-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

A Ransomware Detection Method
Using Fuzzy Hashing for Mitigating the Risk of
Occlusion of Information Systems

Nitin Naik!, Paul Jenkins' and Nick Savage’

'Defence School of Communications and Information Systems, Ministry of Defence, United Kingdom
2School of Computing, University of Portsmouth, United Kingdom
Email: nitin.naik100@mod.gov.uk, paul.jenkins683 @mod.gov.uk, nick.savage @port.ac.uk

Abstract—Today, a significant threat to organisational infor-
mation systems is ransomware that can completely occlude the
information system by denying access to its data. To reduce this
exposure and damage from ransomware attacks, organisations
are obliged to concentrate explicitly on the threat of ransomware,
alongside their malware prevention strategy. In attempting to
prevent the escalation of ransomware attacks, it is important
to account for their polymorphic behaviour and dispersion
of inexhaustible versions. However, a number of ransomware
samples possess similarity as they are created by similar groups
of threat actors. A particular threat actor or group often adopts
similar practices or codebase to create unlimited versions of their
ransomware. As a result of these common traits and codebase,
it is probable that new or unknown ransomware variants can be
detected based on a comparison with their originating or existing
samples. Therefore, this paper presents a detection method
for ransomware by employing a similarity preserving hashing
method called fuzzy hashing. This detection method is applied on
the collected WannaCry or WannaCryptor ransomware corpus
utilising three fuzzy hashing methods SSDEEP, SDHASH and
mvHASH-B to evaluate the similarity detection success rate by
each method. Moreover, their fuzzy similarity scores are utilised
to cluster the collected ransomware corpus and its results are
compared to determine the relative accuracy of the selected fuzzy
hashing methods.

Index Terms—Ransomware; Similarity Preserving Hashing;
Fuzzy Hashing; SSDEEP; SDHASH; mvHASH-B; K-Means
Clustering; WannaCry; WannaCryptor.

I. INTRODUCTION

Information systems have become one of the key functions
within any organisation, with regard to its daily operation. A
ransomware attack can completely occlude it by encrypting or
locking out its entire data. This subset of malware encrypts
files on the compromised system or network, however, there
are a number of ransomware versions which erase files or
blocks access to the system or the network itself. Ransomware
attacks on organisational information systems have become
very common and frequent. WannaCry or WannaCryptor ran-
somware is such an example, having emerged in the last five
years, causing a total loss of around $4 billion to both organ-
isations and individuals [1], [2]. In attempting to prevent the
escalation of ransomware attacks, it is important to account for
their polymorphic behaviour and dispersion of inexhaustible

versions. However, a number of ransomware samples possess
similarity as they are created by similar groups of threat actors.
A particular threat actor or group often adopts some similar
practices or codebase to create unlimited versions of their
ransomware [3]. Consequently, it is possible to detect new
or unknown ransomware by comparing with known samples
of ransomware.

Several different methods are available to detect malware,
however, they have their own strengths and limitations. A
similarity preserving hashing or fuzzy hashing function has
been used for malware analysis in the past, which can also
be utilised to detect ransomware based on their similarity
with other known or existing samples. Additionally, fuzzy
hashing similarity scores can be used further for clustering or
classification of samples into similar groups [4]. Therefore,
this paper presents a detection method for ransomware by
employing a fuzzy hashing technique such as SSDEEP, SD-
HASH or mvHASH-B. In this detection method, the collected
WannaCry or WannaCryptor ransomware corpus is examined
for similarity amongst the ransomware samples within the
corpus utilising these fuzzy hashing methods to evaluate the
similarity detection success rate by each method. Moreover,
their fuzzy similarity scores are utilised to cluster the collected
ransomware corpus and its results are compared to determine
the relative accuracy of the selected fuzzy hashing methods.

The paper is divided into the following sections: Section II
explains fuzzy hashing in general and its methods SSDEEP,
SDHASH and mvHASH-B; Section III discusses the process
of collecting WannaCry/WannaCryptor ransomware samples
for analysing the above fuzzy hashing methods. Section IV
presents the proposed detection method for ransomware using
fuzzy hashing and clustering. Section V presents the exper-
imental evaluation of SSDEEP, SDHASH and mvHASH-B
fuzzy hashing methods and their similarity detection results.
Section VI presents some of the main limitations of fuzzy
hashing. Finally, Section VII concludes the paper with possible
future enhancements.

https://core.ac.uk/display/294782367?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. Fuzzy HASHING AND DIFFERENT FUzZY HASHING
METHODS

Cryptographic hashing is one of the most popular forms
of hashing which can be used to identify a file exclusively
(or duplicate files) to verify its integrity. Nonetheless, this
hashing cannot be utilised in computer forensics as malware
may be of a similar strain, having only changed a binary digit,
rendering the file different from the original cryptographically.
Therefore, the quest to discover malware files necessitates
the use of a similarity preserving hash function, to determine
similarity [5]. Fuzzy hashing is such a function capable of
identifying similar files, producing a similarity score expressed
as a percentage of their similarity. In this technique, generally,
a file is divided into multiple blocks and a hash value is
calculated for each block, finally, all hash values of the blocks
are concatenated to generate the fuzzy hash value, this process
is shown in Fig. 1. The length of the resulting fuzzy hash
value depends on several factors such as the block size, the
file size, and the output size of the selected hash function
[6]. This is contrary to the cryptographic hash function, where
the complete file is hashed contemporaneously, and the output
has fixed size irrespective of the size of the input file. Fuzzy
hashing techniques can be classified into different categories:
Context-Triggered Piecewise Hashing (CTPH), Statistically-
Improbable Features (SIF), Block-Based Hashing (BBH) and
Block-Based Rebuilding (BBR) [7], [8], [9]. The similarity
preserving property of fuzzy hashing is useful in forensic
investigations to compare unknown files with known malware
families based on their similarity, and to triage and cluster
malware which use multiple variants from the same malware
family that perform the exact same set of operations, but have
different cryptographic hashes [3].

The similarity can be defined either as syntactic similarity
or semantic similarity [3]. The syntactic similarity between
the two files can be determined based on the byte structure
of the files (i.e. raw byte sequences of data) and does not
consider the interpretation of the data, whereas, the semantic
similarity between the two files can be determined based on the
interpretation and context of the data and does not consider the
byte structure of the files [3]. Commonly, similarity hashing
or fuzzy hashing techniques work on a syntactic level, without
considering the interpretation and context of the data.

A. SSDEEP

SSDEEP is one of the most popular fuzzy techniques based
on a spam detector called spamsum [5]. The algorithm divides
an input file into blocks of variable size, randomly, with the
division based on the content of that file [3]. The rolling hash
is used to determine block boundaries (also known as trigger
points) in the file depending on the content of sections of
seven bytes at a time according to a predefined criteria, based
upon the the Adler32 function [6]. Subsequently, SSDEEP
calculates the hash value of each block separately and pro-
duces the final SSDEEP hash value by concatenating all the
hashes into one hash. This method ensures that two similar
files will have similar block boundaries and similar SSDEEP

Divide File Generate Hash for Concatenate all
into Segments each Segment Hashes to generate
Fuzzy Hash
F Segment 1 Hash 1
Fuzzy Hash =
Hash 1 + Hash 2 + Hash 3 + Hash N
| Segment 2 [—> Hash 2
) —>{ FU[zzY | HA|SH
L Segment 3 [—X Hash 3
E Segment N Hash N

Fig. 1. Generation of Fuzzy Hash Value in Fuzzy Hashing Method

hash values. This method employs an edit distance algorithm
based on the Damerau-Levenshtein algorithm used in a number
of applications. The algorithm compares two suspected similar
blocks calculating the minimum number of operations required
to transform one block into the other, using a combination of
operations including insertion, deletion, and substitution of a
single character, and transpositions of two adjacent characters

[3].
B. SDHASH

SDHASH, is a relatively different fuzzy technique to that
of SSDEEP, presented by Vassil Roussev in 2010, it is based
on the concept of statistically-improbable features [10]. The
premise is that, any file consists of several statistical features,
where some are rare (statistically-improbable) and some are
very common [3]. Therefore, similar files will probably have
the same rare features, while dissimilar files will probably
have different rare features. The more common rare features,
probably the more similar files are. Commonly, a SDHASH
feature is a 64-byte string. Instead of dividing a file into blocks,
SDHASH identifies rare features using an entropy calculation,
hashing the selected features with the cryptographic hash
function SHA-1, storing them in multiple Bloom filters [11].
A Bloom filter is a space-efficient probabilistic data structure,
and a maximum of 128 features can be stored in one Bloom
filter and the number of Bloom filters is dependent on the
total number of features [3]. The concatenation of the result-
ing Bloom filters constitutes the final SDHASH fuzzy hash
value. While comparing the two files for similarity, SDHASH
employs Hamming distance for faster comparison [3].

C. mvHASH-B

There are similarities between mvHASH-B and SDHASH
fuzzy hashing techniques, with the latter based upon a dif-
ferent design approach. Its complete hash generation process
is divided into three stages: input transformation using the
concept of majority votes, encoding of majority votes using the
Run-Length Encoding (RLE) approach, and hash generation
using a data structure called a Bloom filter [12]. In the first
stage, the input is transformed into a byte sequence of Os
and 1s based on the majority of votes, where the majority
of bits in the pre-determined neighbourhood is equal to zero,

the neighbourhood is represented by a 0, otherwise by a 1
[12]. This ensures that a minor change in the input byte
sequence does not affect the majority votes, as the majority
of bits remain unchanged. Therefore, the fuzzy hash value
does not change and similarity is preserved. In the second
stage, the RLE compression approach is used to represent each
sequence of Os and 1s by its length (in bytes). It reduces the
length of the input byte sequence by counting the amount
of identical consecutive bytes and returning this number. In
the third stage, the RLE encoded string is stored in Bloom
filters [12]. A Bloom filter is a data structure enabling rapid
operations such as comparisons. It stores components in a way
which is independent from the original string. Consequently,
the comparison algorithm may use Hamming distance for
faster operations as the calculation of Hamming distance only
requires the low-level operations XOR and bit count.

The generated mvHash-B hash value is stored in one or
more Bloom filters. While comparing two mvHash-B hashes,
each Bloom filter of the first hash value is compared against
each Bloom filter of the second hash value. The similarity
value/distance is calculated using the Hamming distance at bit-
level between the Bloom filters. Where the Hamming distance
signifies the total number of bits that differ between the two
compared Bloom filters (i.e. the lower the Hamming distance,
the increased probability that the two Bloom filters or Hashes
are similar). The mvHASH-B uses its own hash function which
is comparable to SHA-1 algorithm.

III. COLLECTING WANNACRY/WANNACRYPTOR
RANSOMWARE SAMPLES

A Ransomware attack is a nefarious attack to extort money
from victims which is a more sophisticated tactic than the
DDoS attack to extort money [13], [14], [15]. It causes loss
of money and reputational damage to the business and some-
times potentially permanent loss of data. There are several
ransomware categories in existence, however, some of are
more relevant in terms of their attacks, ransom amount and
geography and hence for investigation. Initial research of
different ransomware revealed that the WannaCry or Wan-
naCryptor ransomware is one of the most significant variants
of ransomware in recent times and is selected for this study
[2], [16], [17], [18]. The most labour intensive task was the
collection of credible samples of the WannaCry ransomware.
As a result of this process, it was decided to collect samples
of WannaCry or WannaCryptor ransomware which could be
investigated manually. A total of 112 WannaCry or Wan-
naCryptor ransomware samples were collected and verified.
All the WannaCry samples were collected from two sources
Hybrid Analysis [19] and Malshare [20] with the majority
of the analysis performed based on the information acquired
by VirusTotal [21]. The main difficulty was to verify the
credibility of the collected ransomware samples that they
were very likely to be WannaCry ransomware samples. The
criteria for the credibility of that sample was determined
by a VirusTotal detection engine score of 40 or greater,
i.e. at least 40 well-known engines identified the sample as

ransomware/malware. To verify that they were WannaCry or
WannaCryptor ransomware, their type was manually verified
from all the identified detection engines, where a number of
the engines identified a sample as a WannaCry or WannaCryp-
tor ransomware. Nevertheless, this ransomware verification
process was complex, and mainly dependent on the discretion
of authors [22], [23], [24], [25], [26]. The selection process
was lengthy and demanding, consequently, 112 samples of
WannaCry or WannaCryptor ransomware were selected after
each sample was fully analysed manually.

IV. PROPOSED RANSOMWARE DETECTION METHOD
USING Fuzzy HASHING

This proposed detection method is mainly based on the
fuzzy hashing method and the evaluation of different fuzzy
hashing methods SSDEEP, SDHASH and mvHASH-B to
obtain precise results. In this proposed method, for verifying a
new sample whether it is ransomware or not, the fuzzy hashing
method is applied on the unpacked sample (the sample requires
unpacking prior to fuzzy hashing if it is a packed sample). The
fuzzy hashing method generates a fuzzy hash value of the
sample and matches it against the database of fuzzy hashes of
known ransomware, or it can be directly matched against the
database of known samples. If it finds one or more matched
ransomware samples it generates the results in the form of their
degree of similarity with the sample. It can indicate which is
the exact or closest matched ransomware sample based on the
highest degree of similarity. However, the interpretation of the
fuzzy hashing result is dependent on the security expert and
how efficiently they utilise it for further advanced analysis.

The fuzzy hashing is a triaging process and its result is a
preliminary indication which requires a further clustering or
a classification operation to conclude as a meaningful result.
However, the preciseness of the clustering or classification is
mainly dependent on the similarity scores of the fuzzy hashing
method; therefore, selecting an accurate fuzzy hashing method
is a crucial step in this ransomware analysis process. In this
detection method, a k-means clustering analysis is performed
by utilising the similarity scores generated by the three fuzzy
hashing methods SSDEEP, SDHASH and mvHASH-B to eval-
uate their preciseness based on the best clustering outcome.
The main benefits of utilising the fuzzy hashing method for
detecting ransomware is: compact size of fuzzy hash, small
amount of memory, fewer overheads and less processing time
[3]. All these benefits suggests that the fuzzy hashing method
could be a suitable static analysis method for ransomware if
it can produce precise results.

V. EXPERIMENTAL EVALUATION OF DIFFERENT Fuzzy
HASHING METHODS SSDEEP, SDHASH AND
MVHASH-B

A. Comparative Evaluation of the Similarity Detection Results
of SSDEEP, SDHASH and mvHASH-B

Initially, the three fuzzy hashing methods SSDEEP, SD-
HASH and mvHASH-B were applied on the collected Wan-
naCry ransomware corpus to evaluate the similarity detection

Applying Applying Applying
Unpacking Tool Fuzzy Hashing Clusteringon =
/on Ransomware | on Ransomware | Wi Ransomware | %

Corpus Corpus Corpus
Packed Unpacked Fuzzy Hashes and Ransomware
Ransomware Ransomware Similarity Scores of Groups/Families
Corpus Corpus Ransomware Corpus

Fig. 2. A Ransomware Detection Method Utilising Fuzzy Hashing Method

success rate by each method. The similarity detection results
were analysed on the basis of different similarity threshold cri-
teria (covering all matched samples (from 1-100%), matched
above 10%, matched above 20%, and matched above 30%)
as shown in Table I. Here, the first row of Table I shows the
total number of matched samples with one or more than one
other samples in the ransomware corpus of 112 samples, where
SSDEEP found similarity in 104 samples, SDHASH found
similarity in 108 samples and mvHASH-B found similarity in
108 samples. Likewise, the other similarity detection results
were determined for three similarity thresholds of above 10%,
20% and 30% (see Table I), where only those results were
considered which were above the decided similarity threshold.
The analysis of these four similarity detection results shows
that the majority of the SSDEEP similarity scores are above
the set highest threshold of 30% resulting in its lowest matched
samples of 103. In the case of SDHASH and mvHASH-B,
several similarity scores are below the set highest threshold
of 30% resulting in its lowest matched samples of 104 and
102 respectively. While comparing SDHASH and mvHASH-
B, the latter producing greater lower similarity scores than
SDHASH methods reflected by its lowest matched samples
size of 102. In summary, the similarity detection rate for
all the three fuzzy hashing methods was quite high (above
91%). This comparison of similarity scores is very important in
utilising relatively consistent fuzzy hashing method for further
clustering of these ransomware samples precisely to reveal
crucial information about the collected ransomware corpus.

B. Comparative Evaluation of K-Means Clustering Results
based on SSDEEP, SDHASH and mvHASH-B Similarity Scores

To assess the effects of fuzzy hashing similarity scores on
clustering, k-means clustering is employed using reliable sim-
ilarity scores of SSDEEP, SDHASH and mvHASH-B above
the set highest threshold of 30%. The clustering results are
assessed using three evaluation indexes Dunn Index, Silhouette
Index and Connectivity Index as shown in three Tables II to IV
respectively. The value of each index is calculated for a cluster
size 2 to 6 to assess a consistent and improved value of each
index. However, to determine the relatively better fuzzy hash-
ing method based on the clustering results, its combined value
of three indexes is compared for an optimal cluster size of 2
as shown in Table V. The optimal cluster size is determined
manually after analysing all the collected ransomware samples.
Based on the combined value of three selected indexes, Table
V shows the overall SSDEEP clustering result is relatively

better than the other two methods SDHASH and mvHASH-
B. This reflects the importance of similarity scores produced
by each fuzzy hashing as it determines the success of the
clustering method. Therefore, if a suitable fuzzy hashing is
selected, the clustering can provide relatively better results,
which can be further utilised in developing fuzzy rules for the
fuzzy rule-based systems [27], [28], [29], [30], [31], [32].

VI. LIMITATIONS OF FuzzYy HASHING

The application of fuzzy hashing in detecting ransomware
has demonstrated good results for this particular Wan-
naCry/WannaCryptor ransomware corpus. However, it is also
important to consider some of the main limitations of fuzzy
hashing, which are as follows:

e The similarity score generated by any fuzzy hashing
method is always difficult to interpret.

o Any similarity score is intuitively judged by the security
expert, which can lead to very different interpretations
between security experts.

o Fuzzy hashing methods mostly effective on a syntactic
level and check structural similarity but do not consider
semantic level i.e., behavioural similarity (context of the
data).

e Many fuzzy hashing methods (e.g. SSDEEP) are depen-
dent on the block sizes and the overall size of the file for
hashes. This can be easily evaded by appending data to
the end of the file, in which header and section data are
still identical.

o Bloom filters based fuzzy hashing methods (e.g. SD-
HASH) do not generate false negatives, however, false
positives are possible.

e Most fuzzy hashing methods are severely affected by
packers and unable to detect similarity in packed files.

VII. CONCLUSION

This paper proposed an efficient detection method for
ransomware utilising a fuzzy hashing method. This detection
method was applied on the collected WannaCry/WannaCryptor
ransomware corpus utilising three fuzzy hashing methods
SSDEEP, SDHASH and mvHASH-B to evaluate the similarity
detection success rate by each method. All three fuzzy hashing
methods produced very high similarity detection results (above
91%) for this particular ransomware corpus. Further, their
fuzzy similarity scores were utilised to cluster the collected
ransomware corpus by employing k-means clustering and its
results were compared to determine the relative accuracy of the
selected fuzzy hashing methods. The clustering results were
evaluated through the use of three internal evaluation indexes;
Dunn Index, Silhouette Index and Connectivity Index, to deter-
mine the accuracy and consistency of their clustering results,
thus, the accuracy of fuzzy hashing results. The SSDEEP fuzzy
hashing method produced relatively better results than other
two methods SDHASH and mvHASH-B. Subsequently, the
best analysis results can be used for both advanced static and
dynamic analysis of ransomware. This proposed method is a
fast, efficient and easy method to quickly perform the initial

SIMILARITY DETECTION RESULTS FOR THE SSDEEP, SDHASH AND MVHASH-B Fuzzy HASHING METHODS FOR WANNACRY/WANNACRYPTOR

TABLE I

RANSOMWARE CORPUS

Fuzzy Hashing Matching Criteria | Number of Sam- | Number of Sam- | Number of Sam-
for Ransomware Samples ples Matched by | ples Matched by | ples Matched by
SSDEEP SDHASH mvHASH-B
Based on all Fuzzy Similarity Scores| 104 108 108
(from 1-100%)
Based on Fuzzy Similarity Scores|104 108 108
above the threshold of 10%
Based on Fuzzy Similarity Scores|104 106 103
above the threshold of 20%
Based on Fuzzy Similarity Scores|103 104 102
above the threshold of 30%
TABLE 11

DUNN INDEX EVALUATION RESULTS FOR THE K-MEANS CLUSTERING METHOD BASED ON THE SSDEEP, SDHASH AND MVHASH-B Fuzzy
HASHING METHODS FOR WANNACRY/WANNACRYPTOR RANSOMWARE CORPUS

| Clustering Method | Cluster Size=2 | Cluster Size=3 | Cluster Size=4 | Cluster Size=5 | Cluster Size=6 |

SSDEEP based | 0.8348 0.7653 0.7074 0.7658 0.6628
k-means Clustering
SDHASH based | 0.7073 5.7587 0.1978 0.3489 0.0965
k-means Clustering
mvHASH-B based [0.7061 0.7072 0.8079 0.7068 0.8243
k-means Clustering

Note: The Dunn Index has a value between Zero and oo, where the greater value of the Dunn Index represents
more accurate clustering results [33].

TABLE III
SILHOUETTE INDEX EVALUATION RESULTS FOR THE K-MEANS CLUSTERING METHOD BASED ON THE SSDEEP, SDHASH AND MVHASH-B Fuzzy
HASHING METHODS FOR WANNACRY/WANNACRYPTOR RANSOMWARE CORPUS

| Clustering Method | Cluster Size=2 | Cluster Size=3 | Cluster Size=4 | Cluster Size=5 | Cluster Size=6 |

SSDEEP based | 0.8575 0.8474 0.8443 0.8496 0.8611
k-means Clustering
SDHASH based | 0.9058 09112 0.6782 0.6331 0.4385
k-means Clustering
mvHASH-B based | 0.8654 0.868 0.8735 0.8684 0.8738
k-means Clustering

Note: The Silhouette Index has a value between the interval [—1, 1] , where the greater value of the Silhouette
Index represents more accurate clustering results [34].

TABLE IV
CONNECTIVITY INDEX EVALUATION RESULTS FOR THE K-MEANS CLUSTERING METHOD BASED ON THE SSDEEP, SDHASH AND MVHASH-B Fuzzy
HASHING METHODS FOR WANNACRY/WANNACRYPTOR RANSOMWARE CORPUS

| Clustering Method | Cluster Size=2 | Cluster Size=3 | Cluster Size=4 | Cluster Size=5 | Cluster Size=6 |

SSDEEP based |2.929 5.8579 11.7159 11.7159 15.5738
k-means Clustering

SDHASH based | 5.8579 5.8579 10.7627 15.9897 31.529
k-means Clustering

mvHASH-B based | 8.7869 8.7869 8.7869 14.6448 14.6448
k-means Clustering

Note: The Connectivity Index has a value between Zero and oo, where the smaller value of the Connectivity
Index represents more accurate clustering results [35].

TABLE V
COMPARISON OF CLUSTERING RESULTS OF SSDEEP, SDHASH AND MVHASH-B Fuzzy HASHING METHODS FOR AN OPTIMAL CLUSTERING SIZE=2

| Clustering Method

| Dunn Index

| Silhouette Index |Connectivity Index |

SSDEEP based k-means Clustering 0.8348 0.8575 2.929
SDHASH based k-means Clustering |0.7073 0.9058 5.8579
mvHASH-B based k-means Clustering | 0.7061 0.8654 8.7869

triaging of ransomware samples. In future, it is essential to
evaluate the proposed detection method on a larger sample of
WannaCry/WannaCryptor ransomware and on other types of
ransomware.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support of Hybrid-
Analysis.com, Malshare.com and VirusTotal.com for this re-
search work.

(1]

(21

(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES
S. Cobb. (2018) RANSOMWARE: An enterprise perspective. [Online].
Available: https://www.eset.com/us/business/resources/white-papers/

ransomware-an-enterprise- perspective/

J. M. Ehrenfeld, “Wannacry, cybersecurity and health information tech-
nology: A time to act,” Journal of medical systems, vol. 41, no. 7, p.
104, 2017.

N. Naik, P. Jenkins, N. Savage, and L. Yang, “Cyberthreat Hunting-
Part 1: Triaging Ransomware using Fuzzy Hashing, Import Hashing
and YARA Rules,” in [EEE International Conference on Fuzzy Systems
(FUZZ-IEEE). IEEE, 2019.

——, “Cyberthreat Hunting- Part 2: Tracking Ransomware Threat
Actors using Fuzzy Hashing and Fuzzy C-Means Clustering,” in /[EEE
International Conference on Fuzzy Systems (FUZZ-IEEE). 1EEE, 2019.
J. Kornblum, “Identifying almost identical files using context triggered
piecewise hashing,” Digital investigation, vol. 3, pp. 91-97, 2006.

A. Tridgell, “Efficient algorithms for sorting and synchronization,” Ph.D.
dissertation, Australian National University Canberra, 1999.

F. Breitinger and H. Baier, “A fuzzy hashing approach based on random
sequences and hamming distance,” in Annual ADFSL Conference on
Digital Forensics, Security and Law. 15, 2012. [Online]. Available:
https://commons.erau.edu/adfsl/2012/wednesday/15

C. Sadowski and G. Levin, “Simhash: Hash-based similarity detection,”
2007. [Online]. Available: www.webrankinfo.com/dossiers/wp-content/
uploads/simhash.pdff

V. Gayoso Martinez, F. Hernandez Alvarez, and L. Hernandez Encinas,
“State of the art in similarity preserving hashing functions,” 2014.
[Online]. Available: http://digital.csic.es/bitstream/10261/135120/1/
Similarity_preserving_Hashing_functions.pdf

V. Roussev, “Data fingerprinting with similarity digests,” in IFIP Inter-
national Conference on Digital Forensics. Springer, 2010, pp. 207-226.
, “An evaluation of forensic similarity hashes,” digital investigation,
vol. 8, pp. S34-S41, 2011.

F. Breitinger, K. P. Astebgl, H. Baier, and C. Busch, “mvhash-b-
a new approach for similarity preserving hashing,” in 2013 Seventh
International Conference on IT Security Incident Management and IT
Forensics. 1EEE, 2013, pp. 33-44.

N. Naik, P. Jenkins, R. Cooke, D. Ball, A. Foster, and Y. Jin, “Augmented
windows fuzzy firewall for preventing denial of service attack,” in 2017
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2017,
pp. 1-6.

N. Naik and P. Jenkins, “Fuzzy reasoning based windows firewall for
preventing denial of service attack,” in IEEE International Conference
on Fuzzy Systems, 2016, pp. 759-766.

——, “Enhancing windows firewall security using fuzzy reasoning,” in
IEEE International Conference on Dependable, Autonomic and Secure
Computing, 2016, pp. 263-269.

R. Richardson and M. North, “Ransomware: Evolution, mitigation and
prevention,” International Management Review, vol. 13, no. 1, pp. 10—
21, 2017.

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

K. Cabaj, P. Gawkowski, K. Grochowski, and D. Osojca, “Network ac-
tivity analysis of Cryptowall ransomware,” Przeglad Elektrotechniczny,
vol. 91, no. 11, pp. 201-204, 2015.

Y. Klijnsma. (2019) The history of Cryptowall:
cryptographic ransomware threat. [Online]. Available:
cryptowalltracker.org/

Hybrid-Analysis. (2019) Hybrid Analysis. [Online]. Available:
/Iwww.hybrid-analysis.com/

Malshare. (2019) A free Malware repository providing researchers
access to samples, malicious feeds, and YARA results. [Online].
Available: https://malshare.com/index.php
VirusTotal. (2019) Virustotal. [Online].
virustotal.com/#/home/upload

N. Naik, P. Jenkins, B. Kerby, J. Sloane, and L. Yang, “Fuzzy logic
aided intelligent threat detection in cisco adaptive security appliance
5500 series firewalls,” in 2018 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), 2018.

N. Naik, P. Jenkins, R. Cooke, and L. Yang, “Honeypots that bite back:
A fuzzy technique for identifying and inhibiting fingerprinting attacks
on low interaction honeypots,” in 2018 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), 2018.

N. Naik, P. Jenkins, and N. Savage, “Threat-aware honeypot for discov-
ering and predicting fingerprinting attacks using principal components
analysis,” in [EEE Symposium Series on Computational Intelligence
(SSCI), 2018.

N. Naik and P. Jenkins, “A fuzzy approach for detecting and defending
against spoofing attacks on low interaction honeypots,” in 21st Interna-
tional Conference on Information Fusion (Fusion). 1EEE, 2018, pp.
904-910.

——, “Discovering hackers by stealth: Predicting fingerprinting attacks
on honeypot systems,” in 2018 [EEE International Symposium on
Systems Engineering (ISSE), 2018.

K. Khattar, “Detecting homologies in encrypted and unencrypted docu-
ments using fuzzy hashing,” Jun. 12 2018, US Patent 9,996,603.

N. Naik, P. Jenkins, N. Savage, and V. Katos, “Big data security analysis
approach using computational intelligence techniques in R for desktop
users,” in I[EEE Symposium Series on Computational Intelligence (SSCI),
2016.

N. Naik, C. Shang, Q. Shen, and P. Jenkins, “Intelligent dynamic
honeypot enabled by dynamic fuzzy rule interpolation,” in The 4th [EEE
International Conference on Data Science and Systems (DSS-2018).
IEEE, 2018, pp. 1522-1529.

——, “Vigilant dynamic honeypot assisted by dynamic fuzzy rule
interpolation,” in JEEE Symposium Series on Computational Intelligence
(SSCI), 2018.

N. Naik, R. Diao, C. Shang, Q. Shen, and P. Jenkins, “D-FRI-
WinFirewall: Dynamic fuzzy rule interpolation for windows firewall,” in
2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
2017, pp. 1-6.

N. Naik, R. Diao, and Q. Shen, “Dynamic fuzzy rule interpolation and its
application to intrusion detection,” IEEE Transactions on Fuzzy Systems,
vol. 26, no. 4, pp. 1878-1892, 2018.

J. C. Dunn, “Well-separated clusters and optimal fuzzy partitions,”
Journal of cybernetics, vol. 4, no. 1, pp. 95-104, 1974.

P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53-65, 1987.

G. Brock, V. Pihur, S. Datta, S. Datta et al., “clValid, an R package for
cluster validation,” Journal of Statistical Software (Brock et al., March
2008), 2011.

a large scale
https://www.

https:

Available: https://www.

