stopping case, and, so t ∈ T , for each t ∈ [0, +∞).
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For sake of completeness, we recall a result useful to prove the Measurable

Selection Theorem.

Lemma 9 (Jankov-von Neumann) Let X and Y Borel sets and A an

analytic subset of X × Y .

Let us define

projX(A) :=
{
x ∈ X | ∃ y ∈ Y such that (x, y) ∈ A

}
⊆ X.

Then there exists an analytically measurable function

φ : projX(A) → Y

such that

Gr(φ) :=
{
(x, φ(x)) |x ∈ projX(A)

}
⊆ A.

We need a remarkable property of the Borel sets.

Lemma 10 Let X be a Borel set. Then every Borel subset of X is analytic.

Proof. We remind the reader to (Bertsekas and Shreve, 1978).

Now we prove the main result of this section. We have the following.

Theorem 11 (Measurable Selection Theorem) Let us consider a stop-

ping time η ∈ T .

For any product measure π on the space [0, +∞)×B given the product of a
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Lebesgue measure on [0,+∞) and a probability measure on B and for each

ε > 0, there exists a Borel-measurable function

φε
π :

(
[0, +∞)×B,B[0,+∞)×B

)
→ (A(·, ·),BA(·,·))

such that φε
π(t, x) is an ε-optimal control for starting point X(t) = x, for

each (t, x) ∈ [0, +∞)×B π-a.e.

Proof. The proof consists of three steps.

• First step

Given ε > 0, let us define the space

Gε :=
{
(t, x, α) ∈ [0, +∞)×B ×A(t, x) |V (t, x)− J(t, x, α) < ε

}
.

The space Gε can be interpreted as follows: ∀ (t, x, α) ∈ Gε, α(t, x) is

an ε-optimal control, for each (t, x) ∈ [0, +∞)×B. We want to prove

that Gε is a Borel-measurable set.

In order to prove this claim we need to give the proof that J and V

are measurable functions.

Let us fix the initial condition (t, x).

– J is a measurable function of (t, x, α). We get this property by the

measurability of the state process X(t) (by the property (SP4)),

by the measurability of α, by the measurability of τ as stopping
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time and by the measurability of the functions f and g. So J is

composed by measurable functions, hence J is measurable.

– V (t, x) is measurable. By definition of V (t, x) as supremum of

J(t, x, α) with respect to the controls α ∈ A(t, x), we get that

V (t, x) is measurable if and only if A(t, x) is countable. By the

separability property of A(t, x), proved in Lemma 5, we get that

there exists a set D(t, x) ⊆ A(t, x) that is countable and dense in

A(t, x). So V (t, x) is measurable.

So Gε is Borel-measurable.

• Second step

By Lemma 10, we get that Gε is an analytic subset of [0, +∞)×B ×

A(·, ·) (since it is a Borel set). By the Jankov-von Neumann Lemma,

we obtain directly the existence of an analytically measurable function

φε : [0, +∞) × B → A(·, ·) such that Gr(φε) ⊆ Gε, i.e. φε(t, x) is an

ε-optimal control, ∀ (t, x) ∈ [0,+∞)×B.

• Third step

It remains to construct a Borel measurable map φε
π such that φε

π = φε

π-a.e.

Let us define Π([0, +∞) × B) as the set of all product measures on
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[0, +∞)×B and, given π ∈ Π([0, +∞)×B), let us define B[0,+∞)×B(π)

as the completion of the Borel σ-algebra B[0,+∞)×B with all π-null sets

or sets of measure zero under π. Moreover, let us define σ-algebra

Θ[0,+∞)×B :=
⋂

π∈Π([0,+∞)×B)

B[0,+∞)×B(π).

One can prove that every analytic subset of a Borel set X is measurable

with respect to Θ[0,+∞)×B (see, for example, (Bertsekas and Shreve,

1978)). As a particular case, we have that every analytic map φε is

measurable with respect to Θ[0,+∞)×B.

By definition, we get

Θ[0,+∞)×B ⊆ B[0,+∞)×B(π), ∀π ∈ Π([0, +∞)×B),

and so φε is measurable with respect B[0,+∞)×B(π).

The definition of B[0,+∞)×B(π) implies that there exists a Borel mea-

surable map φε
π such that φε

π = φε π-a.e.

The theorem is completely proved.

Dynamic Programming Principle

We have proved in a general case a Measurable Selection Theorem. Now we

are able to prove the Principle of Optimality.

First of all, we need a preliminary technical result.
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Lemma 12 Let us consider γ ∈ T such that γ ∈ [[0, τ ]] and α ∈ A.

Then

J(γ, X(γ), α(·)) = E
[ ∫ τ

γ
f(Xα

γ,X(γ)(s), α(s))e−δsds+h(Xα
γ,X(γ)(τ))e−δτ

∣∣∣Fγ

]
.

(14)

Proof. The proof comes from (Yong and Zhou, 1999), Lemma 3.2, pg. 179,

the definitions provided by (7) and (8) and the Markovian property of the

state process X.

Theorem 13 (Dynamic Programming Principle) Let us consider η ∈

T . Then

V (t, x) = sup
α∈A(t,x)

E
[ ∫ η∧τ

t
f̄(s, α(s), X(s))ds+V (η∧τ,X(η ∧ τ))|X(t) = x

]
,

(15)

where the sup is taken over all α admissible controls over the stochastic

interval [t, η ∧ τ ]] and, in the setting proposed for our general model,

f̄(s, α(s), X(s)) := e−δsf(α(s), X(s)).

Proof. We prove the double inequality so as to prove the validity of (15).

First step

Let us consider a stopping time η ∈ T . We can write

V (t, x) = sup
α∈A

E
[ ∫ η∧τ

t
f̄(s, α(s), X(s))ds+
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+
∫ τ

η∧τ
e−δtf(α(t), X(t))dt + e−δτh(X(τ))

∣∣∣Ft

]
.

Fix α1 ∈ A. Accordingly with the notation introduced in Lemma 6, let us

consider the controlled dynamic with starting point Xα1
x,t(η∧ τ) and let π be

a product measure on [0, +∞)×B induced by Xα1
x,t(η ∧ τ). For each ε > 0,

by Theorem 11, there exists a Borel-measurable function

φε
π : ([0, +∞)×B,B[0,+∞)×B → (A(·, ·),BA(·,·))

such that, ∀ (t, x) ∈ [0,+∞) × B, φε
π(t, x) is an ε-optimal control at (t, x)

π-a.e.. Now, let us consider the function

ξ : Ω → A

such that:

ω →ξ φε
π(η ∧ τ(ω), X(η ∧ τ)(ω)).

For each ω, φε
π(η∧τ(ω), X(η∧τ)(ω)) is ε-optimal at (η∧τ(ω), X(η∧τ)(ω)).

Thanks to (A2), we have that there exists α2 ∈ A such that

ξ(ω) = φε
π(η ∧ τ(ω), X(η ∧ τ)(ω)) = α2(ω) ∀ω ∈ Ω,

and α2 is an ε-optimal admissible control at (η ∧ τ, X(η ∧ τ)).

Furthermore, by (A1) we get that for each α1 ∈ A, there exists α defined as

α := α11[[t,η∧τ) + α21[[η∧τ,+∞) (16)
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that is an admissible control at (t, x).

Let us consider now ε > 0 and X(·) a stochastic process with starting point

a B-random variable and controlled by α defined as in (16), where α1 is an

arbitrary admissible control and α2 is an ε-optimal control for starting point

(η ∧ τ, X(η ∧ τ)).

By (16) it results α = α1 in [[0, η ∧ τ) and α = α2 in [[η ∧ τ, τ ]]. So, by

definition of V , by (SP3) and by (14), we get the following inequalities:

V (t, x) ≥ J(t, x, α) = E
[ ∫ η∧τ

t
f̄(s, α(s), X(s))ds

∣∣∣Ft

]
+

E
[ ∫ τ

η∧τ
f̄(s, α(s), X(s))ds+e−δτh(X(τ))

∣∣∣Fη∧τ

]
= E

[ ∫ η∧τ

t
f̄(s, α1(s), X(s))ds

∣∣∣Ft

]
+

+E
[ ∫ τ

η∧τ
f̄(s, α2(s), X(s))ds + e−δτh(X(τ))

∣∣∣Fη∧τ

]

= E
[ ∫ η∧τ

t
f̄(s, α1(s), X(s))ds

∣∣∣Ft

]
+ J(η ∧ τ,X(η ∧ τ), α2)

≥ E
[ ∫ η∧τ

t
f̄(s, α(s), X(s))ds

∣∣∣Ft

]
+ V (η ∧ τ, X(η ∧ τ))− ε.

Then

V (t, x) ≥ sup
α∈A

E
[ ∫ η∧τ

t
f̄(s, α(s), X(s))ds+V (η∧τ,X(η ∧ τ))|X(t)) = x

]
−ε.

Second step: let us consider ε > 0 and α(·) an ε-optimal control for (t, x).

In order to proceed, we need to remark that, given η ∈ T , it results:

α ∈ A ⇒ α1[[γ,+∞) ∈ A, ∀ γ > η. (17)
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Moreover, by (13) and (14), we get

sup
α∈A

E
[ ∫ τ

η∧τ
f̄(s, α(s), X(s))ds + e−δτh(X(τ))

∣∣∣Fη∧τ

]
= V (η ∧ τ,X(η ∧ τ)).

(18)

So, by (17) and (18), we have:

V (t, x)− ε ≤ E
[ ∫ η∧τ

t
f̄(s, α(s), X(s))ds

∣∣∣Ft

]
+

+E
[ ∫ τ

η∧τ
f̄(s, α(s), X(s))ds+e−δτh(X(τ))

∣∣∣Fη∧τ

]
≤ E

[ ∫ η∧τ

t
f̄(s, α(s), X(s))ds

∣∣∣Ft

]
+

+ sup
α∈A

E
[ ∫ τ

η∧τ
f̄(s, α(s), X(s))ds + e−δτh(X(τ))

∣∣∣Fη∧τ

]

= E
[ ∫ η∧τ

t
f̄(s, α(s), X(s))ds

∣∣∣Ft

]
+ V (η ∧ τ, X(η ∧ τ)).

Then

V (t, x)−ε ≤ sup
α∈A

E
[ ∫ η∧τ

t
f̄(s, α(s), X(s))ds+V (η∧τ,X(η ∧ τ))|X(t) = x

]
.

The theorem is completely proved.

Conclusions

In this paper a Dynamic Programming Principle for a certain class of opti-

mal control problems with exit time is proved. To this end, a Measurable

Selection result is firstly showed. The optimality principle can be used to

treat several dynamic optimization problems, involving economic, financial,

engineering or physical applications.
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