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We address the problem of distributed quantum metrology with a single squeezed-
vacuum source by using the formalism of quantum mechanics in phase space. In par-
ticular we demonstrate Heisenberg-limited sensitiviy in the measurement of the average
of two arbitrary phase shifts in the arms of a Mach-Zehnder interferometer. We obtain
exact results for the measurement probability at the interferometer output for any value
of the phases, which give us insight into the emergence of Heisenberg-limited sensitivity
for periodical values of the phases.
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1. Introduction

Quantum metrology is one of the most promising emergent quantum technologies,
offering the possibility to boost and overcome the limitations of classical physics, in
devising measurement schemes with a sensitivity far superior to what is fundamen-
tally possible without employing quantum resources X8 In particular, the problem
of measuring several parameters distributed over a linear optical network has re-
cently sparked much interest in the research community 214 Possible applications

range from the mapping of inhomogenous magnetic fields 2?12 phase imaging2?2°
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quantum-enhanced nanoscale nuclear magnetic resonance imaging,%2%27 to appli-
cations in precision clocks/2® geodesy, and geophysics2231

In a previous work®? we have proposed the use of squeezed light as a resource
for overcoming the technological limitations of the state-of-the-art interferomenter
for the estimation of a linear combination of M > 1 unknown parameters 3
achieving Heisenber-limited estimation sensitivity, i.e. a sensitivity scaling as 1/N,
where N is mean number of photons in the interferometer. It was later shown that
our configuration is in fact optimal3® In this article, we revisit the M = 2 scenario
using the formalism of quantum mechanics in phase space. This allows us to obtain
exact results, resulting in a much more intuitive and satisfying physical picture.
Our aim will be to estimate the average phase shift in a 2-channel interferometer
with a sensitivity scaling at Heisenberg limit.

and

2. Theoretical description of the interferometer

Let us consider a balanced Mach-Zehnder interferometer (see the schematic in
Fig. (1)) where one of the input channels is fed with a squeezed vacuum state,
characterized by the squeezing parameter z = re??, and the other channel is left
in the vacuum state. The two-mode state p at the input, as well as at any stage of
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Fig. 1. Schematic of the interferometer for the estimation of the average phase shift (1 + ¢2)/2.
The interferometer is a balanced Mach-Zehnder configuration preceded by a squeezing operation,

i N 1 at2 a2 . . J .
described by S(z) = ez (787 =278%) " where z is the squeezing parameter and @ is the bosonic
annihilation operator on either channel, and followed by an anti-squeezing operation ST(z). On-
off photodetectors are placed at the end of the interferometer.

the interferometer, is a Gaussian state described by a Gaussian Wigner function®?
o &T0 e
(27)2/det o’

where & = (x1,p1,22,po is the two-mode phase-space coordinate, R =
(Xl,Pl,XQ,PQ)T is the field quadratures vector operator, and o = (%(l@l@;C +
RkRj)) (1 <4,k < 4) is the covariance matrix. In the vacuum state, pyac = [00)(00],
one gets oy, = I4/2, while at the input of the interferometer, after the action of
the one-mode squeezing operation in Fig. , the covariance matrix reads

W5 (&) = (1)

)T

1
Oin = RTQUvacQR = iRTQ2Ra (2)
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where32:36
e 0 00 cosf) —sinf 00
0e"00 sinf cosf® 00
Q= 0 0 101’ = 0 0 10]° (3)
0 0 01 0 0 01

Therefore, the mean photon number of the state is N = 1 tr(oi,)—1 = § tr(Q*)—1 =
sinh? (r).

The evolution of the probe state through the interferometer is described by the
covariance matrix transformation

oMz = Omz0inOtyz, (4)

where the orthogonal and symplectic matrix Oy describing the Mach-Zehnder
interferometer reads

COS @4 cOsp_ —sinyi cosp_ —sinpy singp_ —cosy, sing_
Oriz = sir} o co? p_  Ccospt co?, @p_ cospisinp_ — s'in (4 sinp_ (5)
—singy sinp_ —cosp4sing_ cosyy cose_ —sinp, cosp_
cospysing_ —singgsing_ singi cos@_ cospy cos@_

where o1 = (p1 £ ¢2)/2, ¢1 is the phase shift accumulated by the probe on the
first channel, and @5 is the phase shift accumulated by the probe on the second
channel (see Appendix for a derivation).

The probe is successively exposed to an anti-squeezing operation, which is as-
sociated with the covariance matrix transformation

Oout = Q_lRaMZRTQ_la (6)

where Q and R are defined in Eq. . Finally, on-off photodetectors are placed at
the output of the interferometer.

3. Detection probability and estimation sensitivity

The probability is P = tr(|00)(00|pout) of measuring the vacuum in both channels
of the interferometer, reads

4 out+avmc)£ 4
=7 / pouc pvac d E / d f? (7)

Vdet oous

where poyut is the Gaussian state associated with the covariance matrix @, while
Ovac = I/2. By performing the Gaussian integration we obtain the exact expression
of the measurement probability

P= {1— cos? ¢_ cos(2p, )N

) 1 ) N2 —-1/2
- <1+cos - sin (2¢0_) —2cos?® p_ cos(2g0+)) 1 .8
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Fig. 2. Detection probability as a function of ¢+ = (¢1 £ ¢2)/2 for various mean photon num-
bers. The peaks concentrate way quickly on the ¢-direction than they do on the ¢ -direction,
becoming more and more localized as N increases, which is a crucial ingredient for Heisenberg
scaling.

The most striking feature of this quantity is the fact that both ¢_ and ;4 affect the
detection probability, as can be easily seen from the plot in Fig. . As discussed
in Ref. this “unusual” phenomenon, where it is not only the relative phase shift
between the two channels of the interferometer that bears a physical significance,
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but rather both phase shifts do, is actually the general case in quantum interferom-
etry and should be expected in this particular scheme. Another important aspect
is the periodicity of the probability in ¢4 and ¢_ up to multiples of 7, which was
not evident in the approximated approach carried out in Ref. |32,

We shall now estimate the sensitivity associated with this scheme. Formally, the
quantum observable measured at the output of the interferometer is the projection
on the vacuum II = |00)(00|, and

(I) = P, (9)

where the expectation value is taken on the quantum state at the output of the
interferometer. By the error propagation formula, the sensitivity of the scheme can
be estimated as

(12) — (I)>  P(1-P)
0(I11) JopL|?  |0P/0ps|?

Ap} = (10)
It is evident from this expression and the scaling of Eq. with N that there
cannot be Heisenberg-limited sensitivity for every value of ¢4 and ¢_. However,
Heisenberg scaling is possible where P ~ 1, i.e. for phases in a neighbourhood of
one of the maxima in Fig. . This suggests constructive quantum interference is in
fact a metrological resource. Hence, for phases (¢4, p—) in a small neighbourhood
of a maximum (ki 7, k_m) with integers k1, Eq. reduces to

P~1+2(N*+ N)(ps —kym)® + N(p- —k-m)?, (11)

for |4 — k| < 1/N.

When the mean photon number is large we can retain only the leading terms in
N, leading us to a simple expression depending only on the average phase shift we
wish to estimate,

P~142N?(p, — kym)% (12)

The fact that the dominant contribution depends only on ¢, could have been
anticipated by noticing that, as N increases, the variation of P in the neighbourhood
of a maximum is much more stark and rapid along the ¢, axis than it is on
the _ axis, where it is almost constant in comparison (see again Fig. (2)). This
is a reflection of the localization along the ¢ -direction of constructive quantum
interference, and is important for reaching Heisenberg-limited sensiivity. Therefore,
by Eq. , the estimation sensitivity reads

1

A(pi ~

which exhibits the scaling typical of the Heisenberg limit.
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4. Conclusions

We have revisited the protocol for distributed quantum metrology introduced in
Ref. 32|in the case of a simple Mach-Zehnder configuration with a single squeezed-
state source and an anti-squeezing operation at one of the interferometer output
channels. In particular, we have exploited the formalism of quantum mechanics
in phase space to obtain an exact result for probability of measuring the vacuum
in both output channels. This has allowed us to demonstrate Heisenberg-limited
sensitivity for the measurement of the average phase shift in the interferometer for
periodic values where the measurement probability is maximal. These results give
us insight on the role of constructive quantum interference in distributed quantum
metrology, which we will further explore in future works.
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Appendix. Linear optical networks in phase space

A passive linear optical network is described by a unitary operator U acting on
the underlying Hilbert space of an M-mode electromagnetic field. Its action on the
annihilation operators is
M
Ula;U =Y U a;. (14)
=1
Let R = (Xl, }51, o X PM)T. Defining the unitary 2M x 2M unitary matrix
M
1 14
W=— 15
200 )

we have the identity

A = (ay,al,...,ap,00,)T =W R. (16)
Thus,
M M
U R = Z i 2] 1a‘J 2] j Z %, 2] 1 ]kak + i 2_]2/{]*]6&1];:)
j=1 j,k=1

oM M oM
Z Z A gj Ui Wog 1 + VVz oUWk n) Ry = Z OinRyp. (17)
el h

J,k=1 =1
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The matrix O can hence be represented as

L{H 0 ...... Z/llM 0
0 Uy ... ... 0 Uy
o=wi| = W (18)
L{Ml 0 ...... Z/[]MM 0
0 Uy ... 0 Uy

where W has been defined in Eq. . As can easily be verified, this matrix is both
orthogonal and symplectic, and can be simplified as follows

Re(un) —Im(l/{n) ...... Re(ulM) —Im(Z/{lM)
Im(un) Re(un) ...... Im(Z/ﬁM) Re(Z/ﬁM)
0 . . . . (19)
Re(Z/.{M1) —Im.(Uu) Re(l./ln) —Im.(uu)
Im(UMl) Re(UMl) ...... Im(un) Re(UM]u)

Therefore, the action of passive linear optical network on a Gaussian state with
covariance matrix oy, = 35 (RRT) + 3(RR™)T is simply the transformation

Oout = OainOT; (20)

that is, nothing but a (symplectic) rotation in phase space. In the case of the
Mach-Zehnder interferometer, the U matrix reads

1 /1 =i\ (e 0 14 ; cosp_ —siny_
== , = '+ 21
Uniz 2 (—i 1) ( 0 e“"2> (z 1) ¢ (sinap CoS p_ )’ (21)

from which Eq. in the text follows.
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