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Abstract

This paper aims to provide a nonparametric analysis of the integrated

processes of an integer order, via a theoretical solution of a generalized

eigenvalue problem. To this end, we introduce a mean operator for the

process, by using weights belonging to a Sobolev Space.
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1 Introduction

In this paper we develop a nonparametric model to analyze a p-variate process

Yt that is integrated of order d. More generally than Bierens (1997), whose

model describe p-variate integrated processes of order 1, we take into account

the α-th differences of Yt (α = 1, . . . , d), that are opportunely weighted, and

construct a pair of random matrices, related to the stationary and nonstationary

part of the process, referring to the following definition:

Given p ∈ N, d integer, a discrete time p-variate integrated process of

order d, Yt ∼ I(d), is defined by the following property: ∆kYt is a nonsta-

tionary process, for k = 0, 1, . . . , d− 1 and ∆dYt is a stationary process.

Then we derive their asymptotic behaviors, using Andersen et al. (1982), and

we solve a generalized eigenvalue problem.

The novelties of our model are basically two. First, we propose a nonparamet-

ric analysis of each integrated process of an integer order. Theoretical results

covering cases of order 1 and 2, that are principally linked with economic phe-

nomena, are obtained (see Bierens (1997) for the case of order 1). Second, the

Sobolev Spaces theory is introduced (see Ladyzhenskaya and Uraltseva, 1968),

in order to reduce the number of used weight functions.

The paper is organized as follows. Section 2 presents the data generating pro-

cess. In Section 3 the random matrices are defined, and their asymptotic be-

havior is studied. Section 4 provides the solution of the generalized eigenvalue

problem.
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2 Data generating process

In this section we provide a description of the data generating process. First of

all, we recall the basic definition of integrated processes of an integer order d.

Definition 2.1 A discrete time p-variate integrated process of order d, Yt ∼

I(d), is described by the following difference equation:

Yt = ∆−dεt = (1− L)−dεt, (1)

where p ∈ N, Yt = (Y 1
t , . . . , Y p

t ), εt = (ε1t , . . . , ε
p
t ) is a zero-mean stationary

process, L is the lag operator, i.e. Lεt := εt−1, and ∆ := 1− L.

It is easy to show that if Yt ∼ I(d), then Yt − Y0 ∼ I(d). Therefore, we don’t

lose of generality assuming Yt ∼ I(d), with Y0 = 0. This assumption is used for

the rest of the paper.

If the hypotheses of the Wold decomposition theorem are satisfied, we can write

εt =
∞∑

j=0

Cjvt−j =: C(L)vt, t = 1, . . . , n, (2)

where vt is a p-variate stationary white noise process and C(L) is a p-squared

matrix of lag polynomials in the lag operator L.

Let us now state a condition for the matrix C(L) defined in (2).

Assumption 2.1 The process εt can be written as in (2), where vt are i.i.d.

zero-mean p-variate gaussian variables with variance equals to the identity ma-

trix of order p, Ip, and there exist C1(L) and C2(L) p-squared matrices of lag

polynomials in the lag operator L such that all the roots of detC1(L) are outside

the complex unit circle and C(L) = C1(L)−1C2(L).
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The lag polynomial C(L) − C(1) attains value zero at L = 1 with algebraic

multiplicity equals to d. Thus, there exists a lag polynomial

D(L) =
∞∑

k=0

DkLk

such that C(L)− C(1) = (1− L)dD(L). Therefore, we can write

εt = C(L)vt = C(1)vt + [C(L)− C(1)]vt = C(1)vt + D(L)(1− L)dvt. (3)

Let us define wt := D(L)vt. Then, substituting wt into (3), we get

εt = C(1)vt + (1− L)dwt. (4)

(4) implies that, given Yt ∼ I(d), we can write recursively

∆d−1Yt = ∆d−1Yt−1 + εt = ∆d−1Yt−1 + C(1)vt+

+(1− L)dwt = ∆d−1Y0 + (1− L)d−1wt − w0 + C(1)
t∑

j=1

vj , (5)

where rank(C(1)) = p− r < p.

Remark 2.1 By Assumption 2.1, we have that C(L)vt and D(L)vt are well-

defined stationary processes.

Assumption 2.2 Let us consider Rr the matrix of the eigenvectors of C(1)C(1)T

corresponding to the r zero eigenvalues. Then the matrix RT
r D(1)D(1)T Rr is

nonsingular.

Assumption 2.2 implies that Yt cannot be integrated of order d̄, with d̄ > d. In

fact, if there exists d̄ > d such that Yt ∼ I(d̄), then the lag polynomial D(L)

admits a unit root with algebraic multiplicity d̄ − d, and so D(1) is singular.

Therefore RT
r D(1)D(1)T Rr is singular, and Assumption 2.2 does not hold.
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3 The weighted random matrices

This section starts by considering a transformation of the data generating pro-

cess via a weighted mean operator, in order to define a pair of random matrices

related to the stationary and nonstationary part of the process.

We introduce a weight function, representing the scale factor of Yt. It can be

formalized by defining the adjusted process z as follows.

zn :=
1
n

n∑
t=1

Yt ·Gn(t), n ∈ N and G : [0, +∞) → R. (6)

The nonstationary part of the process is

MNS
n :=

d−1∑

j=0

∆jzn. (7)

A straightforward computation gives:

∆jzn =
1
n

j∑

k=0

(
j

k

)[ n∑
t=1

∆kGn(t) ·∆j−kYt

]
, n ∈ N. (8)

By arranging the terms of ∆jzt with respect to the differences ∆αYt, α ∈

{0, . . . , j}, equation (7) can be rewritten as

MNS
n =

1
n

d−1∑

j=0

n∑
t=1

∆jYt ·
[ d−j−1∑

k=0

(
k + j

k

)
∆kGn(t)

]
. (9)

Under some hypotheses on the asymptotic behavior and on the functional struc-

ture of the Gn’s, the convergence of Mn is obtained. The following result holds.

Theorem 3.1 Assume that the following conditions hold.

• Gn belongs to the Sobolev Space (H1,d−1(0,+∞), || · ||1,d−1), for each n ∈

N.
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• It results

lim
n→+∞

n24n(d−2)||Gn||1,d−2 = 0.

• There exists Fn : [0, +∞) → R with support (ζn, ξn) such that

– (Gn − Fn) belongs to the Sobolev Space (H1,1(0, +∞), || · ||1,1), for

each n ∈ N;

– it results

lim
n→+∞

4n(d−1)||Gn(x)− Fn(x)||1,1 = 0.

Then we have

lim
n→+∞

||MNS
n − 1

n

n∑
t=1

Fn(t)∆d−1Yt|| = 0.

Proof. In order to prove the result, it is sufficient to show that ∀ ε > 0, ∃nε ∈ N

such that

n > nε ⇒ ||MNS
n − 1

n

n∑
t=1

Fn(t)∆d−1Yt|| < ε. (10)

We stress that, ∀ ε1 > 0, ∃n1
ε1 , n

2
ε1 ∈ N such that,

∣∣∣
∣∣∣ 1
n

n∑
t=1

∆kGn(t)−
∫

R+
G(k)

n (x)dx
∣∣∣
∣∣∣ < ε1 for n > n1

ε1 (11)

and

∣∣∣
∣∣∣ 1
n

n∑
t=1

|Gn(t)− Fn(t)| −
∫

R+
|Gn(x)− Fn(x)|dx

∣∣∣
∣∣∣ < ε1 for n > n2

ε1 . (12)

Then, by (11) and (12), for ε1 small enough and n > max{n1
ε1 , n

2
ε1}, we have

∣∣∣
∣∣∣MNS

n − 1
n

n∑
t=1

Fn(t)∆d−1Yt

∣∣∣
∣∣∣ =

=
∣∣∣
∣∣∣ 1
n

d−1∑

j=0

n∑
t=1

∆jYt ·
[ d−j−1∑

k=0

(
k + j

k

)
∆kGn(t)

]
− 1

n

n∑
t=1

Fn(t)∆d−1Yt

∣∣∣
∣∣∣ ≤
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≤
d−2∑

j=0

∣∣∣
∣∣∣

n∑
t=1

∆jYt

∣∣∣
∣∣∣ ·

[ d−j−2∑

k=0

(
k + j

k

)∣∣∣
∣∣∣ 1
n

n∑
t=1

∆kGn(t)
∣∣∣
∣∣∣
]
+

+
∣∣∣
∣∣∣ 1
n

n∑
t=1

[Gn(t)− Fn(t)]∆d−1Yt

∣∣∣
∣∣∣ ∼

∼
d−2∑

j=0

n∑
t=1

||∆jYt|| ·
[ d−j−2∑

k=0

(
k + j

k

) ∫

R+
|G(k)

n (x)|dx
]
+

+||∆d−1Yt|| ·
∫

R+
|Gn(x)− Fn(x)|dx. (13)

Since Yt = (Y 1
t , . . . , Y p

t ) is a p-variate I(d) process, then ∆jYt follows a gaussian

law with zero mean and variance-covariance matrix with finite elements. By

defining the norm

||∆jYt|| = ||(∆jY 1
t , . . . , ∆jY p

t )|| :=
[
E[∆jY 1

t ]2 + . . . + E[∆jY p
t ]2

]
,

then there exists a constant depending on t and j, C(t, j) > 0, such that

||∆jYt|| < C(t, j). (14)

Let us define

Cn,j := max
t=1,...,n

C(t, j). (15)

Then the estimate in (13) can be refined. It results:

(13) ≤
d−2∑

j=0

n∑
t=1

C(t, j) ·
[ d−j−2∑

k=0

(
k + j

k

) ∫

R+
|G(k)

n (x)|dx
]
+

+C(t, d− 1)
∫

R+
|Gn(x)− Fn(x)|dx ≤

≤
d−2∑

j=0

Cn,j
n(n + 1)

2
·
[ d−j−2∑

k=0

(
k + j

k

) ∫

R+
|G(k)

n (x)|dx
]
+

+Cn,d−1

∫

R+
|Gn(x)− Fn(x)|dx. (16)
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By definition of the binomial coefficient, there exists a constant Cd depending

on d such that

(
k + j

k

)
≤ Cd, ∀ j = 0, . . . , d− 2; k = 0, . . . , d− j − 2.

This fact implies that

(16) ≤
d−2∑

j=0

Cn,j · Cd
n(n + 1)

2
·
[ d−j−2∑

k=0

∫

R+
|G(k)

n (x)|dx
]
+

+Cn,d−1

∫

R+
|Gn(x)− Fn(x)|dx. (17)

Since Gn ∈ H1,d−2, then Gn ∈ H1,h, for each h = 1, . . . , d−2, and we can write

(17) =
n(n + 1)Cd

2
·

d−2∑

j=0

Cn,j ||Gn||1,d−j−2 + Cn,d−1||Gn − Fn||1,1. (18)

By standard properties of the Sobolev Spaces, we have

H1,d−2 ⊂ . . . ⊂ H1,2 ⊂ H1,1,

and

||Gn||1,1 ≤ ||Gn||1,2 ≤ . . . ≤ ||Gn||1,d−2.

Such properties give a further estimate:

(18) ≤ n(n + 1)Cd||Gn||1,d−2

2
·

d−2∑

j=0

Cn,j + Cn,d−1||Gn − Fn||1,1 ≤

≤ n(n + 1)Cd||Gn||1,d−2

2
· (d− 1)Cn,d−2 + Cn,d−1||Gn − Fn||1,1. (19)

A long but easy computation shows that, for each ε2 > 0, there exists nε2 ∈ N

such that, ∀ j,

n > nε2 ⇒ |Cn,j − (2j − 1)2n−2| ∼ |Cn,j − 4jn| < ε2. (20)
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Therefore, for each n > max{n1
ε1 , n

2
ε1 , nε2} we have the following approximation:

(19) ∼ (d− 1)Cd

2
· n24n(d−2)||Gn||1,d−2 + 4n(d−1)||Gn − Fn||1,1.

By the hypotheses, ∀ ε > 0, ∃nε ∈ N such that, for n > nε,

(d− 1)Cd

2
· n24n(d−2)||Gn||1,d−2 + 4n(d−1)||Gn − Fn||1,1 < ε.

The result is proved, by choosing nε > max{n1
ε1 , n

2
ε1 , nε2}.

Theorem 3.1 is a key result to define two suitable random matrices, that are

related to the stationary and the nonstationary terms of the process. These

random matrices are assumed to be dependent on an integer number m ≥ p.

Given µ = 1, . . . ,m, let us consider

MNS
µ,n =

1
n

d−1∑

j=0

n∑
t=1

∆jYt ·
[ d−j−1∑

k=0

(
k + j

k

)
∆kGµ,n(t)

]
,

with Gµ,n (and related Fµ,n) as the functions Gn (and Fn) described in Theorem

3.1.

We define

Am :=
m∑

µ=1

aµ,naT
µ,n (21)

and

Bm :=
m∑

µ=1

bµ,nbT
µ,n, (22)

where

aµ,n :=
MNS

µ,n /
√

n√∫
(ζn,ξn)

∫
(ζn,ξn)

Fµ,n(x)Fµ,n(y) min{x, y}dxdy
(23)

and

bµ,n :=
√

nMS
µ,n√∫

(ζn,ξn)
Fµ,n(x)2dx

, (24)
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with

MS
µ,n :=

1
n

n∑
t=1

Fµ,n(t)∆dYt. (25)

The random matrices defined above are the main tools of the nonparametric

analysis, that will be developed in the next section.

4 Convergence results

In this section the generalized eigenvalue problem is solved. To this end, let us

assume firstly that

lim
n→+∞

ζn = 0 and lim
n→+∞

ξn = 0. (26)

We define

Ψµ :=

∫
(0,1)

Fµ(x)W (x)dx
√∫

(0,1)

∫
(0,1)

Fµ(x)Fµ(y)min{x, y}dxdy
,

Φµ :=
Fµ(1)W (1)− ∫

(0,1)
fµ(x)W (x)dx∫

(0,1)
Fµ(x)2dx

,

where fµ is the derivative of Fµ and

Fµ := lim
n→+∞

Fµ,n.

Moreover, we define the following p-variate standard normally distributed ran-

dom vectors:

Ψ∗µ :=
(
RT

p−rC(1)C(1)T Rp−r

) 1
2
RT

p−rC(1)Ψµ ∼ Np−r(0, Ip−r),

Φ∗µ :=
(
RT

p−rC(1)C(1)T Rp−r

) 1
2
RT

p−rC(1)Φµ,

Φ∗∗µ := (RT
r D(1)D(1)T Rr)−

1
2 RT

r D(1)Φµ ∼ Nr(0, Ir),
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and we construct the matrix Vr,m as

Vr,m := (RT
r D(1)D(1)T Rr)

1
2 V ∗

r,m(RT
r D(1)D(1)T Rr)

1
2 ,

with

V ∗
r,m =

( m∑
µ=1

γ2
µΦ∗∗µ Φ∗∗Tµ

)
−

( m∑
µ=1

γµΦ∗∗µ Ψ∗Tµ

)( m∑
µ=1

Ψ∗µΨ∗Tµ

)−1( m∑
µ=1

γµΨ∗µΦ∗∗Tµ

)
,

where

γµ =

√∫ 1

0
F 2

µ(x)dx
√∫ 1

0

∫ 1

0
Fµ(x)Fµ(y)min{x, y}dxdy

.

The following result summarizes the eigenvalue problem and provide a nonpara-

metric solution for it.

Theorem 4.1 Assume that the following hypotheses hold.

∫

(0,1)

∫

(0,1)

Fµ1(x)Fµ2(y)min{x, y}dxdy = 0, µ1 6= µ2; (27)

∫

(0,1)

Fµ1(x)
∫

(0,x)

Fµ2(y)dxdy = 0, µ1 6= µ2; (28)

∫

(0,1)

Fµ1(x)Fµ2(x)dx = 0, µ1 6= µ2. (29)

If Assumptions 2.1 and 2.2 are true, then:

(I) suppose that λ̂1,m ≥ . . . ≥ λ̂p,m are the ordered solutions of the generalized

eigenvalue problem

det
[
Am − λ(Bm + n−2A−1

m )
]

= 0, (30)

and λ1,m ≥ . . . ≥ λp−r,m the ordered solutions of

det
[ m∑

µ=1

Ψ∗µΨ∗Tµ − λ

m∑
µ=1

Φ∗µΦ∗Tµ

]
= 0. (31)
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Then we have the following convergence in distribution

(λ̂1,m, . . . , λ̂p,m) → (λ1,m, . . . , λp−r,m, 0, . . . , 0);

(II) let us consider λ∗1,m ≥ . . . ≥ λ∗r,m the ordered solutions of the generalized

eigenvalue problem

det
[
V ∗

r,m − λ(RT
r D(1)D(1)T Rr)−1

]
= 0. (32)

Then the following convergence in distribution holds

n2(λ̂p−r+1,m, . . . , λ̂p,m) → (λ∗21,m, . . . , λ∗2r,m).

Proof. The proof is due to Lemmas 1, 2 and 4 (Bierens, 1997), and Theorem

3.1.

References

Anderson, S.A., H.K. Brons & S.T Jensen (1983), Distribution of eigenvalues in

multivariate statistical analysis, Annals of Statistics 11, 392-415.

Bierens, H.J. (1997), Nonparametric co-integration analysis, Journal of Econo-

metrics 77, 379-404.

Ladyzhenskaya, O.A. & N.N. Uraltseva (1968), Linear and quasilinear elliptic

equations, (Academic Press, New York-London).

12


