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 This paper presents a novel direct rotor flux 
oriented control with online estimation of 
magnetizing current and magnetizing inductance 
applied to self-excited dual star induction 
generator equipping a wind turbine in remote sites. 
The induction generator is connected to nonlinear 
load through two PWM rectifiers. The fuzzy logic 
controller is used to ensure the DC bus voltage a 
constant value when changes in speed and load 
conditions. In this study, a performance 
comparison between the conventional approach 
and the novel approach is made. The proposed 
control strategy is validated by simulation in 
Matlab/Simulink. 
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1 Introduction  
 
The first record of a multiphase motor drive known 
to the authors, dates back to 1969 when a five-phase 
voltage source inverter fed induction motor drive 
was proposed. During the next 20 years, the 
multiphase motor drives have attracted a steady, but 
rather limited attention [1]. 
At present, the application area of multiphase 
induction machine is more and more abroad due to 
its advantage. First, there is a reduction in the 
harmonic torque pulsations at a high frequency and 
in rotor harmonic currents. This minimizes rotor 
losses and the phase current in the machine and 
inverter without increasing the phase voltage. Other 
potential advantages are their high reliability and the 
possibility to divide the controller power on more 
inverter legs [2-10]. 
Some of the most suitable applications are the high 
current ones: ship propulsion, locomotive traction, 
electric vehicles, and aircraft [11-12]. Improved 
reliability is advantageous in nuclear power for its 

circulation pumps and for other similar application 
in process industries [3, 11]. 
A very interesting and discussed multiphase solution 
is a dual-stator induction machine (DSIM) that has 
two sets of three-phase windings spatially shifted by 
30 electrical degrees with isolated neutral points. 
Modeling, control, and performance of the dual star 
induction machine has been extensively covered in 
[2, 6, 3-17] 
This paper investigates a control system for double 
star induction generator that uses a rotor flux 
orientation. A systematic analysis of this control 
system is carried out for wide ranges of both load 
and speed. The double star induction generator 
supplies a variable dc load. The main goal is to 
remain constant both rotor flux and DC voltage. 
The introduction of the magnetization curve in the 
model of self-excited induction generator is very 
important for the operation of the generator. If we 
consider the magnetizing inductance constant, the 
model of the generator generates a tension which 
tends towards the infinite. This is why the 
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introduction of a magnetizing inductance estimator 
is in the proposed control algorithm [18-24].  
The direct rotor flux oriented control is favorable 
because of its simple structure and excellent 
decoupling characteristics. This is when the DC 
voltage and currents are accurately measured. The 
performance of this technical method depends on 
the constant of the rotor; this constant depends 
mainly on the saturation of the magnetic circuit of 
the generator [18]. 
Lots of works have been done in the literature using 
the rotor vector orientation control; the estimator of 
magnetizing inductance has not been included for 
improving accuracy in calculating the rotor flux 
position. They regulate DC voltage poorly, 
especially at low speeds or major changes of load. 
The magnetizing inductance is usually considered 
constant [19-21]. However, even in induction 
machines with a maximal variation of speed rotor, 
considering them as a constant, can lead to serious 
errors in the estimation of the time constant [18, 22-
24]. So, a similar effect can be expected in the dual 
star induction generator field oriented control 
systems as well. 
The authors propose an improving self-induction 
generator vector control in which the estimator of 
magnetizing inductance is introduced; they 
estimated it by the relationship between the current 
in d axes and the inductance magnetizing. The 
magnetizing curve has been included in the 
proposed control system to more accurately 
calculate the rotor flux position. However, this 
approach required a current sensor, which 
complicated the control system [23]. In another 
approach proposed [22], a relationship between 
current reference in d-q axes, the magnetizing 
current, and magnetizing inductance was found. 
This approach is very complicated but it   doesn't 
require a current sensor. 
In this paper, a new algorithm of control are 
introduced; an estimator of inductance magnetizing 
is introduced to vector control, contrary to the 
traditional algorithm where the inductance 
magnetizing is considered constant. A comparison 
of the two control systems has been presented. A 
fuzzy PI controller is proposed for optimization of 
DSIG’s vector control. The proposed scheme is to 
some extent similar to that in [25], which makes the 
control system more robust. 
 
 

2 Modeling of self-excited dual star 
induction generator 
 

The model of a dual star induction generator is the 
same as the dual star induction motor. The PARK 
model of the dual star induction generator in the 
reference frame at the rotating field (d, q) is 
represented in Fig. 1. 
The DSIG is composed of a stator having two 
identical phase winding offset by an electrical 
angle 30α = ° , and a squirrel cage rotor [25-27]. 
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Figure 1. Representation of DSIG in the Park frame  
 
The electrical equations of the dual stator winding 
induction generator in the synchronous reference 
frame (d-q) are given as [25-27]: 
 
 1 1 1 1 1ds ds e qs dsv r i pω ψ ψ= − − +  (1) 
 1 1 1 1 1qs qs e ds qsv r i pω ψ ψ= − − +  (2) 
 1 1 1 1 1qs qs e ds qsv r i pω ψ ψ= − − +  (3) 
 2 2 2 2 2qs qs e ds qsv r i pω ψ ψ= − − +  (4) 
 0 ( )dr r dr e r qr drv r i pω ω ψ ψ= = − − +  (5) 
 0 ( )qr r qr e r dr qrv r i pω ω ψ ψ= = + − +  (6) 
 

1dsv , 1qsv , 1dsi ,  1qsi , 1dsψ and 1qsψ are respectively 
the ‘d’ and ‘q’ components of the first star  voltages, 
currents and flux linkage. 2dsv , 2qsv , 2dsi ,  2qsi , 

2dsψ and 2qsψ  are respectively the ‘d’ and ‘q’ 
components of the second star  voltages, currents, 
and flux linkage. 
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drv , qrv , dri , qri , drψ  and qrψ  are respectively the 
‘d’ and ‘q’ components of the rotor voltages, 
currents, and flux linkage. 1r , 2r  and rr are 
respectively the phase stator resistances for two star 
and rotor resistance. 

eω is the speed of the synchronous reference frame; 

rω is the rotor electrical angular speed. 
The expressions for the stator and rotor flux 
linkages are [24-29]: 
 

 1 1 1 1 2 2

1 2

( )

( )
ds l ds lm ds ds dq qs

md ds ds dr

L i L i i L i

L i i i

ψ = − − + −

+ − − +
 (7) 

 1 1 1 1 2 2

1 2

( )

( )
qs l qs lm qs qs dq ds

mq qs qs qr

L i L i i L i

L i i i

ψ = − − + −

+ − − +
 (8) 

 2 2 2 1 2 1

1 2

( )

( )
ds l ds lm ds ds dq qs

md ds ds dr

L i L i i L i

L i i i

ψ = − − + −

+ − − +
 (9) 

 2 2 2 1 2 1

1 2

( )

( )
qs l qs lm qs qs dq ds

mq qs qs qr

L i L i i L i

L i i i

ψ = − − + −

+ − − +
 (10) 

 1 2( )dr lr dr md ds ds drL i L i i iψ = − + − − +  (11) 
 1 2( )qr lr qr mq ds ds qrL i L i i iψ = − + − − +  (12) 
 
Where: mdL  and mqL are respectively the direct and 
the quadrature magnetizing inductance. 

1 1s d l mdL L L= + , 1 1s q l mqL L L= + , 2 2s d l mdL L L= + ,

2 2s q l mqL L L= + , rd lr mdL L L= + , rq lr mqL L L= +  

1s dL , 1s qL , 2s dL , 2s qL , rdL and rqL are respectively 
the direct and quadrature of the stator and rotor 
inductances. The electromagnetic torque is 
evaluated as: 
 

 1 2

1 2

[( )

( ) ]

m
em qs qs dr

lr m

ds ds qr

LT p i i
L L

i i

ψ

ψ

= + −
+

+
 (13) 

 
Where: mL  is the magnetizing inductance. 
The magnitude of the magnetizing current mi is 
calculated as: 
 

 2 2
1 2 1 2( ) ( )m ds ds dr qs qs qri i i i i i i= − − + + − − + (14) 

 
It must be emphasized that the generator needs 
residual magnetism so that the self-excitation 

process can be started. The magnetizing inductance, 
mL  used in this work is given as follows [30]: 

 

 2

0.1406 0.0014

0.0012 0.00005 3
m m m

m m

L i i

i i

= +

− +
 (15) 
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Figure 2. Variation of magnetizing inductance with 

magnetizing current 
 
3 Vector control 
 
The goal in the controlling system is to ensure DC 
bus voltage to its reference. This is obtained by 
controlling the flux and the power transmitted by the 
generator. 
The objective of the direct field oriented control 
theory applied to the DSIG is, as in DC machine, to 
independently control the torque and the flux. In 
ideal field oriented control, the rotor flux linkage 
axis is forced to align with the d-axis and it follows 
that: 
 *

dr rψ ψ=  (16) 
 0dr qrpψ ψ= =  (17) 
 
Substituting (16)-(17) into (5)-(6), yields  
 
 * 0 0r dr r drr i p iψ+ = → =  (18) 

 
* *

* 0 sl r
r dr r qr

r
r i p i

r
ω ψ

ψ+ = → = −  (19) 

Where * *
sl e rω ω ω= − , slω is the slip speed. 

The rotor currents in terms of the stator currents are 
divided from (11) and (12) as: 
 

 *
1 2

1 ( )
( )dr r m ds ds

m lr
i L i i

L L
ψ = − + +

 (20) 
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Figure 3. The algorithm of control 
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 1 2
1 ( )

( )qr qs qs
m lr

i i i
L L

= − +
+

 (21) 

 
Substituting (20) into (18), obtain 
 

 * *
*( )

r m
sl qs

m lr r

r L i
L L

ω
ψ

=
+

 (22) 

Where: 
 
 * * *

1 2qs qs qsi i i+ =  (23) 
 
From the desired value of the DC voltage, it is 
possible to express that the reference power by: 
 
 * *

DC dc ele emV i P P T= = = Ω  (24) 
 
Neglecting the losses, the torque expression can be 
written as: 

 
*

em
PT =
Ω

 (25) 

 
The component references of the stator current and 
slip speed slω  can be expressed as: 
 

 * *
1 *

( )lr m
qs em

m r

L Li T
pL ψ

+
=  (26) 

 
The flux controlled by dsi  
 

 
1

m
r ds

r

Lp i
s

ψ
τ

=
+

 (27) 

Where: 
 1 2sd sd dsi i i+ =  (28) 

 r
r

r

L
r

τ =  (29) 

 
The implementation of the control is presented in 
Fig. 3. 
 
3.1 Estimation of magnetizing inductance  
 
The magnetizing inductance depends on the 
magnetizing current amplitude mI . Therefore, 
mainly if the generator is to operate in the flux 
weakening range, it is necessary to online estimate 
the mL  value during operation.  

By substituting expression (20)-(21) to (14), after 
simplification, we have the flowing expression: 
 

 

2*

2

(2 )1

( )

r ds m lr
m

m lr
qs m lr

i L L
i

L L i L L

ψ − + =
+  + + 

 (30) 

 
The magnetizing inductance can be found as shown 
in Fig. 4: 
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Figure 4. Magnetizing inductance estimation 

scheme 
 
4 The PWM current controller  
 
The problem of the varying switching frequency of 
the hysteresis current control can also be solved 
with a ramp comparison current controller. Here 
three current controllers produce the voltage 
commands, which are compared with the triangular 
carrier signal in a sinusoidal PWM manner. Because 
the PI controllers operate on AC signals inherent 
amplitude and phase error occur between the 
sinusoidal reference and the actual current. 
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Figure 5. The PWM current control 
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5 The PI Controller 
 

5.1 The DC bus voltage controller 
 

The corrector PI provided for DC bus voltage is 
written: 
 

* *( )( )iDC
sq pDC DC DC

ki k V V
s

= + −  (31) 

 
The DCV  control scheme is shown in the following 
figure. 
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Figure 6. Closed-loop control of DC voltage 
 
The system closed-loop transfer function is written: 
 

* 2

* 2

1

1

pDC iDCDC

DC pDC iDC

DC

DC
pDC

K s KV
V Cs K s K

V s
CV s s

K

τ
τ τ

+
=

+ +

+
=

+ +

 (32) 

Where: pDC

iDC

K
K

τ =   

By identification with the canonical form: 
 

2
2

1 2 1
nn

s sζ
ωω

+ +  (33) 

 
We obtained: 
 

6
pDC

r

CK
t
ζ

=  (34) 

 

2
9

iDC
r

CK
t

=  (35) 

We choose the coefficient for 0.7ζ = , 3
n

rt
ω =  and  

110rt s−=  

 
5.2 The flux controller 

 
We consider an integral proportional corrector (PI) 
according to: 
 

* *( )( )i
sd p r r

k
i k

s
ψ

ψ ψ ψ= + −  (36) 

 
pk ψ : Proportional gain and ikψ : integral gain, are 

the parameters of the corrector to be determined and 
s is the Laplace operator. 
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Figure 7. Closed-loop control of flux.  
 
The system closed-loop transfer function is written: 
 

*

2

2 ( )
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By identification with the canonical form: 
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We choose the coefficient for 0.7ζ = , 3
n

rt
ω =  and 

1(0.5)10rt s−= . 
 
6 The fuzzy logic controller 
 
The main feature of the fuzzy logic controllers 
(initiated by Mamdani and Assilian based on Fuzzy 
set theory suggested by Zadeh in 1965) is that 
linguistic, imprecise knowledge of human experts is 
used [31]. 
The proposed voltage fuzzy PI controller block 
diagram is shown in Fig. 8, it has two inputs and 
one output. 
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Figure 8. Structure of the fuzzy PI controller 
 
Where E is the error, expressed by: 
 
 *( ) ( ) ( 1)DC DCE k V k V k= − −  (41) 
 
dE is derived from the error approximated by: 
 
 ( ) ( ) ( 1)dE k E k E k= − −  (42) 
 
The output of the regulator is given by: 
 
 * *( ) ( 1) ( )P k P k dU k= − −  (43) 
 
FE, FdE, FdU are gains called “scale factor” they 
can change the sensitivity of the controller without 
changing its structure.  
The PI transfer function connecting the error E to 
the control reference signal u expressed in Z is: 
 

 
*( )
( ) 1

DC
p i

V z zk k
E z z

= +
−

 (44) 

 
Where: pk  and ik , are the gains of the PI controller. 
From Eq. 44. We obtain the following equation: 

 1 1( )(1 ) (1 ) ( ) ( )p iu z z k z E z k E z− −− = − +  (45) 
 
If we note respectively dE the change of the error E 
and du the change of the signal control u then Eq. 
44. becomes:  
 
 ( ) ( )p idu k dE z k E z= +  (46) 
 
The output of the regulator PI controller is 
according to the error E and of its change dE. Then, 
it appears completely natural to preserve the same 
inputs and outputs for the fuzzy controller 
equivalent. 
These parameters are adjusted in real time according 
to the disturbance which increases. It is a question 
of associating the fuzzy regulator output to the 
proportional and integral actions of the control 
signal. 
The fuzzy controller is composed of three blocks: 
             - Fuzzification, 
             - Rules bases, 
             - Defuzzification. 
 
6.1 Fuzzification 
 
The crisp input variables are E(k) and dE(K) are 
transformed into Fuzzy variables referred to as 
linguistic labels. The membership functions 
associated with each label have been chosen with 
triangular shapes [32-33]. 
The universe of discourse of all input and output 
variables are established as (-1, 1). The suitable 
scaling factors are chosen to bring the input and 
output variables to this universe of discourse. 
Figure 9. Shows the function of membership of each 
input signals (E, dE). Each universe of discourse is 
divided into seven overlapping fuzzy sets: PB 
(Positive Big), PM (Positive Medium), PS (Positive 
Small), ZE (Zero Environ), NS (Negative Small), 
NM (Negative Medium), and NB (Negative Big). 
Each fuzzy variable is a member of the subsets with 
a degree of membership µ varying between 0 (non-
member) and 1 (full-member). 
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Figure 9. Membership functions 
 

6.2 Rules bases 
 
Fuzzy logic rule database consists of series if-and-
then fuzzy logic condition sentences. Table 1 shows 
the corresponding rule table for the fuzzy controller, 
the design of these rules is based on a qualitative 
knowledge, deduced from extensive simulation tests 
[34]. There are 7 fuzzy subsets for each variable, 
which gives 7*7=49 possible rules. 

Table 1. Rules bases 
 

 
dE, dU PB PM PS Z NS NM NB 

PB NB NB NB NB NM NS Z 
PM NB NB NB NM NS Z PS 
PS NB NB NS NS Z PS PM 
Z NB NM NS Z PS PM PB 

NS NM NS Z PS PS PB PB 
NM NS Z PS PM PB PB PB 
NB Z PS PM PB PB PB PB 

 
6.3 Deffuzification  
 
In this step, the fuzzy variables are converted into 
the crisp variable. In this paper, the center of 
gravity defuzzification method is adopted here and 
the inference strategy used in this system is the 
Mamdani algorithm [34-35]. The output function is 
given as: 
 

 
( ) ( )

1

( )
1

( )

( )

n

f k f k
k

f n

f k
k

u u
u

u

µ

µ

=

=

=
∑

∑
 (47) 

 
Where n is the total number of rules and ( )( )f kuµ    

denotes the output membership value for thk   rule. 
 
7 Selection of performance parameters 
 
The criterion used to measure the quality of system 
response must take into account the variation in 
error over the whole range of time. The four basic 
criteria are commonly used: Integral of absolute 
error (IAE), Integral of squared error (ISE), and 
Integral of time multiplied by absolute error (ITAE) 
[36]. These parameters are evaluated as follows: 

 
 0 ( ) .IAE e t dt∞= ∫  (48) 
 
 
 { }2

0 ( ) .ISE e t dt∞= ∫  (49) 

 0 ( ) .ITAE t e t dt∞= ∫  (50) 
 
 
8 Interpretation of the results 
 
The simulation of the proposed control scheme has 
been implemented using Matlab/Simulink. The 
sample time used 50 sT sµ= .  
Figure 10 shows the DC bus voltage. The reference 
of the DC bus voltage is set at 1100 V. According to 
this figure the DC bus voltage is mainly controlled 
to its reference with the proposed control technique 
but the DC bus voltage cannot follow the DC bus 
reference when the rotor speed changes to the low 
value. It is clear from Fig. 10 that the conventional 
control scheme is not suitable to achieve the desired 
DC voltage and not robust under high variations of 
rotor speed and load. 
For a good performance of the DC voltage control, 
the PI controller is replaced by a fuzzy controller. 
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To compare the PI and fuzzy PI controllers the DC 
bus voltage given in Fig. 10, its shown that the 
fuzzy PI controller is better than the conventional PI 
controller and the DC bus voltage is mainly 
controller with the fuzzy PI controller. 
 

0 5 10 15
0

200

400

600

800

1000

t(sec)

V D
C(V

)

 

 

0 5 10 15
1091

1099

1105

VDC with Lm estimator  (Fuzzy PI)

VDC without Lm estimator (PI)

VDC with Lm estimator (PI)

VDC without Lm estimator (Fuzzy PI)

 
 
Figure 10.  DC link voltage and zoom of DC link 

voltage 
 
Simulation results show that the PI DC voltage 
controller suffers from overshoot and takes more 
settling time to reach the steady state. The fuzzy PI 
controller responded with lesser overshoot and took 
less time to reach the steady-state value compared to 
conventional PI. 
The fuzzy PI controller shows a better performance 
(IAE=821.7, ISE=7.65. 510 , ITAE=392.7) and the 
peak overshoot 0.2% during all time as compared 
with its conventional counterpart PI (IAE=877.3, 
ISE=7.66. 510 , ITAE=400) the peak overshoot 
0.54% during all time. 
During the simulation, the system has been exposed 
to a speed and load variation to see the response of 
the control. These variations can be seen in Fig. 11. 
It is evident that the neglecting the estimation of 
magnetizing inductance in vector control can result 
in a detuned operation. This effect is clearly shown 
in Fig. 12 and Fig. 13. 
Figure 14 represents stator voltage and current for 
star 1 and 2, the second star is shifted by an 
electrical angle 30α = °  from the first star. 
In Fig. 15, the stator phase current is shown to be 
successfully maintained within the imposed 
hysteresis band limits for different load values, 
where the fixed current band ‘h’ is set to 0.5 A. 
Figure 16 shows that the rotor flux rψ is constant 
during entire operation with the proposed control. 
But with the conventional control, the rotor flux 
cannot follow its reference when the rotor speed 
change to low value. 
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Figure 11. a) Rotor speed and b) Load 
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Figure 12. Stator current a) with proposed control 
b) with conventional control 
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Figure 13. Steady-state current – detuning effect (a) 
proposed control and (b) conventional 
control system 
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Figure 14. a). Stator voltage and current for star 1 
and 2, b). zoom of stator voltage and 
current for star 1 and 2 
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Figure 15. Stator current for star (1,2) and its 

references 
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Figure 16. Rotor flux 
 
The real magnetizing inductance, as well as the 
estimated one, are presented in Fig. 17(b) where the 
error between the real and the estimated one is 
lower than 0.01 of its value. 
Figure 17 shows the magnetizing current and 
magnetizing inductance within the estimator. 
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Figure 17. a) Magnetizing current, b) magnetizing   
inductance 



44 Y. Bendjeddou, R. Abdessemed, E. Elkheir: Improved… 
________________________________________________________________________________________________________________________ 
 

9 Conclusion 
 

In this paper, a rotor flux oriented control using 
fuzzy logic applied to self-excited dual star 
induction generator, in a variable speed wind 
system, have been presented and studied.  
Neglecting estimation of magnetizing inductance in 
vector control of the dual star induction generator 
can lead to detuned steady state operation. 
The proposed control provides good DC voltage 
control with near sinusoidal stator current and low 
harmonic. 

Further research and experimentation must be 
carried out in order to validate the results 
obtained. 

 
Appendix A. DSIG parameters  
 

1,2r  1.9 Ω  

rr  2.9 Ω  

1,2lL  0.0132 H  

lrL  0.0132 H  

mL  0.011 H  
2p 4 

 
Appendix B. PI and Fuzzy PI parameters 
 

iDCK  1.98 

pDCK  0.0924 

iKψ  8534.48 

pK ψ  68.4 
FE 1.25 
FdE 9.09e-4 
FdU 0.8 

 
Appendix C. Nomenclature  

 
1dsv , 

1qsv , 2dsv , 2qsv  “d-q” stator voltages 

1dsi , 1qsi , 2dsi , 2qsi  “d-q” stator currents  

1dsψ , 1qsψ , 2dsψ

2qsψ  “d-q” stator flux  

drv , qrv  “d-q” rotor voltages 

dri , qri  “d-q” rotor currents  

drψ , qrψ  “d-q” rotor flux  

1r , 2r  Per phase stator resistances  

rr  Per phase rotor resistance 

1s dL , 1s qL , 2s dL ,

2s qL  “d-q” stator inductances 

rdL , rqL  “d-q” rotor inductances 

mL  Magnetizing inductance 

mi  Magnetizing current 

p Number of pair pole 

emT  Electromagnetic torque 

eleP  Electromagnetic power 

eω  Speed of the synchronous 
reference frame 

rω  Rotor electrical angular 
speed 

 
References 
 
[1] Umesh, B. S, Sivakumar, K.:  Multilevel 

Inverter Scheme for Performance Improvement 
of Pole Phase Modulated Multiphase Induction 
Motor Drive, IEEE Transactions on Industrial 
Electronics, 63 (2015), 2036 - 2043. 

[2] Elkheir, M., Hocine, A., Farid, H., Rachid, A.: 
Self-tuning fuzzy logic controller for a dual star 
induction machine, JEET, Vol (2011), 1, 133-
138. 

[3] Singh, G. K.: Multi-phase induction drive 
research – a survey (periodical style), Electric 
Power Systems Research, 61 (2002), 139-147. 

[4] Levi, E.: Multiphase electric machines for 
variable speed applications, IEEE Transactions 
on Industrial Electronics, 55 (2008), 1893-
1909. 

[5] Abdel-Khalik, A. S., Masoud, M. I., Williams, 
B. W.: Vector controlled multiphase induction 
machine: Harmonic injection using optimized 
constant gains, Electric Power Systems 
Research, 89 (2012), 116-128. 

[6] Salima, L., Tahar, B., Youcef, S.: Indirect rotor 
field oriented control based on fuzzy logic 
controlled double star induction machine, 
Electric Power and Energy Systems, 57 (2014),  
206-211. 

[7] Federico, B., Mario, J. D.: Recent Advances in 
the Design, Modeling and Control of 
Multiphase Machines – Part 1, IEEE 



Engineering Review, Vol. 40, Issue 2, 34-46, 2020.  45 
________________________________________________________________________________________________________________________ 

Transactions on Industrial Electronics, 63 
(2016), 1, 449-458. 

[8] Mario, J. D., Federico, B.: Recent Advances in 
the Design, Modeling and Control of 
Multiphase Machines – Part 2, IEEE 
Transactions on Industrial Electronics, 63 
(2016), 1, 459-468. 

[9] Levi, E.: Advances in Converter Control and 
Innovative Exploitation of Additional Degrees 
of Freedom for Multiphase Machines, IEEE 
Transactions on Industrial Electronics, 63 
(2016), 1, 433-448. 

[10] Levi, E., Federico, B., Mario, J. D.: Multiphase 
Machines and Drives - Revisited, IEEE 
Transactions on Industrial Electronics, 63 
(2016), 1, 429-432. 

[11] Rinkeviciene, R., Kundrotas, B., Lisauskas, S.: 
Model of Controlled Six phase Induction 
Motor, International Journal of Electrical and 
Computer Engineering, 7 (2013), 1, 8-12. 

[12] Grogor, R., Barrero, F., Toral, S., Duran, M. J.: 
Realization of an asynchronous six-phase 
induction motor drive test-rig, in Proc. 
International Conf. Renewable Energy and 
Power Quality, 2008. 

[13] Li, Y., Huang, W., Liu, L., Zhang, Y.: The 
capacity optimization for the static excitation 
controller of the dual stator winding induction 
generator operating in a wide speed range, 
IEEE Transactions on Industrial Electronics, 56 
(2009), 2, 530-541. 

[14] Bu, F., Hu, Y., Huang, W., Zhang, S., Shi, K.: 
Control strategy and dynamic performance of 
dual stator winding induction generator 
variable frequency ac generating system with 
inductive and capacitive loads, IEEE 
Transactions on Industrial Electronics, 29  
(2014), 4, 1681-1692. 

[15] Basak, S., Chakraborty, C.: Dual stator 
winding induction machine: problems, 
progress, and future scope, IEEE Transactions 
on Industrial Electronics, 62 (2015), 7, 4641-
4652. 

[16] Tir, Z., Malik, O.P., Eltamaly, A.M.: Fuzzy 
logic based speed control of indirect rotor field 
oriented controlled double star induction 
motors connected in parallel to a single six-
phase inverter supply, Electric Power Systems 
Research, 134 (2016), 126-133. 

[17] Kundrotas, B., Lisauskas, S. Rinkeviciene, R.: 
Model of Multiphase Induction Motor, 
Eelektronika ir Elektrotechnika, 5 (2011).  

[18] Božo, T., Marin, D., Alojz, S.: Magnetization 
Curve Identification of Vector-Controlled 
Induction Motor at Low-Load Conditions, 
Automatika, 53 (2012), 3. 

[19] Idjdarene, K., Rekioua, D., Rekioua, T., 
Tounzi, A.: Vector control of autonomous 
induction generator taking saturation effect 
into account, Energy Conversion and 
Management, 49 (2008), 2609–2617. 

[20] Margato, E., Faria, J., Resende, M. J., Palma, 
J.: A new control strategy with saturation effect 
compensation for an autonomous induction 
generator driven by wides range turbines, 
Energy Conversion and Management, 5 (2011), 
2142–2152. 

[21] Lin, F. J., Huang, P. K., Wang, C. C., Teng, L. 
T.: An induction generator system using fuzzy 
modeling and recurrent fuzzy neural network, 
IEEE Transactions on Power Electronics, 22 
(2007), 260–271. 

[22] Bašić, M., Vukadinović, D.: Online Efficiency 
Optimization of a Vector Controlled Self 
Excited Induction Generator, IEEE 
Transactions on Energy Conversion, 31 (2016), 
1. 

[23] Bašić, M., Vukadinović, D.: Vector control 
system of a self-excited induction generator 
including iron losses and magnetic saturation, 
Control Engineering Practice, 21 (2013) 395-
406.  

[24] Hazra, S., Sensarma, P.: Self-excitation and 
control of an induction generator in a stand-
alone wind energy conversion system. 
Renewable Power Generation, IET. 4. 383 - 
393. 10.1049/iet-rpg.2008.0102, 2010. 

[25] Samira, C., Narimen, A. L., Djamal, A., Kaci, 
G.: Fuzzy logic control strategy of wind 
generator based on the dual-stator induction 
generator, Electrical Power and Energy 
Systems, 59 (2014), 166-175. 

[26] Singh, G.K.: Modeling and experimental 
analysis of a self-excited six-phase induction 
generator for stand-alone renewable energy 
generation, Renewable Energy, 33 (2008), 
1605-1621. 

[27] Amimeur, H., Aouzellag, D., Abdessemed, R., 
Ghedamsi, K.: Sliding mode control of a dual 
stator induction generator for wind energy 
conversion systems, Electrical Power and 
Energy systems, 2012, 42, 60-7. 

[28] Zhiquiao, W., Olorunfemi, O., Jyoti, S.: High-
performance control of a dual stator winding 



46 Y. Bendjeddou, R. Abdessemed, E. Elkheir: Improved… 
________________________________________________________________________________________________________________________ 
 

DC power induction generator, IEEE Trans. 
Ind. Appl., 43 (2009), 2, march/april 2007. 

[29] Chinmay, K.A., Singh, G.: Performance 
evaluation of multiphase induction generator in 
stand-alone and grid-connected wind energy 
conversion system, IET Renewable Power 
Generation. 10.1049/iet-rpg.2017.0791, 2017. 

[30] Singh, G.K., Yadav, K.B., Saini, R.P.:  
Modeling and analysis of multi-phase (six-
phase) self-excited induction generator. 
ICEMS 2005: Proceedings of the Eighth 
International Conference on Electrical 
Machines and Systems, 3, 1922 - 1927.  

[31] Zadeh, L. A.: Fuzzy sets, Information and 
Control, 8 (1965), 338-353. 

[32] José, L., Azcue, P., Alfeu, J., Sguarezi F., 
Ernesto, R.: Self-Tuning PI-Type Fuzzy Direct 
Torque Control for Three-phase Induction 
Motor, WSEAS Transactions on Circuits and 
Systems, 11 (2012), 10, 319-328. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

[33] Min, Z., Xi, C., Dihua, S.: An incident 
detection method considering meteorological 
factor with fuzzy logic, Engineering Review, 38 
(2016), 1, 104-114. 

[34] Mamdani, E., Assilion, S., Jabr, H.: An 
experiment in Linguistic Synthesis With a Fuzzy 
Logic Controller, Int. J. Man Machine Stud., 7 
(1974), 1-13. 

[35] Sousa, G. C. D., Bose, B. K.: A Fuzzy set 
theory based control of a phase controlled 
converter DC machine drive, IEEE Trans. on 
Ind. Applicat., 30 (1994), 1, 1-13. 

[36] Ansari, A. Q., Ibraheem, N., Katiyar, S.: 
Application of ant colony algorithm for 
calculation and analysis of performance 
indices for adaptive control system, 2014 
Innovative Application of Computational 
Intelligence on Power, Energy and Controls 
with their Impact on Humanity (CIPECH), 
Ghaziadab, India 2014. 

 
 
 


