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Abstract: The study is the first to evaluate the effects of graded normobaric hypoxia 23 

on SpO2 variability in healthy individuals. Twelve healthy males (mean (SD) age 22 24 

(4) years) were exposed to four simulated environments (FiO2: 0.12, 0.145, 0.17 and 25 

0.21) for 45-min, in a balanced cross-over design. Sample entropy, a tool that 26 

quantifies the irregularity of pulse oximetry fluctuations, was used as a measure of 27 

SpO2 variability. SpO2 entropy increased as the FiO2 decreased, and there was a 28 

strong significant negative correlation between mean SpO2 and its entropy during 29 

hypoxic exposure (r = -0.841 to -0.896, P < 0.001). In addition, SpO2 sample entropy, 30 

but not mean SpO2, was correlated (r = 0.630 to 0.760, P < 0.05) with dyspnoea in 31 

FiO2 0.17, 0.145, and 0.12 and importantly, SpO2 sample entropy at FiO2 0.17 was 32 

correlated with dyspnoea at FiO2 0.145 (r = 0.811, P < 0.01). These findings suggest 33 

that SpO2 variability analysis may have the potential to be used in a clinical setting as 34 

a non-invasive measure to identify the negative sequalae of hypoxaemia. 35 
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Introduction 39 

Tissue hypoxia is a fundamental consequence not only of high-altitude exposure but 40 

also of critical illness, where it may occur either as a cause, or as a result of, various 41 

pathologies (Berger and Grocott, 2017). Hypoxia also causes a concomitant decrease 42 

in SpO2 through its effects on the arterial partial pressure of oxygen (PaO2), in 43 

accordance with the alveolar gas equation and the oxyhemoglobin dissociation curve. 44 

For example, SpO2 on arrival at terrestrial altitude of 3800m can reach ~90%, and 45 

further decline to ~81% after a trek to 5200m (Mellor et al. 2015). Similarly, SpO2 46 

values below 80% are regularly observed in patients in intensive care (Wilson et al. 47 

2010; Van de Louw et al. 2001). Following the stimulation of aortic-arch 48 

chemoreceptors and carotid bodies, the physiological response to hypoxemia is 49 

characterized by an increase in cardiac output, ventilation, and haemoglobin 50 

concentration (Berger and Grocott, 2017; Wilson et al. 2005).  51 

 52 

Accumulating evidence indicates that SpO2 variability analysis is more insightful than 53 

mean SpO2 (Garde et al. 2016; Bhogal and Mani, 2017). Using mean or time averaged 54 

physiological data does not illuminate the pattern, complexity, and irregularity which is 55 

observed in most biological systems, and in the cardiovascular system in particular 56 

(Bhogal and Mani, 2017). The majority of  oscillations in physiological time-series data 57 

are not linear, and recent evidence suggests that these oscillations can provide a 58 

useful insight into the activity of the underlying control network (i.e. the cardiovascular 59 

system) (Wagner and Persson, 1998). Sample entropy is one method of describing 60 

these nonlinear data, and is commonly used to study the dynamics of the 61 

cardiovascular system (e.g. heart rate and respiratory rate) (Richman and Moorman, 62 

2000). Briefly, entropy describes the unpredictability and irregularity of time-series 63 
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data and allows physiological signals (e.g. heart rate and SpO2) to be classified over 64 

time (Wagner and Persson, 1998; Moorman et al., 2011). Although there are a variety 65 

of techniques used when assessing fluctuations in time-series data, entropy is often 66 

selected as an index of variability due to its link to information theory (Pincus, 1994). 67 

Information theory is the mathematical study of the coding of information in the form 68 

of sequences of impulses, and can potentially quantify data within a complex system 69 

(Mitchell, 2009, Pincus 1994) (e.g. the cardiovascular system). 70 

 71 

This nonlinear analysis may provide useful information on the integrity of the 72 

cardiovascular system in both health and disease. Heart rate and respiratory rate 73 

variability analysis have previously been used extensively to study the integrity of the 74 

cardio-respiratory system with promising applications (Shirazi et al., 2013; Tipton et 75 

al., 2017). Recently, Garde et al. (2016) reported that SpO2 variability data improved 76 

the identification of children who were admitted to hospital. Further, Bhogal and Mani 77 

(2017) and others (Pham, 2018) have demonstrated that SpO2 entropy decreases with 78 

age and that this can differentiate healthy individuals aged over 35 from their younger 79 

counterparts. Increasingly, it appears that variability analysis provides more 80 

information about physiological systems compared to absolute or mean values 81 

(Garrido et al., 2017). These findings suggest that variability indices have the potential 82 

to predict mortality both in healthy individuals and in clinical populations (Tsuji et al., 83 

1994; Mani et al., 2009; Bhogal et al., 2019). However, to our knowledge the use of 84 

SpO2 variability analysis has not been studied empirically within the field of high-85 

altitude physiology and pathophysiology (e.g., Acute Mountain Sickness). 86 

 87 
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Therefore, the present study sought to characterize the effects of graded normobaric 88 

hypoxia on SpO2 variability in healthy individuals for the first time. Any non-invasive 89 

measurement that offer insight into the state of an individual when hypoxic is valuable 90 

in multiple clinical settings. Reduced entropy in a physiological setting can be 91 

interpreted as less engagement of the components within a control system (Pincus, 92 

1994). In healthy physiological systems, more information processing (i.e. 93 

engagement of the regulatory components) in response to environmental challenges 94 

such as hypoxia would be expected. As entropy is a measure of information content 95 

in complex physiologic time-series, we hypothesised that normobaric hypoxia would 96 

increase the entropy of SpO2 signal in healthy individuals and that SpO2 entropy and 97 

mean SpO2 would be negatively correlated.  98 

 99 

Methods 100 

 101 

Ethical approval  102 

Before providing their written informed consent, all participants were informed of the 103 

requirements and potential risks of the study. The experimental procedures adhered 104 

to the standards set by the latest revision of the Declaration of Helsinki, except for 105 

registration in a database, and were approved by the Science Faculty Ethics 106 

Committee of The University of Portsmouth (project number 2017-025). 107 

 108 

Experimental design 109 

This study was part of a larger project investigating effects of normobaric hypoxia on 110 

physiological and cognitive function and the experimental design has been described 111 

in detail elsewhere (Williams et al., 2019). A convenience sample of twelve healthy 112 
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males, (mean [SD] age 22 [4] years, height 1.78 [0.05] m, mass 75 [9] kg, FEV1/FVC 113 

ratio 85 [5] %) volunteered to participate in this study. All participants were non-114 

smokers, free of any cardiovascular, respiratory and cerebrovascular diseases, were 115 

not diabetic and were not taking any prescription drugs at the time of or before 116 

participation. All participants resided at <1000 m and had not spent time at altitude for 117 

at least 1 month prior to commencement of the study, including commercial flights. 118 

Participants were instructed to refrain from any strenuous exercise, caffeine or alcohol 119 

in the 24 h preceding each visit to the laboratory. In addition, participants were 120 

requested to record their dietary intake for 24 h prior to their first visit and to replicate 121 

their eating habits for each visit thereafter. 122 

 123 

A within participant, balanced cross-over design was employed. Participants were 124 

required to visit the laboratory on 5 occasions (one health screening and four 125 

experimental trials). For each experimental trial participants were exposed to 126 

normobaric hypoxia for 45 minutes in a purpose-built hypoxic chamber (Sporting 127 

Edge, Sherfield on Loddon, UK).  The fraction of inspired oxygen (FiO2) values were 128 

0.2093 (sea-level), 0.17 (equivalent to ~1600 m), 0.145 (~3000 m), and 0.12 (4500 129 

m). If end-tidal O2 (PETO2) or end-tidal CO2 (PETCO2) fell below 45 mmHg and 25 130 

mmHg respectively, for three consecutive breaths, or if SpO2 went below 65 %, 131 

participants were given a supply of normoxic air and subsequently removed from the 132 

chamber. Participants were also blinded to which condition they were in. The ambient 133 

temperature was maintained at 25 °C and the relative humidity was controlled at 50 % 134 

throughout. Experimental trials were separated by a minimum of 48 h and conducted 135 

at the same time of day. 136 

 137 



 
 

7 
 

Cardiorespiratory responses 138 

Minute ventilation (V̇E), respiratory frequency (ƒR), tidal volume (VT), end-tidal pressure 139 

of CO2 (PETCO2) and O2 (PETO2), and heart rate were measured breath by breath using 140 

a metabolic cart (Quark CPET, Cosmed, Rome, Italy) and appropriate calibration 141 

procedures were performed according to the manufacturer’s instructions. 142 

 143 

SpO2 and SpO2 variability 144 

SpO2 was recorded using pulse oximetry on the index finger of the right hand (Nonin 145 

7500, US). Data were continually recorded using an analogue to digital acquisition 146 

system with a sampling rate of 1000 Hz using a PowerLab system (ADInstruments, 147 

Castle Hill, Australia). The recorded data were extracted using LabChart software and 148 

down-sampled by 1000 to 1.s-1. Data were subsequently down sampled as pulse 149 

oximeter readings are not sampled at such a high rate, and thus at that resolution, the 150 

variability presented would not reflect true SpO2 variation. This method is commonly 151 

used when assessing SpO2 entropy (Bhoghal and Mani, 2017, Lazareck and 152 

Tarassenko, 2006). The data were visually scanned and any obvious artefacts (e.g. 153 

missed or spurious SpO2 data) were removed (less than 1%). From the recording there 154 

were 4 X 8-minute segments of data that were used for analysis. A reading prior to 155 

exposure, a recording once exposed to the altered FiO2, a third reading at 30-min of 156 

exposure, and finally one after 45-min of exposure.  157 

 158 

The oxygen saturation data were analysed using linear (e.g. standard deviation) and 159 

non-linear methods (e.g. entropy measures) written in MATLAB (MathWorks, 160 

R2017a). For each 8-min segment the mean SpO2 and standard deviation were 161 

calculated as tools to understand the overall variability. We also employed sample 162 
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entropy, detrended fluctuation analysis (DFA) and multiscale entropy (MSE) as 163 

measures of complexity in SpO2 fluctuations (Richman and Moorman, 2000; Costa et 164 

al., 2005). Sample entropy is a tool that quantifies the degree of irregularity present in 165 

a dataset by calculating the probability that an event with window length, m, and 166 

degree of tolerance, r, will be repeated at later time. In present study m was set at 2 167 

and r at 0.2 as described by Richman and Moorman (2000). Many physiological time-168 

series (e.g. heart rate, respiratory rate and SpO2) show a fractal-like pattern of 169 

fluctuations (Raoufy et al., 2016; Bhoghal and Mani., 2017; Bhogal et al., 2019). 170 

Fractals exhibit similar patterns at increasingly small scale. A variety of methods have 171 

been developed to quantify fluctuation of physiological signals at different time scales. 172 

Detrended fluctuation analysis examines the self-similarity of a time series to 173 

determine the structural integrity of the signal at different time scales (Peng et al., 174 

1995). In this analysis the data are split into boxes of various lengths (n) and this is 175 

plotted against the F(n), which is the variability of detrended signals in different scales 176 

(n). The slope of the resulting log-log graph is known as “scaling exponent” which 177 

indicates the type of fractal-like dynamics present in the physiological signal (Peng et 178 

al., 1995). Another method which takes scaling into account is multiscale entropy. 179 

Multiscale entropy is an extension of sample entropy and fractal analysis, as it 180 

examines the sample entropy at different time scales (Costa et al., 2005). The data 181 

are averaged within window length consisting of a number of data points to create a 182 

coarse-grained time-series (Costa et al., 2005). The sample entropy of this is then 183 

calculated and plotted against the window length (Costa et al., 2005). The trend of 184 

changes in entropy in different scales gives information about complexity of a data set. 185 

Compared to a previous report we used multiscale entropy to five scales due to the 186 

shorter nature of the collected data (Bhogal and Mani, 2017).  187 
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 188 

Dyspnoea 189 

Dyspnoea was recorded using a modified Borg scale (0, ‘Nothing at all’ to 10, 190 

‘Shortness of breath so severe you need to stop’, Mahler et al, 1987) before and after 191 

30-min of exposure. 192 

 193 

Statistical analyses 194 

The distribution of data was assessed using descriptive methods (skewness, outliers, 195 

and distribution plots) and inferential statistics (Shapiro–Wilk test). V̇E, ƒR, VT, PETCO2, 196 

PETO2, and heart rate data were 5-min averaged.  All data were analysed by either a 197 

one-way or a two-way repeated measures ANOVA and post-hoc comparisons were 198 

completed using a Tukey test. Spearman's correlation coefficients were used to 199 

examine the relationship between SpO2 variability and dyspnoea. Repeated measure 200 

correlation coefficients (rrm) were computed for the correlations of SpO2 entropy and 201 

mean SpO2 using the method described by Bland and Altman (1995) and the software 202 

developed by Bakdash and Marusich (2017). Statistical analyses were performed 203 

using SPSS (Statistical Package for the Social Sciences), version 22.0 (SPSS Inc, 204 

Chicago, IL, USA) or R (R Core Team, 2007). Statistical significance was accepted at 205 

P < 0.05. All data are expressed as means ± standard deviation (SD) unless otherwise 206 

stated. 207 

 208 

Results 209 

One participant was removed from the chamber in FIO2 0.12 (PETO2 fell below 45 210 

mmHg). Therefore, the following analyses are for the 12 participants in FIO2 0.2093, 211 

0.17, and 0.145 and 11 participants in FIO2 0.12. 212 
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 213 

Cardiorespiratory responses 214 

Minute ventilation (V̇E), respiratory frequency (ƒR), tidal volume (VT), end-tidal pressure 215 

of CO2 (PETCO2) and O2 (PETO2), and heart rate data are displayed across the four 216 

environments in Figure 1.  217 

 218 

<< INSERT FIGURE 1 ABOUT HERE>> 219 

 220 

SpO2 and SpO2 variability 221 

An example of SpO2 signals at different FiO2 is displayed in Figure 2A. The oxygen 222 

saturation readings exhibit more fluctuations with lower FiO2. Figures 2 also depict 223 

SpO2 (Figure 2B), SpO2 standard deviation (Figure 2C), and sample entropy (Figure 224 

2D). An increase in standard deviation of SpO2 fluctuations and a concomitant 225 

increase in sample entropy was observed when FiO2 was decreased (Figures 2C and 226 

D). Detrended fluctuation analysis demonstrates that the scaling exponent (α) was 227 

consistent across all FiO2 conditions and no significant differences were observed 228 

(Figure 3A). Finally, the relationship between multiscale entropy and FiO2, a measure 229 

of complexity, is displayed in Figure 3B. SpO2 entropy increases as the scale 230 

increases. This indicates that the pattern of SpO2 fluctuations in not random (Costa et 231 

al., 2005). Multiscale entropy increased following exposure to the lowest level of 232 

inspired oxygen. Two-way ANOVA indicated that effect of FiO2 (P<0.0001) and scale 233 

(P<0.0001) were both statistically significant. Interestingly, multiscale entropy can 234 

characterise and separate the groups better in scale 5 than scale 1 (Figure 3B).  235 

 236 

<< INSERT FIGURE 2 ABOUT HERE>> 237 
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 238 

<< INSERT FIGURE 3 ABOUT HERE>> 239 

 240 

Intra time-series analysis 241 

Figures 4A-D demonstrate the temporal changes of SpO2 and SpO2 variability. 242 

Sample entropy is more responsive to the hypoxic stimulus when compared to the 243 

mean oxygen saturation. The sample entropy plateaus ~20 minutes before mean 244 

oxygen saturation in the three hypoxic environments. No significant correlations 245 

between SpO2 variability at FiO2 0.2093 and mean SpO2 at FiO2 0.17, 0.145, or 0.12 246 

were observed. Similarly, no significant correlation between SpO2 variability at FiO2 247 

0.17 and mean SpO2 at FiO2 0.145 or 0.12 was observed. 248 

<< INSERT FIGURE 4 ABOUT HERE>> 249 

 250 

The relationship between mean SpO2 and SpO2 variability 251 

Linear regression analysis demonstrated that the relationships between mean SpO2 252 

and SpO2 standard deviation or sample entropy were strongly correlated (Figure 5).  253 

For the correlation between mean SpO2 and its standard deviation, the repeated 254 

measures correlation coefficients (rrm) were -0.833 after 10-min, and -0.757 after 30-255 

min of exposure (p<0.0001, Figure 5A and B).  The rrm were -0.841 after 10-min, and 256 

-0.896 after 30-min of exposure for correlation between SpO2 and its sample entropy 257 

(p<0.0001, Figure 5C and D).   258 

 259 

<< INSERT FIGURE 5 ABOUT HERE>> 260 

 261 

Correlation between SpO2 variability and dyspnoea  262 
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No significant change in dyspnoea was observed in any of the environments (FiO2 263 

0.2093, 0.3±0.9 (range: 0.0-3.0), 0.17, 0.3±0.6 (range: 0.0-2.0), 0.145, 0.8±1.5 (range: 264 

0.0-4.0), and 0.12, 1.1±1.2 (range: 0.0-3.0); p > 0.05). However, a significant 265 

correlation between sample entropy and dyspnoea (measured using a modified Borg 266 

scale) was observed in FiO2 0.17, 0.145 and 0.12 (see Table 1). Interestingly, sample 267 

entropy at FiO2 0.17 was significantly correlated with dyspnoea at FiO2 0.145 and 268 

approached significance in FiO2 0.12 (r = 0.577, p = 0.063). Mean SpO2 was not 269 

correlated (p > 0.05) with dyspnoea in any environment.  270 

 271 

<<INSERT TABLE 1 ABOUT HERE>> 272 

 273 

Discussion 274 

The current study is the first to systematically evaluate the effects of graded 275 

normobaric hypoxia on SpO2 variability in healthy individuals. In support of our initial 276 

hypotheses the main findings of this investigation, are as follows: (1) a strong inverse 277 

correlation between SpO2 entropy and mean SpO2 during hypoxia was observed, (2) 278 

SpO2 sample entropy, but not mean SpO2, was correlated with modest levels of 279 

dyspnoea, and (3) SpO2 sample entropy at FiO2 0.17 was correlated with dyspnoea 280 

at FiO2 0.145, but not FiO2 0.12. This suggests that SpO2 sample entropy during 281 

moderate levels of hypoxic exposure may be able to provide an insight into an 282 

individual response to a more severe hypoxic challenge. 283 

These findings extend our previous work in healthy individuals in a normoxic 284 

environment (where SpO2 averaged 98 ± 1 %) (Bhogal and Mani, 2017), to a more 285 

severe hypoxic state where SpO2 values of 79.6 ± 3.6% were recorded in FiO2 0.12. 286 
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Interestingly, we observed a strong inverse linear relationship between sample 287 

entropy and SpO2 (Figure 5). We have previously reported an inverse relationship 288 

between these two variables, however, these earlier finding were limited to SpO2 289 

values >94% (Bhogal and Mani, 2017). Given the importance of maintaining 290 

homeostatic function of arterial oxygenation, it is plausible that SpO2 variability may 291 

provide an index of central regulation ventilation in adults during hypoxic exposure. 292 

However, it remains unknown if SpO2 entropy can provide useful diagnostic 293 

information in high altitude medicine and physiology. For example, future research 294 

should consider the relationship between SpO2 entropy and hypoxic maladaptation 295 

(e.g. low hypoxic ventilator response) and the pathophysiology of acute mountain 296 

sickness during prolonged or more severe hypoxic exposures.  297 

Although the precise mechanism(s) for this relationship is currently unknown, we 298 

speculated that this relationship might be explained by the sigmoidal oxyhaemoglobin 299 

saturation curve. Any perturbation or change at a different point of pO2 (x-axis) would 300 

result in a different corresponding range of haemoglobin saturation (y-axis). Using the 301 

Hill’s equation, we generated pO2 values for further exploratory analysis (<<see 302 

supplementary data>>). Based on this simulation, the plot of mean haemoglobin 303 

saturation plotted against the standard deviation of the SpO2 data, demonstrated a 304 

linear inverse relationship, which corroborates with our experimental findings. 305 

However, no correlation was found between mean haemoglobin saturation and 306 

sample entropy. Therefore, this exploratory analysis suggests oxyhaemoglobin 307 

saturation curve alone does not explain the SpO2 entropy data (data not presented).  308 

We speculated that the increase in SpO2 entropy was indicative of the 309 

signal/fluctuations becoming more informative, and not more random. To address this 310 
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hypothesis, we used multiscale entropy analysis, which calculates sample entropy 311 

after averaging data at different time scales. In a random process (e.g. white noise) a 312 

reduction in entropy in larger scales would be expected, as random fluctuations cancel 313 

out each other during the scaling process (Costa et al., 2005). However, a positive 314 

slope was observed in multiscale entropy analysis (Figure 3B) in the current study and 315 

in our previous work (Bhogal and Mani, 2017). This indicates that the hypoxia-induced 316 

increase in SpO2 entropy did not deviate to a random process, but rather that the 317 

higher entropy was associated with increased structural richness/information from the 318 

pulse oximetry data. Furthermore, the scaling exponent of the detrended fluctuation 319 

analysis demonstrated that the scaling exponent is close to α=1.2 (Figure 3A) in all 320 

experimental conditions which is markedly higher from than that observed in random 321 

noise (α=0.5) (Peng et al., 1995).  322 

In addition to the potential application of SpO2 entropy as a screening tool for those 323 

exposed to extreme environments (e.g. high-altitude medicine), entropy analysis may 324 

have some usefulness in clinical medicine. However, oxygen saturation variability is 325 

typically measured using standard deviation or detrended fluctuation analysis of 326 

oxygen saturation signals in the existing literature (Garde et al., 2016; Vaquerizo-Villar 327 

et al., 2018). Data from this study suggest that entropy is a more effective method of 328 

studying oxygen saturation variability (Figure 2). Although the calculation of standard 329 

deviation is easier than entropy, entropy may provide more insightful information on 330 

the complexity of SpO2 fluctuations in our data for two reasons: (a) sample entropy 331 

was the only variability index that demonstrated a significant correlation with 332 

dyspnoea, and (b) entropy analysis can distinguish random time-series from complex 333 

time-series  334 
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To our knowledge, this study is the first to demonstrate that SpO2 entropy at FiO2 0.17, 335 

0.145, and 0.12 was significantly correlated with dyspnoea (all p < 0.05, Table 1). 336 

Moreover, sample entropy at FiO2 0.17 was significantly correlated with dyspnoea at 337 

FiO2 0.145 (r = 0.811, p < 0.01) and approached significance in FiO2 0.12 (r = 0.577, 338 

p = 0.063). Interestingly, no such correlations were observed with mean SpO2 and 339 

dyspnoea. These data suggest that SpO2 entropy may provide more useful 340 

information, compared to absolute/mean values of oxygen saturation, for predicting 341 

dyspnoea in response to a more severe hypoxic challenge. However, we must 342 

acknowledge that the mean dyspnoea ratings across the four environmental 343 

conditions was relatively modest, where the highest value recorded was four out of 344 

ten, corresponding to ‘somewhat severe’. Therefore, future research examining this 345 

relationship when participants experience greater levels of dyspnoea is required. 346 

The present study was not without limitation. Firstly, the current findings are limited to 347 

a small sample of healthy male volunteers exposed to normobaric hypoxia. Future 348 

research is required to expand these findings to females and older individuals. 349 

Moreover, future investigations are also required to establish the utility of these novel 350 

insights, for example, the relationship between SpO2 entropy and clinical outcomes, 351 

when monitoring patients in critical care or those with chronic respiratory diseases 352 

(e.g. COPD). Secondly, the duration of recording physiological variability data is 353 

typically greater than 8-min (e.g. 60-min). Due to methodological constraints this was 354 

not possible in the current study. This information is of practical importance as a 355 

shorter timeframe, i.e. ≤ 8-min as opposed to 60-min, of data recording is feasible in 356 

both a clinical setting and in the field (e.g. at terrestrial high altitude). Finally, despite 357 

elucidating an interesting phenomenon, with multiple potential applications, we 358 

considered that attempting to explain the mechanism(s) of association between mean 359 



 
 

16 
 

SpO2 and entropy outside the scope of the current investigation. However, it is 360 

plausible that increased SpO2 entropy in response to hypoxia may be related to altered 361 

ventilation. Alternatively, changes in SpO2 entropy might indicate the degree of 362 

heterogeneity of haemoglobin molecules at different saturations. Detailed 363 

molecular/electrophysiological research on respiratory control centres are therefore 364 

warranted to help improve our mechanistic understanding of the observed effect. 365 

In conclusion, this is the first study to systematically evaluate the effects of simulated 366 

graded normobaric hypoxia on SpO2 variability in healthy individuals. This study is the 367 

first to suggest that that sample entropy may convey valuable, and prompt, predictive 368 

information about the level of hypoxemia and dyspnoea experienced. Further research 369 

is warranted to establish if SpO2 sample entropy has potential as a non-invasive 370 

outcome measure in clinical settings.  371 

Acknowledgements 372 

We would like to thank the participants for volunteering for this study. We also wish to 373 

thank Danny White, Geoff Long and Harry Mayes for their technical assistance and 374 

Christopher Richards for his help with data collection. 375 

 376 

Conflicts of interest 377 

The authors have no conflicts of interest. 378 

 379 

FUNDING 380 

The present study received no external funding. 381 

 382 

References 383 



 
 

17 
 

Bakdash JZ and Marusich LR (2017). Repeated measures correlation. Front Psychol 384 

8:456. 385 

Berger MM, Grocott MPW (2017). Facing acute hypoxia: from the mountains to critical 386 

care medicine. Br J Anaesth 118:283–6. 387 

Bhogal AS, Mani AR (2017). Pattern analysis of oxygen saturation variability in healthy 388 

individuals: entropy of pulse oximetry signals carries information about mean oxygen 389 

saturation. Front Physiol 8:555.  390 

Bhogal AS, De Rui M, Pavanello D, El-Azizi I, Rowshan S, Amodio P, Montagnese S, 391 

Mani AR (2019). Which heart rate variability index is an independent predictor of 392 

mortality in cirrhosis. Dig Liver Dis 5:695-702. 393 

Bland JM, and Altman DG (1995).  Calculating correlation coefficients with repeated 394 

observations. Part 1—correlation within subjects. Br Med J 310:446. 395 

Costa M, Goldberger AL, Peng CK (2005). Multiscale entropy analysis of biological 396 

signals. Phys Rev E 89:1–8.  397 

Dipietro JA, Caughy MO, Cusson R, Fox NA (1994). Cardiorespiratory functioning of 398 

preterm infants: Stability and risk associations for measures of heart rate variability 399 

and oxygen saturation. Dev Psychobiol 27:137–52.  400 

Garde A, Zhou G, Raihana S, Dunsmuir D, Karlen W, Dekhordi P, ... Ansermino JM 401 

(2016). Respiratory rate and pulse oximetry derived information as predictors of 402 

hospital admission in young children in Bangladesh: a prospective observational 403 

study. BMJ Open 6:e011094.  404 

Garrido M, Saccardo D, De Rui M, Vettore E, Verardo A, Carraro P, ... Montagnese S 405 

(2017). Abnormalities in the 24-hour rhythm of skin temperature in cirrhosis: Sleep-406 

wake and general clinical implications. Liver Int 37:1833-1842. 407 



 
 

18 
 

Gholami M, Mazaheri P, Mohamadi A, Dehpour T, Safari F, Hajizadeh S … Mani AR 408 

(2012). Endotoxemia is associated with partial uncoupling of cardiac pacemaker from 409 

cholinergic neural control in rats. Shock 37:219-27.  410 

Lazareck L and Tarassenko L. Detection of apnoeic and breathing activity through 411 

pole-zero analysis of the SpO2 signal,” (2006); in 28th IEEE EMBS Ann. Int. Conf., 412 

New York City, USA, 3879-3882. 413 

Mani AR, Montagnese S, Jackson CD, Jenkins CW, Head IM, Stephens RC ... Morgan 414 

MY (2009). Decreased heart rate variability in patients with cirrhosis relates to the 415 

presence and degree of hepatic encephalopathy. Am J Physiol Gastrointest Liver 416 

Physiol 296:G330-8.  417 

Mellor AJ, Boos CJ, Ball S, Burnett A, Pattman S, … and Woods DR (2015). Copeptin 418 

and arginine vasopressin at high altitude: relationship to plasma osmolality and 419 

perceived exertion. Eur J Appl Physiol 115:91–98. 420 

Mitchell M. Complexity: A guided tour. (2009) New York: Oxford University Press.  421 

Moorman JR, Delos JB, Flower AA, Cao H, Kovatchev BP, Richman JS, Lake DE 422 

(2011). Cardiovascular oscillations at the bedside: early diagnosis of neonatal sepsis 423 

using heart rate characteristics monitoring. Physiol Meas 32:1821–32.  424 

Paggiaro P (2004). Does early treatment of exacerbation improve outcome in chronic 425 

obstructive pulmonary disease? Am J Respir Crit Care Med 169:1267–8.  426 

Peng CK, Havlin S, Stanley HE, Goldberger AL (1995). Quantification of scaling 427 

exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 428 

5:82–7. 429 

Pham TD (2018). Pattern analysis and classification of blood oxygen saturation 430 

signals with nonlinear dynamics features. International Conference on Biomedical and 431 

Health Informatics 112–5.  432 



 
 

19 
 

Pincus SM (1994). Greater signal regularity may indicate increased system isolation. 433 

Math Biosci 122:161–81.  434 

Raoufy MR, Ghafari T, Darooei R, Nazari M, Mahdaviani SA, Eslaminejad AR, 435 

Almasnia M, Gharibzadeh S, Mani AR, Hajizadeh S (2016). Classification of Asthma 436 

Based on Nonlinear Analysis of Breathing Pattern. PLoS One 11:e0147976. 437 

 438 

Richman JS, Moorman JR (2000). Physiological time-series analysis using 439 

approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 440 

278:H2039–49.  441 

Shirazi AH, Raoufy MR, Ebadi H, De Rui M, Schiff S, Mazloom R, … Mani AR (2013). 442 

Quantifying Memory in Complex Physiological Time-Series. PLoS One 8:e72854. 443 

Tipton M, Harper A, Paton JFR, and Costello JT (2017). The human ventilatory 444 

response to stress: rate or depth? J Physiol 595:5729-5752. 445 

Tsuji H, Venditti FJ Jr, Manders ES, Evans JC, Larson MG, … and Levy D (1994). 446 

Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham 447 

Heart Study. Circulation 90:878-83. 448 

Vaquerizo-Villar F, Álvarez D, Kheirandish-Gozal L, Gutiérrez-Tobal GC, Barroso-449 

García V, Crespo A, Del Campo F, Gozal D, Hornero R (2018). Detrended fluctuation 450 

analysis of the oximetry signal to assist in paediatric sleep apnoea-hypopnoea 451 

syndrome diagnosis. Physiol Meas 39:114006.  452 

Van de Louw A, Cracco C, Cerf C, Harf A, Duvaldestin P, … and Brochard L (2001). 453 

Accuracy of pulse oximetry in the intensive care unit. Intensive Care Med 27:1606–454 

1613. 455 

Wagner CD, and Persson PB (1998). Chaos in the cardiovascular system: an update. 456 

Cardiovascular Res 40:257–264. 457 



 
 

20 
 

Williams TB, Corbett J, McMorris T, Young JS, Dicks M, Ando S, Thelwell RC, Tipton 458 

MJ, Costello JT (2019). Cognitive performance is associated with cerebral 459 

oxygenation and peripheral oxygen saturation, but not plasma catecholamines, during 460 

graded normobaric hypoxia. Exp Physiol 1–14. https://doi.org/10.1113/ 461 

EP087647 462 

Wilson BJ, Cowan HJ, Lord JA, Zuege DJ, and Zygun DA. The accuracy of pulse 463 

oximetry in emergency department patients with severe sepsis and septic shock: a 464 

retrospective cohort study. BMC Emerg Medicine (2010); 10: 9. 465 

Wilson RC, & Jones PW. A comparison of the visual analogue scale and modified 466 

Borg scale for the measurement of dyspnoea during exercise. Clinical Science. 467 

(1989); 76(3): 277–282.  468 

Wilson DF, Roy A, and Lahiri S. Immediate and long-term responses of the carotid 469 

body to high altitude. High Alt Med Biol (2005); 6: 97-111. 470 

  471 



 
 

21 
 

Tables and Figures 472 

 473 

Table 1. Correlation between mean SpO2 and SpO2 sample entropy with dyspnoea. 474 

The values represent Spearman’s correlation coefficient (r). * P<0.05, ** P<0.01. 475 

 Dyspnoea  

(FiO2 0.17) 

Dyspnoea  

(FiO2 0.145) 

Dyspnoea  

(FiO2 0.12) 

Mean SpO2 (FiO2 0.17) -0.261 -0.194 0.044 

SpO2 Sample Entropy (FiO2 0.17) 0.760** 0.811** 0.577 

Mean SpO2 (FiO2 0.145) 0.083 0.059 0.023 

SpO2 Sample Entropy (FiO2 0.145) 0.367 0.636* 0.455 

Mean SpO2 (FiO2 0.12) -0.012 -0.021 -0.279 

SpO2 Sample Entropy (FiO2 0.12) 0.320 0.344 0.630* 

 476 
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 477 

Figure 1. Mean (n=12) minute ventilation (V̇E) (A), respiratory frequency (ƒR) (B), tidal 478 

volume (VT) (C), end-tidal pressure of CO2 (PETCO2) (D) and O2 (PETO2) (E), and heart 479 

rate (F) in FiO2 0.21 (filled squares), 0.17 (open triangles), 0.145 (open diamonds) and 480 

0.12 (open circles; n=11). SD are omitted for clarity. ‡ P<0.03 for all environments 481 

compared to FiO2 0.12. † P <0.001 for all conditions FiO2 0.21<0.17<0.145<0.12. 482 
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 483 

Figure 2. A. Sample SpO2 signals in a healthy volunteer collected over 8 min after 484 

exposure to nomobaric hypoxia. B. Changes in mean SpO2 following 30 min exposure 485 

to different fraction of inspired oxygen (FiO2). ** P<0.01 in comparison with FiO2 0.21, 486 

*** P<0.001 in comparison with FiO2 0.21, +++ P<0.001 in comparison with FiO2 0.17, 487 

### P<0.01 in comparison with FiO2 0.145. C. Changes in standard deviation of SpO2 488 

fluctuations following 30 min exposure to different fraction of inspired oxygen (FiO2). 489 

** P<0.01 in comparison with FiO2 0.21, ++ P<0.01 in comparison with FiO2 0.17. D. 490 

Changes in Sample Entropy of SpO2 fluctuations following 30 min exposure to different 491 

fraction of inspired oxygen (FiO2). ** P<0.01 in comparison with FiO2 0.21, ++ P<0.01 492 

in comparison with FiO2 0.17. *** P<0.001 in comparison with FiO2 0.21, +++ P<0.001 493 

in comparison with FiO2 0.17. 494 



 
 

24 
 

 495 

Figure 3. A. Detrended fluctuation analysis (DFA) of SpO2 fluctuations after 30 min 496 

exposure to different fractions of inspired oxygen (FiO2). No statistical significance 497 

between the different conditions. B. Multiscale Entropy (MSE) analysis of SpO2 498 

fluctuations after 30 min exposure to different fraction of inspired oxygen (FiO2). Two-499 

way ANOVA indicated that effect of FiO2 and scale are both statistically significant 500 

(Fscale=19.46, P<0.0001; FFiO2=26.05, P<0.0001). 501 

 502 

Figure 4. Comparison of the trend of changes in mean SpO2 and Sample Entropy of 503 

SpO2 fluctuations during 45 min exposure to different FIO2 (A-D). *** P<0.001 in 504 
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comparison with time = 0, ++ P<0.01 in comparison with time = 10 min, +++ P<0.001 505 

in comparison with time = 10 min. 506 

 507 

Figure 5. The correlation between mean SpO2 and its variability 10 and 30 min after 508 

exposure to different FIO2. A and B. The relationship between mean SpO2 and SpO2 509 

Standard Deviation (the linear regression equations are y=-0.228x+22.87 and y=-510 

0.087x+9.275 for 10 and 30 min respectively). C and D. The relationship between 511 

mean SpO2 and SpO2 Sample Entropy (the linear regression equations are y=-512 

0.091x+9.878 and y=-0.058x+6.595 for 10 and 30 min respectively). The rrm values 513 

represent repeated measure correlation coefficient. 514 

  515 
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Appendix 1. Simulation of the effect of haemoglobin saturation curve on the relationship between 516 
mean SpO2 and its variability (i.e. standard deviation and sample entropy)  517 
 518 
Introduction 519 
 520 
SpO2 is a measure of haemoglobin oxygen saturation. We wondered if the relationship between a 521 
decrease in SpO2 correlating with an increase in SpO2 variability may be explained by haemoglobin 522 
saturation curve. The haemoglobin saturation curve is nonlinear and is often described by Hill’s 523 
equation (Fig S1): 524 
 525 

𝐻𝐻𝐻𝐻 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑝𝑝𝑂𝑂2𝑛𝑛

𝑘𝑘𝑑𝑑 + 𝑝𝑝𝑂𝑂2𝑛𝑛
 526 

 527 
 528 
 529 
Figure 1S. Haemoglobin saturation 530 
curve based on the Hill’s equation 531 
with n=2.8 and kd=4 kPa. 532 
 533 
 534 
 535 
 536 
 537 
 538 
 539 
 540 
 541 
 542 
 543 
 544 
 545 
 546 
 547 
 548 
The sigmoidal shape is due to the binding capacity behaviour of haemoglobin and the nature of the 549 
dissociation curve. This is related co-operative binding behaviour and the requirement for 550 
haemoglobin to release oxygen at low oxygen saturation but bind oxygen at higher oxygen (pO2) 551 
concentrations. 552 
  553 
Taking this into account, a small perturbation or incremental change at a different point of the x-axis 554 
(pO2) would result in a different corresponding range of haemoglobin saturation values. i.e. the 555 
same change in x-values at lower pO2 values would result in a larger range in y values due to the 556 
changing gradient of the slope, according the equation of the curve. Given this reasoning a 557 
simulation using the Hill’s equation and generated pO2 values were used for further analysis. 558 
  559 
Method 560 
  561 
MATLAB programming language was used to generate simulated data and implementation of the 562 
algorithms. Hundred independent normally distributed random pO2 time-series with 480 data points 563 
were generated to have mean values between 3 and 14 kPa (with standard deviation of 0.1 kPa).  564 
Haemoglobin saturation values were calculated in these hundred pO2 time-series based on the Hill’s 565 
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equation (with n = 2.8 and kd=4 kPa as parameters). These values were used to calculate mean, 566 
standard deviation and sample entropy. Mean Haemoglobin saturation was then plotted against 567 
standard deviation and sample entropy. 568 
  569 
Results 570 
  571 
The plot of mean Haemoglobin Saturation vs Standard deviation showed a liner inverse relationship 572 
with a correlation coefficient of 0.993 (p<0.0001) (Figure S). This result supports the trend seen from 573 
the experimental data - a decrease in SpO2 correlates an increase in variability.  574 
  575 
However, there was no inverse correlation between Mean Haemoglobin Saturation and its Sample 576 
entropy (Figure S). The plot of Mean Haemoglobin Saturation vs Entropy had a correlation 577 
coefficient of 0.02 (p= 0.801). Therefore, this simulation shows that the model of haemoglobin does 578 
not explain the experimental data that we observed.  579 
 580 
 581 

 582 
 583 
Figure S. Correlation between mean O2 saturation (SpO2) and its Standard deviation (left) or Sample 584 
entropy (right) in a simulation experiment where random fluctuation of pO2 and the Hill Function 585 
were considered as the only factors influencing SpO2 variability. 586 
  587 
Interpretation / Limitations 588 
  589 
The inverse relationship between mean hemoglobin saturation and its standard deviation 590 
corroborates well with the sigmoidal shape of hemoglobin saturation curve. However, it does not 591 
explain the relationship between mean SpO2 and the pattern (entropy) of hemoglobin saturation.  A 592 
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more complex model may be required to explain the relationship entropy. The model does not take 593 
into account the influence of chemoreceptors, changes in respiration for example and more broadly 594 
the network of processes that regulates the highly regulated physiological state. Considering the 595 
amount of information processing that is exhibited in a human body we felt that global information 596 
processing may play a larger role. In addition, multiple different models investigating different 597 
parameters may be required to explain this relationship. 598 
 599 
 600 
The scripts in MATLAB used for simulation of the effect of haemoglobin saturation curve on the 601 
relationship between mean SpO2 and its variability. 602 
 603 
close all 604 
clc 605 
clear all 606 
  607 
n=2.8; % a Hill’s function parameter 608 
Kd =4; % a Hill’s function parameter 609 
B=linspace(3,14,100);B=B';% different oxygen concertation in kPa 610 
T=480; % T is the length of each simulated time-series (480 corresponds to 611 
% 8 min recording with a sampling rate of 1/s) 612 
  613 
Y = NaN(480,100); 614 
A = NaN(480,100); 615 
  616 
% generation of random fluctuation in [O2] (oxygen concentration) 617 
  618 
for j=1:100 619 
for i=1:T 620 
     621 
    A (i,j)= B(j,1) + 0.1*randn; % generation of random variation with  622 
% standard deviation of 0.1 kPa 623 
     624 
end 625 
  626 
end 627 
  628 
% calculation of haemoglobin saturation using Hill’s equation 629 
for j=1:100 630 
for i=1:T 631 
     632 
    Y(i,j) = 100*(A(i,j)^n)/(Kd+A(i,j)^n); 633 
     634 
end 635 
end 636 
  637 
% Calculation of sample entropy using sampen function based on m=2 and  638 
% r=0.2. 639 
% To use this code, you need to have access to sampen function and WFDB  640 
% toolboox. sampen is a function to calculate sample entropy and can be  641 
% accessed using the following link:  642 
% https://www.physionet.org/physiotools/sampen/matlab/1.1/ 643 
% WFDB toolboox for MATLAB (wfdb-app-toolbox-0-10-0) can be accessed at the 644 
% following link: https://physionet.org/physiotools/matlab/wfdb-app-matlab/ 645 
 646 
  647 
  648 
sam = NaN(100,1); 649 
for i=1:100 650 
   se= sampen (Y(1:T,i),2,0.2);  651 
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   sam(i,1)=se(2,1); 652 
    653 
   end 654 
  655 
m=mean(Y); 656 
s=std(Y); 657 
  658 
subplot(1,2,1) 659 
scatter(m,s,'ko') 660 
axis square 661 
title('Standard Deviation') 662 
xlabel('Mean O2 Saturation (%)') 663 
ylabel('Standard Deviation of O2 Saturation') 664 
[r1,p1] = corrcoef(m,s) 665 
  666 
subplot(1,2,2) 667 
scatter(m,sam, 'ko') 668 
axis square 669 
title('Sample Entropy') 670 
xlabel('Mean O2 Saturation (%)') 671 
ylabel('Sample Entropy of O2 Saturation') 672 
[r2,p2] = corrcoef(m,sam) 673 
  674 
  675 
 676 
 677 
 678 
 679 
  680 
 681 

 682 

 683 

 684 


