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Abstract

This issue deals with the conceptualization of an
optimization problem. In particular, we first pro-
vide a formal definition of such a mathematical
concept. Then, we give some classifications of the
optimization problems on the basis of their main
characteristics (presence of time dependence and
of constraints). In so doing, we also outline the
standard techniques adopted for seeking solutions
of an optimization problem. Lastly, some exam-
ples taken by the classical theory of economics
and finance are proposed.

Definition

An optimization problem is a mathematical obsta-
cle. Its overcoming leads to the identification of
some quantities (optimal solutions), contained in a
predefined set (admissible region), such that a
given (objective) function is optimized
(maximized or minimized). Optimization prob-
lems have remarkable relevance in the context of
economics and law, since taking consistent

decisions is associated to the implementation of
optimal – in some sense – strategies.

The General Theory of the Optimization
Problems

In the context of economics and law, decision
makers should act under the guide of optimality
criteria. Indeed, it is easy to understand that a
decision might drastically undermine the outcome
of economic policies or law statement. This said,
it is important to develop optimization models and
solve them.

In this issue optimization problems (OP, here-
after) are treated. Specifically, some classifica-
tions of OP are proposed on the basis of their
relevant features. Several clusterings of the huge
set of the OP can be proposed. We here report the
most important ones under the perspective of the
applications. Moreover, the solution strategies for
each class of OP are also discussed, having in
mind that an optimization problem might not
have solutions. In this respect, a warning is in
order: OP can be very difficult to solve, and some-
times standard techniques are not sufficient for
achieving a solution. The core of Operational
Research is exactly the study of new methods for
facing OP which are out of the main frameworks.
Hence, nonstandard techniques are not treated in
this report, even if some of them will be briefly
mentioned. Some remarkable economic examples
of OP are also proposed.
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Classification of the OP
Perhaps, the most intuitive classification of the OP
is the one grounded on the dependence of the
problems on time and leads to the distinction
between static and dynamic OP. More precisely,
OP are dynamic when the objective function
and/or the elements of the admissible region are
time dependent, otherwise they are static.

The static case is the simplest one, and its
treatment requires basic mathematical tools. To
discuss static OP, a subclustering of them
concerning the presence or the absence of con-
straints on the involved variables is needed.

Static OP are unconstrained if the objective to
be optimized is a real-valued function f defined
over the n-dimensional Cartesian space Rn, and
the optimal variables are searched on the entire set
Rn.

Now, assume that all the functions here
presented are enough regular, and the derivatives
used in the description of the static OP exist. Then
the standard solution algorithm runs in two steps:
first, the “candidate” optimal solutions are detected
by posing the vector of thefirst partial derivatives of
f (the gradient of f) identically null, i.e.,: by
searching for the vectors x0 � Rn such that
grad f x0ð Þð Þ ¼ 0 (first order conditions, and the
x0’s are the stationary points); second, the candi-
dates obtained in the first step are classified through
the analysis of the sign of the Hessian Hess (f(x0)),
which is an n � n matrix containing the second
partial derivatives of f and provides information
on the convexity of the function f. Specifically, if
Hess (f(x0)) has positive (negative) sign, then f is
convex (concave) in a neighborhood of x0, which is
a minimum (maximum) for f overRn (second order
conditions). When Hess (f(x0)) is indefinite, then
second order conditions do not lead to the classifi-
cation of the stationary point x0. In this case, x0 can
be classified through a local study of the behavior of
f in a neighborhood of it.

Static OP are constrained when the optimal
variables belong to a proper subset A of Rn,
which is identified through a collection of analyt-
ical equations and disequations of the variable
x �Rn. This class of problems is treated similarly
to the unconstrained case but with a remarkable
difference: the introduction of the so-called

Lagrangian H is needed. The Lagrangian is a
function including in a unified term the objective
f and the equations and disequations generatingA.
The optimal solutions are then derived by setting
the gradient of H equals to zero and then by
classifying the stationary points through the
study of the Hessian of H. It is worth noting that
H is defined also by the introduction of some
ancillary variables (the Lagrange multipliers), so
that the stationary points of H are automatically
included in A. It is important to recall here
Weierstrass’ Theorem, which can be in general
formulated as follows: if A and f satisfy some
properties, i.e.,: A is a compact (closed and
bounded) set of Rn and f is continuous in A, then
the constrained optimization problem admits
solutions.

For details and examples on static OP, refer to
Simon and Blume (1994).

The dynamic OP are those more involved in
economic application, in that they are able to fit
with the evolutive nature of the reality. In the
dynamic OP, a set T � 0, þ1½ Þ collecting the
time is introduced. The objective functional
J depends on time t � T and is optimized with
respect to an n-dimensional function of the time
t (the state variable), denoted as {xt}. Indeed,
functional J is usually defined as the aggregation
over t (sum over t if T is a discrete set; integral
over t if T is a continuous set) of a time-dependent
function fwhich depends also on {xt}. The way in
which optimization is performed can be indirect,
i.e., {xt} and J are optimally selected by control-
ling a further set of variables {at} included in their
definition (the control variables) or direct, other-
wise. In the former case, we define the optimal
control problems (OCP, henceforth), which is a
very relevant class of the dynamic OP.

To fix ideas, assume that time is continuous,
and T ¼ t1, t2½ � � 0, þ1½ Þ.

Under an operative point of view, the strategy
for solving OP in the “direct case” is similar to that
presented for the static OP. The role played in the
static situation by the stationary points is assigned
in the dynamic setting to the so-called extremals.
In details, under the necessary regularity condi-
tion, the first order conditions can be rewritten
through a special differential equation (Euler
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equation) of f. The extremals are then classified by
studying the convexity of f through the Hessian
matrix of the second derivatives of f. This proce-
dure is theoretically formalized in the Calculus of
Variations, and an illuminating overview on it can
be found in Kamien and Schwartz (1991).

For what concerns OCP, their main ingredients
are: the state variable {xt}, which evolves accord-
ingly to a differential equation (state equation);
the control variable {at}, managed by the decider
in order to solve the optimization problem; the
admissible region, which is a functional set
containing the control variables; the objective
functional J; the value function V, which is the
optimized objective function; and, lastly, the opti-
mal strategies, which are given by the pair opti-
mal controls-optimal paths.

A further clustering of OCP can be properly
identified, on the basis of the presence of random-
ness in their formalization. So, we have determin-
istic OCP and stochastic ones. The latter are those
where f, {xt} and {at} are random, while all the
ingredients of the former are deterministic. In sto-
chastic OCP, the state variable obeys a stochastic
differential equation.

The procedures for solving deterministic and
stochastic OCP are basically two: the Pontryagin
maximum principle and the dynamic program-
ming theory. The former method may be viewed
as a generalization of the procedure employed for
solving the dynamic OP. Indeed, Pontryagin’s
Theorem states that the optimal strategies are cou-
ples optimal controls-optimal paths which must
optimize a special function (the Hamiltonian)
similar to the Lagrangian of the static OP case
and including the objective functional and the
constraints. Moreover, the introduction of addi-
tional variables (costates) and the fulfillment of
further conditions (costate equations) are also
required; the latter method is based on the defini-
tion of the value function, which is proved to be
formally the unique solution of a specific differ-
ential equation (Hamilton-Jacobi-Bellman equa-
tion, HJB) by means of a maximum principle (the
Dynamic Programming Principle). If the value
function is so regular to be the true solution of
the HJB, then one can derive the optimal strate-
gies through a Verification Theorem. It is worth

noting that the regularity of the value function is
an important aspect to be treated in the dynamic
programming approach, and the employment of a
concept of weak solutions of the HJB (the
so-called viscosity solutions) is often required.

For a survey on the OCTand, in general, on the
dynamic OP, see Fleming and Rishel (1975),
Bardi and Capuzzo Dolcetta (1997), Yong and
Zhou (1999), Fleming and Soner (2006), Kamien
and Schwartz (1991). The concept of viscosity
solutions is introduced and discussed in Fleming
and Soner (2006) and Crandall et al. (1992).

Examples of OP

Some classical examples of OP can be listed in the
field of economics.

In Markowitz (1952), the future Nobel Laure-
ate Harry Markowitz developed an optimization
model for the selection of the best capital alloca-
tion among a set of risky assets. The optimality
criterion is based on the evidence that an investor
aims at maximizing the expected return of a port-
folio and, simultaneously, at minimizing its risk
level. The resulting problem is a static constrained
one, with convex objective function.

In the field of decision theory, a relevant role is
played by the concept of utility. A utility function
is a tool for ordering preferences of goods and is a
simple assignment of a number representing the
satisfaction to be the owner of some quantities of
goods. By conventional agreement, a greater
value of the utility means a higher level of satis-
faction. Hence, utility maximization is the ground
of a number of static and dynamic OP. For some
explicit models, refer to Mas-Colell et al. (1995).

A macroeconomic example of optimization
model consists of the maximization of the growth
rate of a country. In this case, the formalization of
the related OP includes the evolutive nature of the
phenomenon and the wide set of constraints.
Hence, the OP are dynamic. The objective func-
tion is usually consumption or utility, and the
constraints model human or physical capital accu-
mulation. For this type of models, see Barro and
Sala-i-Martin (2004).
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Under a microeconomic point of view, of
remarkable relevance is the problem of cost min-
imization and profit maximization. The solution of
the resulting OP provides insights on the strate-
gies to be implemented by the companies for
improving their performances. Usually, such
models are described through constrained OP, in
order to capture the presence of budget and/or
technological constraints. A detailed discussion
on this family of OP can be found in
Varian (1992).
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