
One stage versus two stages deep learning
approaches for the extraction of drug-drug

interactions from texts

Comparando enfoques deep learning en una fase y en dos
fases para extraer interacciones farmacológicas de texto

Antonio Miranda-Escalada1, Isabel Segura-Bedmar2
1Barcelona Supercomputing Center, Barcelona, Spain
2Universidad Carlos III de Madrid, Leganés, Spain

antonio.miranda@bsc.es, isegura@inf.uc3m.es

Abstract: Drug-drug interactions (DDI) are a cause of adverse drug reactions.
They occur when a drug has an impact on the effect of another drug. There is not a
complete, up to date database where health care professionals can consult the inter-
actions of any drug because most of the knowledge on DDI is hidden in unstructured
text. In last years, deep learning has been succesfully applied to the extraction of
DDI from texts, which requires the detection and later classification of DDI. Most
of the deep learning systems for DDI extraction developed so far have addressed
the detection and classification in one single step. In this study, we compare the
performance of one-stage and two-stage architectures for DDI extraction. Our ar-
chitectures are based on a bidirectional recurrent neural network layer composed of
Gated Recurrent Units. The two-stage system obtained a 67.45 % micro-average F1
score on the test set.
Keywords: Relation Extraction, Drug-drug interaction, Recurrent Neural Net-
work, Gated Recurrent Unit

Resumen: Las interacciones farmacológicas (DDI) son una de las causas de reac-
ciones adversas a medicamentos. Ocurren cuando una medicina interfiere en la
acción de una segunda. En la actualidad, no existe una base de datos completa y
actualizada donde los profesionales de la salud puedan consultar las interacciones
de cualquier medicamento porque la mayor parte del conocimiento sobre DDIs está
oculto en texto no estructurado. En los últimos años, el aprendizaje profundo se ha
aplicado con éxito a la extracción de DDIs de los textos, lo que requiere la detección
y posterior clasificación de DDIs. La mayoŕıa de los sistemas de aprendizaje pro-
fundo para extracción de DDIs desarrollados hasta ahora han abordado la detección
y clasificación en un solo paso. En este estudio, comparamos el rendimiento de las
arquitecturas de una y dos etapas para la extracción de DDI. Nuestras arquitecturas
se basan en una capa de red neuronal recurrente bidireccional compuesta de Gated
Recurrent Units (GRU). El sistema en dos etapas obtuvo un puntaje F1 promedio
de 67.45 % en el dataset de evaluación.
Palabras clave: Extracción de relaciones, interacciones farmacológicas, Redes neu-
ronales recurrentes, Gated Recurrent Unit

1 Introduction

One of the causes of adverse drug reactions
(ADR) is the wrong combination of differ-
ent drugs. That is, when one drug influences
the effect of another. This is known as a
drug-drug interaction (DDI). DDIs may have
a positive effect on human health. Never-
theless, many DDIs may trigger adverse drug
reactions, which can cause health problems
and increase healthcare costs.

Despite the efforts in reporting ADRs,
such as the monitoring system maintained by
the World Health Organization, there is not
a single up-to-date database where clinicians
can look for all the known DDIs of a drug.
Current databases have varying update fre-
quencies, being some of them up to 3 years
(Segura-Bedmar, 2010). In addition, most
of the information available about DDIs is
unstructured, written in natural language in
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scientific articles, books and reports.

In this scenario, a challenge has been iden-
tified: an automatic system to extract DDIs
from biomedical literature is needed to cre-
ate complete and up-to-date databases with
information about DDIs for healthcare pro-
fessionals. These databases would contribute
to reduce adverse drug reactions.

The DDI corpus (Herrero-Zazo et al.,
2013) as well as the shared tasks DDIExtrac-
tion 2011 (Segura Bedmar, Martinez, and
Sánchez Cisneros, 2011) and 2013 (Segura-
Bedmar, Mart́ınez, and Herrero-Zazo, 2013)
have undoubtedly contributed to the progress
of NLP research for the extraction of DDI
from texts. Since then, the popularity of
this task has rapidly increased over the past
few years and a considerable number of pa-
pers devoted to the topic is published every
year. Early systems (Segura-Bedmar, Mar-
tinez, and de Pablo-Sánchez, 2011; Thomas
et al., 2013; Chowdhury and Lavelli, 2013;
Abacha et al., 2015; Kim et al., 2015) were
based on linguistic features combined with
classical machine learning algorithms such as
SVM (with F-measures around 67%)(Kim et
al., 2015). Recently, deep learning meth-
ods have triggered a revolution in NLP,
demonstrating tremendous success in numer-
ous NLP tasks. The task of DDI extrac-
tions has not been oblivious to this rev-
olution. Various deep learning architec-
tures based on Convolutional Neural Net-
work (CNN) and Recurrent Neural Network
(RNN) have been explored to this task in the
last five years, achieving state-of-the-art per-
formance (Dewi, Dong, and Hu, 2017; Sun et
al., 2018).

In most of these architectures, the detec-
tion and classification of DDIs are carried out
in one only stage. The recent deep learn-
ing architectures have achieved state-of-art
results (around 80% of micro-F1), but with
long training times because of their deep ar-
chitectures. Our hypotehsis is that perform-
ing first the detection and then the classifi-
cation could give better results and reduce
the training time. The detection step could
significantly decrease the number of instances
to classify, and thereby, reducing the training
time of the classification task. Our goals of
this work are two-fold: (1) to study if a two-
stage arquictecture could give better results
than an one-stage one, and (2) to test if the
use of Gated Recurrent Units (GRUs)(Cho et

al., 2014), instead of using Long Short-Term
Memory (LSTM) units, can improve the re-
sults of DDI extraction. GRUs show better
performance on smaller datasets (Chung et
al., 2014). Moreover, we also study the ef-
fect of different pre-trained word embeddings
models (Pyysalo et al., 2013) on the results.

2 State of the Art

This section provides a review of the most
recent studies based on deep learning about
DDI extraction. Deep CNN models (Dewi,
Dong, and Hu, 2017; Sun et al., 2018) have
shown the state-of-the-art performance ( 85%
in F1-score).

In addition to CNN, several systems have
exploited Recurrent Neural Network (RNN)
for the task of DDI extraction. While CNN
has proved to be successful in discovering dis-
criminative and meaningful phrases in a text,
RNN models are able capable of capturing
contextual information and long-term depen-
dencies (Lai et al., 2015), which is very im-
portant in our case since the clues about a
DDI could appear anywhere in a sentence.
Most RNN systems for DDI extraction have
used LSTM units, to our knowledge. The
standard architecture includes, after prepro-
cessing, an embedding layer, a bidirectional
LSTM, a pooling layer and a softmax layer
that retrieves a probability for each DDI
type. Some systems incorporate a dense layer
before the softmax layer, as it also happened
in some CNN-based systems.

Zheng et al. (2017) used a RNN and
obtained 77.3% F1-score. Input attention
mechanism was used only on the word em-
bedding vectors. Also, a part of speech
(POS) tag embedding and position embed-
dings were concatenated to the word. Unlike
the most systems for DDI extraction based on
deep learning methods, there was not pooling
layer between the bidirectional LSTM and
the softmax layer.

Despite most works employ LSTM units,
the work of Yi et al. (2017) proposed a sys-
tem utilizing GRU. The system concatenated
a word embedding with two position embed-
dings. Then, embedding vectors were fed
into a bidirectional GRU layer. The output
of the bi-GRU layer was transformed by an
attention-pooling layer, and later by another
attention layer. Finally, a softmax layer re-
turned the DDI class probabilities. An F1
score of 72.23% on the DDI corpus was re-
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ported.
All these systems have in common that the

detection and classification of DDIs are per-
formed in one only step. This is the first work
that compares one-stage and two-stages deep
learning architectures for DDI extraction.

3 Approach

This section details the corpus employed to-
gether with the two approaches tested. The
first solution, named one-stage architecture,
detects and classifies drug-drug interactions
employing one single GRU. On the other
hand, the second approach, named two-stage
architecture, utilizes two steps: one GRU to
detect the DDIs and a second GRU to classify
them. In addition, the common preprocess-
ing for both solutions is also described.

3.1 DDI Corpus

The DDI corpus (Herrero-Zazo et al., 2013) is
the standard corpus employed in DDI extrac-
tion from texts and as such is used within this
work. It contains sentences mentioning phar-
maceutical substances extracted from texts
describing DDIs from DrugBank database
(Wishart, 2017) and scientific abstracts from
Medline. In total, the DDI corpus contains
33,502 DDI instances and it is highly unbal-
anced: 85% of instances belong to the neg-
ative class -no DDI is present- and 15% of
instances belong to the positive class -a DDI
is described. DDIs are further divided into 4
categories:

• mechanism: it is used for pharmacoki-
netic mechanisms (e.g. Grepafloxacin
may inhibit the metabolism of theo-
bromine).

• effect : it is used for descriptions of
effects (e.g. In uninfected volunteers,
46% developed rash while receiving SUS-
TIVA and clarithromycin) or pharmaco-
dynamic mechanisms (e.g. Chlorthali-
done may potentiate the action of other
antihypertensive drugs).

• advise: it contains DDIs written as ad-
vise (e.g. Ocupress should be used with
caution in patients (...)).

• int : this type is used when no extra in-
formation is provided (e.g. Interaction
of clindamycin and gentamicin in vitro).

The corpus was randomly divided into two
datasets for training and test. In our study,

we assume that the drug mentions are al-
ready provided. Thus, we focus on the tasks
of detection and classification of DDIs from
texts.

3.2 Models

Preprocessing is common to both systems
proposed. First, instances were transformed
to lowercase. Then, punctuation signs were
removed. After that, drug blinding was per-
formed. That is, the two drugs involved in
the interaction are respectively substituted
by “DRUGA” and “DRUGB”, and other
drugs mentioned in the sentence are substi-
tuted by “DRUGN”.

After these steps, sentences are tokenized
(split into separate tokens). As a means of
having all sentences of equal length, padding
was applied after tokenization. A maximum
length of 89 was established, since the longest
instance in the training dataset of the DDI
corpus contains 89 words.

Finally, position flags are added to ev-
ery token. They indicate the distance of
each token to the two drugs involved in
the potential interaction (named “DRUGA”
and “DRUGB”). Note that, for the tokens
“DRUGA” and “DRUGB”, one of the posi-
tion flags is zero, since the distance to their-
selves is zero.

After preprocessing, every instance is rep-
resented as a matrix composed by n to-
kens. This representation is known as the
embedding layer, where each token is rep-
resented by a vector that concatenates one
word embedding and two position embed-
dings. We explored the use of two differ-
ent word embedding models. The first one
was a pre-trained word2vec 200-dimensional
model, which was trained with biomedical
texts taken from PubMed and PubMed Cen-
tral (PMC). The second pre-trained word em-
bedding model was trained using PubMed,
PMC and Wikipedia. So, unlike the first
model, it contains information about general
knowledge texts. Both embeddings were de-
veloped by Pyysalo et al. (2013); the corpus
to train the first one contained 5.5B tokens
and for the second one 7B tokens. Each po-
sition embedding codifies the distance from
the word to one of the interacting drugs in
the DDI instance. Position embeddings were
randomly initialized to 32-dimensional vec-
tors from the uniform distribution U(0,0.01).
Then, at this point, every instance, S, is a
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matrix of vectors, −→gi such as:

S = [−→g1 , ...,−→gN ],

−→gi = −→wi||
−→
e1i||
−→
e2i

(1)

3.3 one-stage approach for DDI
extraction

First, we describe the first approach for DDI
extraction, where the detection and classi-
fication tasks are performed in one single
step. Once an instance has been preprocessed
and represesented by the embedding layer de-
scribed above, the one-stage system classifies
it as either belonging to the negative class
or to one of the four positive DDI types of
the DDI corpus (effect, mechanism, advise or
int). It employs four layers to classify the in-
stances: embedding, bidirectional GRU, max
pooling and output layer (figure 1).

After the embedding layer, a bidirectional
recurrent neural network with GRUs ensues.
We decided to use GRU with 512 units per
direction. The output vectors from both di-

rections,
−→
hf,i and

−→
hb,i, are concatenated:

−→
hf,i =

−−−→
GRU(−→gi ),

←−
hb,i =

←−−−
GRU(−→gi ),

~hi =
−→
hf,i||

−→
hb,i,

S = [
−→
h1, ...,

−→
hN ]

(2)

Then, the instance tensor, S, is input
into a max pooling layer, in which only the
timestep of highest magnitude for each fea-
ture is kept.

−→qi = max(hii, ..., h
i
N ),

S = [−→q1 , ...,−→qN ]
(3)

Finally, the instance vector, S, is input
into a softmax layer with five output units.
It contains 5 neurons employing softmax ac-
tivation functions. Every neuron returns the
probability that the instance belongs to one
of the five possible classes, the four DDI types
defined in the DDI corpus and the non-DDI
type. Therefore, a 5-dimensional output vec-
tor represents the confidence the system as-
signs to each of the five classes. The class
with higher confidence is selected as the pre-
dicted class.

Figure 1: one-stage architecture

3.4 two-stage approach for DDI
extraction

Unlike the one-stage system, in the two-stage
system, there is a first step to tag each in-
stance as either negative or positive. Then,
instances classified as negative are ruled out.
The second step deals with the classification
of the positive instances into one of the four
DDI corpus categories: mechanism, advise,
effect or int (figure 2). We describe in more
detail each stage below.

The first stage (named detector) also em-
ploys four layers to detect the DDI instances:
an embedding layer, a bidirectional GRU, a
max pooling and a softmax layer with two
outputs neurons: one neuron represents the
probability for the positive class (the instance
is a DDI) and the other neuron stores the
probability for the negative class (the in-
stance is not a DDI).

The second stage, named as Classifier,
only considers those instances that were clas-
sified as positive by the previous step, ruling
out the rest of instances. The architecture
of this stage is very similar to the previous
ones, however, we also introduce, after the
max pooling layer, a 64-unit fully connected
layer with ReLU activation function, because
its integration has shown better performance
in combination with complex CNN or RNN
architectures (Mohamed, Hinton, and Penn,
2010; Sainath et al., 2015). The output layer
contains 4 neurons employing softmax activa-
tion functions, one per each DDI type. The
higher-probability class is selected as the pre-
dicted DDI type.
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Figure 2: two-stage architecture

3.5 Networks training details

While training the Classifier, class weights
were used when computing the loss function
for the classes mechanism, advise and effect.
This increased the importance on the loss
computation of the underrepresented classes
and partially solved the class imbalance prob-
lem of the dataset. Finally, for training this
system, only positive instances were used.

To further deal with class imbalance, neg-
ative instance filtering was applied using the
rules defined by Kavuluru, Rios, and Tran
(2017). In addition, näıve oversampling was
employed in the training of the one-stage sys-
tem and the Detector stage. For the differ-
ent layers, weights were always initialized ac-
cording to the Glorot Initializer (Glorot and
Bengio, 2010).

In the recurrent layer, we apply always the
so-called näıve dropout (Zaremba, Sutskever,
and Vinyals, 2015). The dropout probability
in the GRU layer and in the fully connected
layer was chosen to be always 0.5. The deci-
sion was heuristic, since intra-class variability
was higher than inter-class variability for the
different dropout probabilities tested.

Early Stopping was applied with a pa-
tience of 5 epochs. In the Detector stage,
F1 score of the positive class was monitored.
In the Classifier stage and in the one-stage
system, the monitored quantity was micro-
average F1 score of the classes mechanism,
advise and effect. Class int was not taken
into account since its number of instances is
small (196 in training test, while there are
1687 effect instances, for instance).

The optimizer chosen was Adagrad with
initial learning rate 0.01. The loss selected

was the cross-entropy loss. The mini-batch
size was always 50 and the number of epochs
was always 25.

4 Results and Discussion

As baseline, we propose the system de-
scribed in (Suárez-Paniagua and Segura-
Bedmar, 2018), which exploited a CNN with
max pooling operations, obtaining an F1 of
64.56%.

Table 4 shows the results for both ap-
proaches: one-stage versus two-stages archi-
tectures. As described above, we aim to com-
pare two different pre-trained word embed-
dings models to initialize our networks. Both
pre-trained models are described in Pyysalo
et al. (2013). The first model (from now
on, we call it as biomedical) was trained only
using biomedical literature such as PubMed
and PMC, while the second one (from now on
general) was trained also using general texts
taken from Wikipedia.

From the results in Table 4, it is seen that
the use of GRU is superior to the CNN ar-
chitecture, since both compared architectures
(one-step and two-step) show greater perfor-
mance than the baseline (Suárez-Paniagua
and Segura-Bedmar, 2018), even using gen-
eral domain word embeddings.

In the one-stage approach, the biomedical
pre-trained word embedding models provides
slightly better results than using the general
pre-trained word embedding model (see Ta-
ble 4).

Only the precision of the int class is bet-
ter using the general pre-trained word em-
bedding model. However, this class is the
least represented in the corpus: there are 189
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One-S. (biomedical) One-S. (general) Two-S. (biomedical) Two-S. (general)
P R F1 P R F1 P R F1 P R F1

Int 0.65 0.33 0.44 0.67 0.31 0.43 0.68 0.38 0.48 0.53 0.34 0.45
Advise 0.78 0.75 0.77 0.75 0.71 0.73 0.74 0.79 0.76 0.69 0.80 0.74
Effect 0.68 0.69 0.69 0.66 0.68 0.67 0.64 0.70 0.67 0.61 0.70 0.65
Mechanism 0.72 0.66 0.69 0.72 0.60 0.66 0.68 0.66 0.67 0.66 0.73 0.69
Micro-average 0.71 0.66 0.69 0.70 0.62 0.66 0.67 0.67 0.67 0.64 0.70 0.67
Macro-avg. 0.71 0.61 0.65 0.70 0.59 0.62 0.69 0.63 0.65 0.62 0.64 0.63

Table 1: Comparative results for one-stage and two-stages systems for DDI extraction

int instances in the training set and 96 in
the test set, while there are 1687 and 360
effect instances. Therefore, results from of
class are less informative of general classifier
behaviour.

Finally, the McNemar test (McNemar,
1947) of homogeneity was performed to com-
pare the results of the system using both
word embeddings. This test assesses whether
the proportion of errors of two classifiers
is statistically significant. In this case, it
is, since the p-value was smaller than 0.05
(0.02). Therefore, in the case of the one-stage
approach, using a word embedding trained
with texts from the domain of knowledge
of the problem appears to be the optimum
choice.

Table 4 also compares the results obtained
with the two different word embeddings mod-
els for the two-stage approach. The general
pre-trained word embedding model obtains
a micro-average F1 score of 66.73%, slightly
smaller than the metric obtained with the
biomedical pre-trained model.

Both word embedding models result in
similar performances. However, there are a
few differences whose discussion ensue. First,
the recall of the mechanism class is 7 points
higher using the domain-combined word em-
bedding: there are less mechanism instances
misclassified as other classes. This effect is
not observed in the other positive classes.
Therefore, there may be a difference in the
way information is encoded in mechanism
sentences and it is affected by the use of
a word embedding that incorporates infor-
mation from domains of knowledge different
from the biomedical one.

Second, there are 14 points of difference
in the precision for the Int class. The rea-
son is a 209% increment in the negative in-
stances misclassified as Int. However, the to-
tal number of Int instances is extremely low:
the 209% increment corresponds to a change
from 11 to 23 misclassified instances.

Finally, the McNemar test of homogeneity
has been performed and according to the re-

sulting p-value, p=0.054, the difference in the
proportion of errors is on the edge of being
significant using the two word embeddings.

We now compare the performance of the
one-stage and two-stage approaches. If we
use the biomedical pre-trained word embed-
ding model for both approaches, the micro-
average F1 score of the one-stage System is
68.54% on the test set, while the two-stage
approach achieves an F1 score of 67.45%.

The one-stage approach is superior for all
classes (except for Int) on the relevant met-
ric, F1 score. Nonetheless, the two-stage sys-
tem is superior in recall for classes Int, ad-
vise and effect. Then, in the one-stage ap-
proach, there were more false negatives, while
in the two-stage approach, there were more
false positives. This phenomenon may be a
consequence of the two-stage approach. In
it, the first stage (detector) rules out nega-
tive instances. However, its performance is
not perfect, and negative instances may be
misclassified as positive instances, which are
entered to the second stage, the classifier.
There, these negative instances are tagged as
mechanism, advise, effect or Int. And there-
fore, the number of false positives increases
for the positive classes. An example of this
phenomenom is shown in Table 4, sentences
2 and 3.

To statistically compare both systems,
McNemar test of homogeneity was per-
formed. The resulting p-value, p=0.147, does
not allow to say that both systems are signif-
icantly different in their error proportion.

Performances of one-stage and two-stage
systems are comparable. The one-stage ar-
chitecture obtains a slightly better perfor-
mance. This may indicate that one-stage sys-
tems are more suitable for DDI extraction.

Some light experimentation showed that
both proposed architectures misclassify sen-
tences with more than two drugs mentioned.
As seen in example 1 from Table 4, two drugs
adjacent in the sentence are not considered
to interact, but when one of them is further
away, an interaction is wrongly undetected by
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Sentence One-S. Two-S. Truth
(1) DRUGA DRUGB as well as other DRUGN may affect ... to DRUGN None None None

DRUGN DRUGA as well as other DRUGN may affect ... to DRUGB None effect effect
(2) the use of DRUGA before DRUGB to attenuate ... DRUGN has not been studied None effect None
(3) ... drug drug interaction studies between DRUGA and DRUGB are inconclusive None effect None
(4) DRUGA inhibits the glucuronidation of DRUGB and could possibly potentiate DRUGN None effect mechanism

DRUGA inhibits the glucuronidation of DRUGN and could possibly potentiate DRUGB effect None effect
DRUGN inhibits the glucuronidation of DRUGA and could possibly potentiate DRUGB None None None

Table 2: Examples of errors in prediction

the one-stage system. In addition, handling
with negation and uncertainty are recurrent
challenges in NLP systems. Example 4 from
Table 4 shows how both architectures commit
mistakes when dealing with the construction
could possible potentiate. A greater corpus
could allow the network to reduce those mis-
takes and others.

5 Conclusions and Future
Directions

Most previous studies on DDI extraction usu-
ally opt for one-stage architecture. This work
proposes a comparison of one-stage versus
two-stage architectures. The two-stage ap-
proach first detects the positive instances and
rules out the negative instances. Then, only
the positive instances are classified in a sec-
ond stage. Both approaches use GRU, a type
of recurrent neural network unit.

Results did not show a significant differ-
ence in the error distribution of both sys-
tems. However, F1 score is slightly higher for
the one-stage System than for the two-stage
(68.54% vs 67.45%).

Since performances are comparable, this
suggests that the use of one-stage architec-
tures is more suitable in deep learning based
DDI extractors because of its simpler de-
sign. On the other hand, experiments show
that the one-stage architecture requires more
training time, since more sentences are syn-
thetically created in the oversampling phase
and therefore more instances are used during
training. The pre-trained word embedding
model created from biomedical literature also
provides better performance than the general
word embedding model.

As future work, we plan to explore hy-
brid architectures which exploit advantages
of both CNN and LSTM models.
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Suárez-Paniagua, V. and I. Segura-Bedmar.
2018. Evaluation of pooling operations in
convolutional architectures for drug-drug
interaction extraction. BMC bioinformat-
ics, 19(8):209.

Sun, X., L. Ma, X. Du, J. Feng, and K. Dong.
2018. Deep Convolution Neural Networks
for Drug-Drug Interaction Extraction. In
IEEE International Conference on Bioin-
formatics and Biomedicine (BIBM).

Thomas, P., M. Neves, T. Rocktäschel, and
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