
A Block Design for Introductory Functional
Programming in Haskell

Matthew Poole
School of Computing

University of Portsmouth, UK
matthew.poole@port.ac.uk

Abstract—This paper describes the visual design of blocks for
editing code in the functional language Haskell. The aim of the
proposed blocks-based environment is to support students’ initial
steps in learning functional programming. Expression blocks and
slots are shaped to ensure constructed code is both syntactically
correct and preserves conventional use of whitespace. The design
aims to help students learn Haskell’s sophisticated type system
which is often regarded as challenging for novice functional
programmers. Types are represented using text, color and shape,
and empty slots indicate valid argument types in order to ensure
that constructed code is well-typed.

I. INTRODUCTION

Blocks-based environments such as Scratch [1] and Snap!
[2] offer several advantages over traditional text-based lan-
guages for novice programmers. Such systems tend to empha-
size imperative programming using custom languages. There
exists some work on blocks-based editing for traditional im-
perative languages such as Python [3], [4] and Grace [5] which
aims to support students learning programming within formal
educational settings.

Many students, particularly those who choose to specialize
in computing within higher education, face further challenges
when learning a second or third programming language or
paradigm. Several educators believe that learning functional
programming is an important step in the development of com-
puter scientists and software engineers [6], [7]. Knowledge of
functional programming can be seen as an important practical
skill given the growing number of languages that emphasize
the functional approach (e.g., Clojure, F#, Scala) or which
include functional constructs (e.g., Python, JavaScript, Java).

Haskell is often regarded as a good language for learning
functional programming due to its clean syntax and func-
tional purity. Haskell is not a simple language however; its
type system (particularly its concept of type classes) is quite
complex, and compiler error messages (e.g., those of the
popular Glasgow Haskell Compiler) are often very difficult for
beginners to comprehend. Combined with the efforts required
to learn a new paradigm, these issues can lead students to
struggle. Helium [8], a subset of Haskell for learning functional
programming, was designed to alleviate these problems. He-
lium does not include type classes and is focused on providing
hints, warnings and improved error messages for the learner.

Instead of defining a simplified language or compiler, the
approach taken here is to expose Haskell’s type system to

the learner, and to avoid syntax and type-based errors entirely
through blocks-based program construction.

There exists some recent work in representing functional
types within blocks-based environments. TypeBlocks [9] in-
cludes three basic type connector shapes (for lists, tuples
and functions) which can be combined in any way and to
any depth. The prototype blocks editor for Bootstrap [10],
[11] represents each of the five types of a simple functional
language using a different color, with a neutral color (gray)
used for polymorphic blocks; gray blocks change color once
their type has been determined during program construction.
Some functional features have also been added to Snap! [12]
and to a modified version of App Inventor [13].

This paper is structured as follows. In the next section
we give a brief overview of the core of the Haskell language
relevant to the block design ideas, which are then presented
in Section III. Section IV concludes the paper and discusses
future work.

II. OVERVIEW OF HASKELL

Haskell is a statically-typed pure functional language (there
is no state and no side-effects, and functions can be passed to
and returned from other functions). Haskell also features type
inference; one of the consequences of this is that programmers
are rarely required to explicitly assign types to their function
definitions (and we will not consider type declarations here).

Haskell supports (parametric) polymorphism: expressions
(including functions) can take more than one type. Using type
variables (typically a, b, c, . . .) to represent polymorphic
types, we state the type of (say) the identity function id to be a
-> a (written id :: a -> a). Here, a can represent any
type, so id can be used, for example, in a context requiring
Ints (to give Int -> Int) or Chars (to give Char ->
Char).

Functions in Haskell are curried; all functions are consid-
ered to take a single argument. A function f :: a -> (b
-> c), more conventionally written f :: a -> b -> c,
takes a single argument of type a and returns a function of
type b -> c. Curried functions can be partially applied; for
x :: a, the partial application f x is of type b -> c. A
‘full’ application is written f x y (where y :: b) and is of
type c.

Haskell supports overloading (or ad-hoc polymorphism)
through the use of type classes. A type class in Haskell can
be viewed as a set of types which share certain operations;

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/294782017?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the operations supported by a type class are known as its
methods. A type can be declared as being an instance of
a type class; an instance declaration includes type-specific
(overloaded) definitions of each of the type class’s methods.
The Haskell standard library (the Prelude) includes definitions
of many type classes and instances. For example, the Num
type class includes the numeric operators ‘+’, ‘-’ and ‘*’ as
its methods. The types of each of these operators is Num a
=> a -> a -> a, which can be read as: “for every type
a that is an instance of class Num, the operator has type a
-> a -> a. The Prelude defines all numeric types (Int,
Float, etc.) to be instances of class Num, each by giving
overloaded definitions of these three operators; e.g., the Int
instance defines them has integer operations of type Int ->
Int -> Int.

Type classes can be related hierarchically, such that for a
type to be declared as an instance of a subclass, it must also be
an instance of the superclass. For example, the Fractional
type class is a subclass of Num and includes the extra method
‘/’ (for floating point division). Types Float and Double
are declared as instances of Fractional, but Int is not.

III. BLOCK DESIGN

The main aims of the design are to represent fully all
expression blocks’ types, and for constructed code to be
formatted according to convention.

A. Basic and polymorphic types

For expressions of ‘basic’ types (non-parameterized, non-
tuple and non-function types), we label blocks using the name
of its type together with a color. Fig. 1(a) gives the labels for
Haskell’s numeric, character and Boolean types. Type variables
a, b, c, . . . that represent any (polymorphic) type are not used
in labels; instead they are replaced by gray hatch patterns such
as those in Fig. 1(b). The intention is that where the same hatch
pattern occurs within a set of connected blocks, it represents
any common type; different hatch patterns represent potentially
different types.

Double

Float

Integer

Int

Bool Char

(a) (b)

Fig. 1. Labels for (a) some of Haskell’s basic and (b) polymorphic types.

B. Block shape and behavior

The basic element of a definition of a function f in Haskell
is the equation that takes the form f p1 . . . pn = r, where
each pi is a pattern and r is the result. Some expressions (and
therefore blocks) are syntactically valid only within patterns,
others only in results, and some can appear in both patterns
and results. We use different slot and block shapes to enforce
construction of syntactically valid Haskell code.

Fig. 3 includes an equation for defining a function f ::
Shape -> Bool, which assumes the existence of a Shape
type. For this paper, we don’t consider how Shape is defined,
how the type of f is determined, or how equations are created
and combined; the focus here is on the shape of the empty

pattern and result slots and the ‘type indicators’ within these
slots. The angled upper corners of the slots determine which
varieties of blocks are syntactically legal, and the indicators
determine valid types; both the block shape and type need to
be compatible with the slot for a drop to be accepted.

radius
Float

’z’
Char

(

Shape
Float

Circle)

id

variable literal
data constructor

function

&&
BoolBool

Bool

operator

_

wildcard

Fig. 2. Six varieties of blocks with angled corners and type labels that
determine where they can be dropped.

Fig. 2 gives examples of blocks for six varieties of Haskell
expressions. The top three blocks are angled on both upper
corners, and can be dropped into any slot (those angled at the
left or right and those not angled) if the type indicators match.
The function and operator blocks cannot be dropped into slots
angled on the right (i.e. they can only be used in results), and
the wildcard block cannot be dropped into any slot angled at
the left (it can only be used in patterns).

Fig. 3 illustrates the effects of dropping blocks into slots.
The radius block is dropped legally into the unangled
argument slot of the Circle block since the types match.
Blocks take the shapes of the slots they are dropped into in
order to show in what context they are being used, and so the
angles disappear from the radius block. When the Circle
block is then dropped into the left-hand slot of the equation it
is reshaped to match the slot (it is now being used as part of a
pattern). Circle’s (filled) argument slot is similarly reshaped
as is the radius block it contains (since all elements of a
pattern must themselves be patterns). If a block is removed
from a slot it reverts to its original shape.

Note that parentheses are automatically added and removed
as necessary. The Circle data constructor block includes
parentheses initially as they are required in most contexts and
they provide space for the block angle on the right; in some
contexts (e.g. as a result) the parentheses and angled right
corner disappear. Labeling types at the bottom of blocks will
cause deeply nested code to be quite tall; however, this isn’t
considered a major issue since functions are usually defined
using very few lines of code.

There are two polymorphic blocks in Fig. 2: the identity
function id :: a -> a, and the wildcard ‘_’, which is used
in patterns to match any value and is assumed to be of type a.
Fig. 4 illustrates the behavior of polymorphic blocks. In Fig.
4(a) the wildcard block is dropped into the left-hand (pattern)
slot of an equation; this is valid since the block and slot shapes
match and gray hatching matches any type. The wildcard’s
type changes to that of the slot, and we see here that the type
name is abbreviated to preserve conventional code formatting.
In Fig. 4(b), the ’z’ block is dropped into the argument slot of
id; since the argument and result type are common (they are
hatched the same way), both are recolored to match the type
(Char) of the dropped block. The ’z’ block also changes
shape to match its containing slot (it is now being used as part
of a result expression).

BoolShape
f =

Bool
=f

drop

becomes

radius
Float

drop

Shape
Float

Circle)

becomes

Shape

Circle)

(

(radius
Float

Shape

Circle)(radius
Float

equation

Fig. 3. Dropping blocks to form the left-hand-side (pattern) of an equation.

_

Bool
f =_

S.

BoolShape
f =

drop

becomes

id

drop

becomes

id

Char

’z’
Char

’z’
Char

(a) (b)

Fig. 4. Behavior of polymorphic blocks: (a) a wildcard block is dropped and
retyped to Shape; (b) a Char block becomes the argument of id, which
changes its type to Char -> Char.

C. Parameterized Types

Types in Haskell can be parameterized by one or more
type parameters. One commonly used parameterized type is
Maybe a which represents optional values; a value of type
Maybe a contains either a value of type a (represented by
the data constructor Just a) or is empty (Nothing). For
example, the expression Just ’z’ is of type Maybe Char.
The Either a b type represents values with one of two
possibly different types, using data constructors Left a or
Right b. For example, the expression Right ’z’ is of
type Either a Char.

Fig. 5 shows how parameterized types can be represented,
using color for the types themselves and with embedded areas
above and to the right for the types of the parameter(s).

Just

Maybe

(a)

() Nothing
Maybe

Right

Either

(b)

()Left

Either

()

Fig. 5. Blocks for the data constructors of types (a) Maybe a and (b)
Either a b.

D. Type classes

Labels for polymorphic blocks and slots whose type is
constrained by a type class are colored gray and include the
name of the type class involved. They are thus distinguished
both from types (which use color) and from unconstrained
polymorphic types (which use gray hatching).

Fig. 6 illustrates the labels and behaviors of blocks that
involve type classes. The expression 3.14 in Haskell is of
type Fractional a => a which is represented using the
text Fractional on a gray background. Note that extra
whitespace has been added around the value to allow the
type class name to be given in full since there is no need
to abbreviate type labels in disconnected blocks. This block is
dropped into an argument slot of the ‘*’ block (the operator ‘*’
is of type Num a => a -> a -> a). Since Fractional
is a subclass of Num, through type inference, the ‘*’ block
is retyped to Fractional a => a -> a -> a. Because
Float is an instance of the type class Fractional, drop-
ping the radius block into the remaining empty slot is
permitted and leads, again through type inference, to the types
of ‘*’ and 3.14 becoming Float -> Float -> Float
and Float, respectively.

It should be noted that the visual representations alone do
not attempt to show how type classes are related or which
types are members of which type classes. It would be clearly
desirable for the system to highlight which slots are valid
targets for any block selected by the user.

*

Num
Num

3.14
Fractional

drop

Num

*

Fractional

Fractional
3.14
Fra..l

radius
Float

becomes

drop

*

Float

3.14
Float

radius
Float

becomes

Fig. 6. Behavior of blocks featuring the type classes Num and Fractional.

E. Lists and Tuples

Lists are the fundamental collection type in functional
languages. Lists in Haskell are homogeneous collections; a
list of elements of type a has type denoted by [a]. Lists can
be written with elements given between brackets [· · ·], and
they can be built using the empty list [] (of type [a]) and
the prepend (cons) operator ‘:’ of type a -> [a] -> [a].
Lists are a parameterized type, and this is reflected in the shape
of their visual representation. However, instead of a color and
type name, an area of white is used, with the element type
embedded in the upper-right region.

Fig. 7 shows a block construction of lists using the [· · ·]
notation and the ‘:’ operator. Notice from the shapes of
the blocks that both can be used within patterns (they are
considered as data constructors), and that the [· · ·] block
includes controls for adding and removing slots for elements.

Tuples in Haskell are heterogeneous collections, typically
containing only 2 or 3 elements; an example tuple value is
(True, ’a’) and this has type (Bool, Char). Tuple
types are represented as illustrated in Fig. 8 with a narrow
white base and with curved white region(s) separating the

(

marks
Int

drop

becomes

:)

(:
Int

marks
Int

Int

)

[,]

radius
Float

drop

[,]radius
Float Float

Float

becomes

(a) (b)

Fig. 7. (a) A list of type [Float] constructed using a [· · ·] block; (b) a
list of type [Int] constructed using a ‘:’ block.

component types. Note the control for adding extra slots (there
is no control for removing the second slot since Haskell does
not allow tuples of one element).

fst

idAndGrade
Int Char

drop

fst idAndGrade
Int Char

Int

becomes

(,)

’z’
Char

drop

(,)’z’
Char
Char

becomes

(a) (b)

Fig. 8. (a) A Char block is dropped into an empty slot of a tuple block; (b)
a variable block of type (Int, Char) is dropped into the argument slot of
the projection function fst :: (a, b) -> a.

The visual representations for lists (and other parameter-
ized types) and tuples clearly allow for nesting of types. Fig. 9
illustrates nestings of lists and of lists with tuples. Nesting can
potentially be to any depth but, of course, representations could
become difficult to interpret, especially for blocks of limited
width. These issues could be alleviated by, for example, adding
extra whitespace around a block’s text (breaking formatting
conventions) and by enforcing minimum lengths of identifier
names. For most reasonable block constructions, however, the
representations should be large enough to be clear.

matrix pairList twoLists

(a) (b) (c)

Fig. 9. Nested lists/tuple variable blocks of type (a) [[a]], (b) [(a, b)],
and (c) ([a],[b]).

F. Function types

Function types are represented with a white base and arrow
separating the argument and result types. We illustrate this rep-
resentation in Fig. 10 using the blocks for the function compo-
sition operator ‘.’ (of type (b -> c) -> (a -> b) ->
a -> c) and three commonly used higher-order functions:
map :: (a -> b) -> [a] -> [b], filter :: (a
-> Bool) -> [a] -> [a] and foldr :: Foldable
t => (a -> b -> b) -> b -> t a -> b from the
Haskell Prelude.

The first argument slot of the foldr block shows the
nesting of two functions, clearly illustrating that the type a

-> b -> b should be interpreted as a -> (b -> b). The
third argument includes the Foldable type class of which
lists are instances; so, for example, the marks variable block
of Fig. 7(b) could be dropped here (and the shapes of the
indicator and block type representations suggest this).

foldr
Foldable

.

filter Bool
map

Fig. 10. Blocks for the function composition operator ‘.’ and the higher-
order functions map, filter and foldr.

G. Partial function application

Partial function application is achieved through the addition
of controls that allow functions’ argument slots to be removed.
In Fig. 11, the second slot of the map block is removed,
resulting in a block of one slot (with controls for re-adding
the second slot and for removing the remaining (first) slot).
An operator such as ‘*’ can also be be partially applied by
removing either or both of its arguments to give an operator
section. In Fig. 11, the left argument slot is removed and the
remaining slot is filled with the factor variable block to give
the operator section (* factor) of type Int -> Int.
Dropping this block into map’s empty slot gives a complete
block for map (* factor) (of type [Int] -> [Int]).
Note that the controls on the ‘*’ block disappear once it is
dropped.

*

Num
NumNum

*)

Num Num

(
Num

map map

factor
Int

drop

*)

Int Int

(factor
Int

becomes

drop

map
Int

becomes

Int

Int Int

Int

(*)factor

remove slot

remove
slot

Fig. 11. Construction of the expression map (* factor) through partial
application of ‘*’ and map.

IV. CONCLUSION AND FURTHER WORK

We have presented a design for blocks that represent
expressions in Haskell. The design ideas are intended to
form the basis of an environment to help students to un-
derstand Haskell’s type system and to scaffold their learning
of functional programming. The next steps in the design are
to include mechanisms for defining functions (most notably
local definitions and guards), function type declarations and
(algebraic) type definitions.

REFERENCES

[1] “Scratch,” scratch.mit.edu, accessed 11 July 2019.
[2] “Snap!” snap.berkeley.edu, accessed 11 July 2019.
[3] M. Poole, “Design of a blocks-based environment for introductory

programming in Python,” in 2015 Blocks and Beyond Workshop. IEEE,
2015, pp. 31–34.

[4] ——, “Extending the design of a blocks-based Python environment to
support complex types,” in 2017 Blocks and Beyond Workshop. IEEE,
2017, pp. 1–7.

[5] M. Homer and J. Noble, “Combining tiled and textual views of code,”
in Software Visualization (VISSOFT), 2014 Second IEEE Working
Conference on Software Visualization. IEEE, 2014, pp. 1–10.

[6] J. Hughes, “Why functional programming matters,” The Computer
Journal, vol. 32, no. 2, pp. 98–107, 1989.

[7] Z. Hu, J. Hughes, and M. Wang, “How functional programming
mattered,” National Science Review, vol. 2, no. 3, pp. 349–370, 2015.

[8] B. Heeren, D. Leijen, and A. van IJzendoorn, “Helium, for learning
Haskell,” in Proceedings of the 2003 ACM SIGPLAN Workshop on
Haskell. ACM, 2003, pp. 62–71.

[9] M. Vasek, “Representing expressive types in blocks programming
languages,” Wellesley College, Honors thesis, 2012.

[10] “Bootstrap block editor,” bootstrap-block-editor.appspot.com, accessed
11 July 2019.

[11] E. Schanzer, S. Krishnamurthi, and K. Fisler, “Blocks versus text: On-
going lessons from Bootstrap,” in 2015 Blocks and Beyond Workshop.
IEEE, 2015, pp. 125–126.

[12] B. Harvey and J. Mönig, “Lambda in blocks languages: Lessons
learned,” in 2015 Blocks and Beyond Workshop. IEEE, 2015, pp.
35–38.

[13] S. Kim and F. Turbak, “Adapting higher-order list operators for blocks
programming,” in 2015 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE, 2015, pp. 213–217.

