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ABSTRACT  

Enzalutamide (MDV3100) is a potent second-generation androgen receptor antagonist approved for 

the treatment of castration-resistant prostate cancer (CRPC) in chemotherapy-naïve as well as in 

patients previously exposed to chemotherapy. However, resistance to enzalutamide and 

enzalutamide withdrawal syndrome have been reported. Thus, reliable and integrated preclinical 

models are required to elucidate the mechanisms of resistance and to assess therapeutic settings that 

may delay or prevent the onset of resistance.  

In this study, the prostate cancer (PCa) multistage murine model TRAMP and TRAMP-derived 

cells have been used to extensively characterize in vitro and in vivo the response and resistance to 

enzalutamide. The therapeutic profile as well as the resistance onset were characterized and a 

multiscale stochastic mathematical model was proposed to link the in vitro and in vivo evolution of 

PCa. The model showed that all therapeutic strategies that use enzalutamide result in the onset of 

resistance. The model also showed that combination therapies can delay the onset of resistance to 

enzalutamide, and in the best scenario, can eliminate the disease. These results set the basis for the 

exploitation of this "TRAMP-based platform" to test novel therapeutic approaches and build further 

mathematical models of combination therapies to treat PCa and CRPC. 

 

Significance:     

Merging mathematical modeling with experimental data, this study presents the "TRAMP-based 

platform" as a novel experimental tool to study the in vitro and in vivo evolution of prostate cancer 

resistance to enzalutamide. 

 

 

 



INTRODUCTION  

Prostate cancer (PCa) represents a leading cause of death in the male population with around 

180,890 new cases and 26,120 estimated deaths in the United States in 2016 [1].  

Prostate development and PCa are androgen-dependent physiological and pathological contexts 

where Androgen Receptor (AR), acting as a ligand-dependent transcription factor [2], can initiate 

expression of genes controlling the balance between cell differentiation and proliferation. The 

prostatic epithelial AR signaling axis is a key regulator for the functionality, survival and 

differentiation of normal prostate [3]. In contrast, during carcinogenesis and prostate 

transformation, AR axis shifts toward a proliferative and tumor promoting gene set [4] due to 

aberrant activation by androgens, AR mutations/amplification, or changes in co-regulators 

interactions as well as signal pathways that activate AR activity at very low levels of androgen [5]. 

It is therefore crucial to inhibit androgen signaling either by depriving the tumor from androgens or 

by blocking the receptor activity.  

To date, the androgen deprivation therapy (ADT) represents the standard care for the treatment of 

advanced PCa. Even though the suppression of androgens/AR functions is an effective treatment for 

most prostate cancer patients [6], clinical studies show that most prostate tumors regrow after a 

median duration of response of 12–24 months under continuous ADT and progress to what is 

termed as castration-resistance prostate cancer (CRPC) with an average survival of 2-3 years [7]. 

Although CRPC should be no longer controlled by androgen suppression, the clinical development 

of second-generation AR antagonists, which display higher affinity for the receptor as well as good 

efficacy as AR signaling inhibitor, has proven that the AR remains a critical oncogene in CRPC [8].  

Indeed, preclinical evidence suggests that AR overexpression confers resistance to ADT in vitro [9], 

and that intra-tumoral levels of androgens are increased in patients with progressive PCa [10].  

Enzalutamide (MDV3100, Xtandi®) is a non-steroidal second-generation AR inhibitor that 

competitively binds to the ligand-binding domain of the AR with higher affinity than conventional 

anti-androgens, impairs AR translocation to the nucleus, recruitment of cofactors, and binding to 



DNA [11]. Enzalutamide has been associated with significant benefits in terms of prolonged 

survival in CRPC [12], although patients eventually experience disease progression. The 

mechanisms that underlie this resistance have not yet been clarified, and could be either dependent 

or independent from AR activity [13]. 

Many preclinical models of prostate cancer, mainly consisting of human or murine cell lines, are 

routinely used to assess the effect of different therapeutic approaches. However, none of these 

models fully recapitulates all the parameters of PCa progression in human disease, including 

formation of initial hyperplasia, intraepithelial neoplasia (PIN), adenocarcinoma, metastasis and 

recurrence from androgen deprivation therapy [14]. All these features of tumor onset and 

progression have been described in TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) 

mice [15], a multistage prostate cancer model where the androgen-responsive rat probasin (rPB) 

gene promoter drives the prostate specific expression of the SV40-Tag. Prostate cancer in TRAMP 

mice mimics the development of human PCa, and transiently regresses following androgen 

withdrawal (e.g., by castration), but relapses as fatal androgen-independent PCa similar to what is 

commonly observed in men [16].  

In this study, we characterized the response of TRAMP mouse as well as of TRAMP mouse-derived 

TRAMP-C2 cells to enzalutamide in vitro and in vivo, by generating in vitro enzalutamide-resistant 

TRAMP-C2 cells and by defining in vivo the therapeutic and relapse profile of enzalutamide in the 

multistage TRAMP model. The experimental evidence, together with the collected data, allowed the 

realization of a mathematical model that, for the first time, well describes the response and relapse 

to enzalutamide during tumor progression.  The model suggested that resistant cells have a higher 

fitness than sensitive cells, and that the slow growth of resistant cells observed in vitro is 

compensated by their higher efficiency to grow under oxygen and glucose deprived conditions 

when in vivo. Finally, in silico experiments revealed that, regardless of time and/or treatment 

schedule, resistant cells take over, and combination treatments are required to delay tumor relapse.  

 



 

MATERIALS AND METHODS  

Cell lines. Murine prostate adenocarcinoma TRAMP-C2 cells were obtained from ATCC-LGC 

Standards Repository (ATCC number CRL-2731) and maintained in DMEM supplemented with 

10% heat inactivated fetal calf serum (FCS), 10 mM HEPES Buffer, 0.5 mM 2-mercaptoethanol, 

2.0 mM glutamine, 5 mg/L bovine insulin (Sigma-Aldrich) and 10 nM DHT. Cells were kept at low 

passage, returning to original frozen stocks every 3 to 4 months, and tested regularly for 

Mycoplasma negativity and morphology. Enzalutamide-resistant TRAMP-C2 cell line was 

generated culturing parental cells under increasing concentrations of enzalutamide (from 3µM up to 

40µM) and maintaining the highest concentration up to 6 months. To verify the acquisition of 

resistant phenotype three parameters have been considered: 1) sensitivity to an acute treatment with 

enzalutamide via flow cytometry; 2) gene expression of castration resistant state biomarkers via 

PCR analysis; 3) metabolomics and extracellular flux analyses via NMR spectroscopy and Seahorse 

platform (see Supplementary Material and Methods). To exclude senescence related effects, a 

parental cell line, has been cultured in parallel with the same passage number to test the above 

parameters.  

 

Cell proliferation assay. TRAMP-C2 cells were seeded in 48-well plates at 25,000 cells/cm2 and 

treated with increasing concentrations (5-100µM) of enzalutamide (MDV3100 - Selleckchem). 

Cells were cultured under appropriate conditions for 96 hours. Propidium iodide staining 

(Immunostep, Salamanca, SP, EU) was used to detect PI- viable cells by flow cytometry. Absolute 

cell counts were obtained by the counting function of the MACSQuant Analyzer (Miltenyi Biotec). 

 

Western Blot analysis. Cell samples were washed in cold PBS and homogenized in RIPA buffer 

containing 1% Triton-X100, 0.2% BriJ, 1 mM sodium orthovanadate and protease inhibitors 

cocktail. Protein concentrations were determined using the Bradford protein assay (Bio-Rad 



Laboratories, Milano, Italy). Blotting analysis was performed using anti-AR, anti-phospho STAT3 

and anti-STAT3 antibodies (Santa Cruz Biotechnology); anti-phospho Akt, anti-phospho ERK1/2 

(Cell Signaling).  To normalize the amount of loaded proteins, all blots were probed with anti–

Tubulin antibody (Sigma). 

 

Heterotopic tumor model. Animal experiments were approved by the local animal ethics 

committee (OPBA, Organismo Preposto al Benessere degli Animali, Università degli Studi di 

Brescia, Italy) and were performed in accordance with national guidelines and regulations. Nine 

week-old C57BL/6 male mice were injected s.c. with 5x106 TRAMP-C2 cells in 200 µl total 

volume of PBS into the dorsolateral flank. When tumors were palpable (~80mm3), mice were 

divided in two groups and treated or not with enzalutamide (3 mg/kg) in the drinking water. 

Treatments with everolimus (1 mg/kg) were performed every other day i.p., and with cabazitaxel 

(15 mg/kg) i.p. every two weeks. Tumors were measured in two dimensions and tumor volume was 

calculated according to the formula V=(D x d2)/2, where D and d are the major and minor 

perpendicular tumor diameters, respectively [17]. At the end of the experimental procedure tumors 

were removed, weighted and processed for histological analyses. 

 

In vivo treatment of TRAMP mice. TRAMP mice (C57BL/6-Tg(TRAMP)8247Ng/J) [18] were 

purchased from The Jackson Laboratory (Bar Harbor, ME, USA), bred crossing homozygous 

females with C57BL/6J wild type males and heterozygous TRAMP males were used for 

experimental procedures. Treatment was carried out adding enzalutamide (3 mg/kg) in the drinking 

water and treated or untreated mice were sacrificed at different time points, as indicated in the 

Results section, to collect the genitourinary apparatus that was weighted and prepared for histology. 

Treatment with cabazitaxel (15 mg/kg) was performed i.p. every two weeks. 

 



Murine prostate histopathological analysis. The genitourinary apparatus was removed from wild-

type or TRAMP male mice (treated or not with enzalutamide) at different ages, formalin-fixed and 

paraffin-embedded. Anterior prostate samples were sectioned at a thickness of 7µm, dewaxed, 

hydrated, and stained with hematoxylin and eosin (H&E) or processed for immunohistochemistry. 

Sections stained with H&E were evaluated for specific histological abnormalities. The full prostate 

section was acquired at 20x magnification with a Zeiss Axiovert 200M microscope (Carl Zeiss, 

Milan, Italy, EU) using the “Mosaic Tool” and the quantification of the pathological areas was 

performed with the AxioVision LE64 software. Also, the number of pathological adenomeres was 

determined and pathological areas were graded as described [19]. 

For the Immunohistochemical analysis, prostate sections were incubated with rat anti-mouse Ki67 

antibodies (Dako, Milano, Italy, EU). Positive signal was revealed by 3,3'-diaminibenzidine 

(Roche) staining. Sections were finally counterstained with Mayer’s hematoxylin before analysis by 

light microscopy. Images were acquired at 10x magnification with a Zeiss Axiovert 200M 

microscope and Image analysis was carried out using the ImagePro Plus software.  

 

Statistical analyses. Statistical analyses were performed using the statistical package Prism 5 

(GraphPad Software). Student’s t test for unpaired data (2-tailed) was used to test the probability of 

significant differences between two groups of samples. Tumor volume data were statistically 

analyzed with a 2-way analysis of variance, and individual group comparisons were evaluated by 

the Bonferroni correction. Differences were considered significant when P < 0.05.	

 

Formulation and parameterization of the Mathematical model. 

The multiscale stochastic mathematical model presented in the quick guide describes PCa tumor 

cells dynamics in vivo and their response to treatment with enzalutamide.  Drug resistance is a well-

known issue in cancer patients’ treatment, and in the last few years, many mathematical models 

have been proposed to fully understand the dynamics of the resistance and to find effective 



therapeutic strategies to overcome it [20-22].  Recent experimental evidence suggests that tumor 

heterogeneity, tumor microenvironment and the ability of tumor cells to adapt to targeted therapy 

play a key role in the phenomenon of drug resistance [20, 23]. One of the consequences of 

heterogeneity is that within the same tumor there will be cells which are sensitive to drug therapy 

while others exhibit resistance to it [23], with this in mind we assumed that sensitive cells can 

undergo asymmetric cell division, resulting in resistant daughter cells. The development of the 

model was strongly led and supported by the experiments.  To link the in vitro and in vivo results 

we incorporated the dynamics of the local tumor microenvironment, and how it affects the fitness of 

sensitive and resistant tumor cells. This was done by adapting previously developed spatial models 

of tumor growth [24, 25]. Values of cell-growth related parameters were obtained through the 

fitting of the experimental data. The nonlinear regression of data from the cell proliferation assay 

provided the values for the maximum growth rate coefficients of sensitive and resistant cells 

respectively, r1=0.048 ± 0.009 hr-1 and r2=0.038 ± 0.003 hr-1 (Supplementary Mathematical Model). 

The inhibition parameters b1 = 0.064 ± 0.008 µM-1, b2 = 0.34 ± 0.3 and a2 = 5.63 ± 5 µM were 

estimated with data from the experiments on the effect of different concentrations of enzalutamide 

on cell growth in starving conditions (Supplementary Mathematical Model). The empiric function 

proposed by Casciari et al. [24] to describe the impact of nutrients (oxygen and glucose) and pH on 

cell growth was used as it is. Although, the parameters representing the maximum environmental 

inhibition (C0i, i=1,2) on cell growth were calibrated from fitting the in vivo cell growth data. 

Independent experiments showed that based on the concentration of enzalutamide in the 

environment, sensitive cells mutate into resistant cells and that the mutation is reversible. Such a 

phenomenon was modeled following the approach by Portz et al. [26] for the case of PCa cells 

treated with androgen deprivation therapies. Estimates of parameter values were obtained using 

independent experimental data (Supplementary Table S1). The equation for the pharmacokinetic of 

enzalutamide follows the one proposed by Sun et al. [22] for the dynamics of absorption, 

metabolism and elimination of a generic drug from the body.  When the experiments were not 



available the parameter values were collected from previous suitable studies [22, 24, 25].  More 

details on the parameterization can be found in the file Supplementary Mathematical Model.  



RESULTS 

Quick Guide to Equations and Assumptions. 

Here we present a system of five stochastic differential equations that describe the interaction 

between heterogeneous cancer cell populations, the pharmacokinetics of the administered drug and 

the dynamics of the tumor microenvironment. The development of the system is based on in vivo 

experiments on TRAMP mice, and in vitro experiments on TRAMP-C2 cells growing in a Petri 

dish. Most of the ideas presented in this model have been adapted from previous works on human 

PCa development [22, 27], and prostate tumor in TRAMP mice by Ibrahim-Hashim [25] and Picco 

[28].   

The model describes the growth of two populations of cancer cells: a drug sensitive population (S),  
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and a drug resistant population (R) [22, 28] 
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The growth of drug-sensitive and -resistant cells are represented by the first term of equation (E.1) 

and (E.2), respectively. The two tumor cell populations follow a logistic growth with K being the 

shared carrying capacity, and $% and $+ the growth rate coefficients of each cell type.  Cell 

proliferation is assumed to be dependent on oxygen and pH levels. At this purpose the empiric 

function proposed by Casciari et al. [24] was adapted and used to model the parameters  $% and $+: 
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The function fi assumes values in [0,1]	and represents the fraction of maximum growth that cells 

can achieve given a specific set of conditions. T_  (j=o, h) and n are empirical parameters, while the 

variables Q and H are respectively the oxygen and hydrogen ion concentration.   

The growth of the sensitive type cells is also assumed to be asymmetric, i.e., S cells can randomly 

divide into drug-resistant cells, with rate g.  As suggested by the in vitro experiments the 

administered drug induces death in both populations with different inhibition laws.  Following 

treatment, the drug-sensitive cells undergo drug-induced death following a mass action law with 

maximal death rate 45. On the other hand, drug-resistant cells undergo drug-induced death 

following drug administration too, but in this case the dependence of the death rate on the drug 

concentration (E) follows a Michaelis-Menten law, with 4O representing the maximal death rate, 

and `O representing the drug concentration at which the inhibition effect is half of its maximum 

(4O).  The presence of enzalutamide triggers a selective pressure on sensitive cells that consequently 

develop resistance to the drug with a rate ;+, e.g. through epigenetic mutations. The phenomenon is 

reversible and in an environment with a low or no enzalutamide concentration, resistant cells 

convert to sensitive cells with a rate ;%. In this last case S cells will likely stay sensitive.  The 

mutation rates take the form of Hill equations [26] with 

;% = 	
Ja	@a
@a*N

  and ;+ = 	
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 . 

The R to S mutation rate, ;%, is assumed to be an increasing function of enzalutamide. The higher 

the drug concentration is in the environment the more cells developing resistance following 

selective pressure. On the other hand, the S to R mutation rate, ;+, is assumed to be a decreasing 

function of the drug concentration, that is, the less enzalutamide is in the environment the more R 

cells will mutate into sensitive type cells.  Both sensitive and resistant cells die with rate µ. The last 

diffusion terms in both equation (E.1) and (E.2) represent a standard Brownian motion, or standard 

Wiener process, which models the stochastic fluctuation of cell numbers. The Wiener process is 



described by the normally distributed random variable W(t), with mean zero and variance ∆t.  The 

parameters C9 (i = 1, 2) represent the diffusion rates. 

The dynamics of enzalutamide concentration in the body is represented by the following equation 
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The drug degrades with a maximum rate h and is delivered with a time dependent rate V(t) defined 

by the therapy. As for the populations, also in this case a Wiener process describes the stochasticity 

of the system [29]. 

This model represents the metabolic behaviour of the cells as dependent on the micro-

environmental conditions, which are described by the two diffusible variables: oxygen (O) and 

extracellular pH modeled in terms of hydrogen ion concentration (H).  The drift functions for O and 

H are those suggested by Ibrahim-Hashim et al. [25] and Robertson-Tessi et al. [30].  A constant 

oxygen input is assumed to feed the extracellular (considered equal to intracellular) oxygen 

concentration at any time.  
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Maximum oxygen consumption rates, V01 and V02 are characteristic of the cell type, sensitive and 

resistant cells respectively. According to Robertson-Tessi et al. proton dynamics depends on the 

amount of anaerobic glycolysis. A parameter n.  characterizes the cell type. Normal cells using an 

aerobic glycolysis would have n. = 1, while for tumor cells n. > 1 indicating that more glucose 

would be used to meet ATP demand. The normal target of ATP production rate is given by Op
q
gU5. 
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As in equations (E.1), (E.2) and (E.3), also in equations (E.4), and (E.5) D9 are Wiener processes 

with C9 (i = 4, 5) representing the diffusion rates. 

Additional equations and parameterization details are reported in the Supplementary Mathematical 

Model. 

 

Enzalutamide impairs murine prostate cancer cell growth in vitro and in vivo. 

TRAMP-C2 cells represent a prototypic murine androgen-dependent prostate cancer cell line 

derived from the multistage TRAMP mouse model. As shown in Figure 1A, a 4-day treatment with 

increasing concentrations of enzalutamide strongly reduced cell proliferation, with an IC50 ~24µM, 

with no induction of cell death (Supplementary Figure S1). Western blot analysis revealed that the 

proliferative impairment is accompanied by reduction of STAT3, AKT and ERK1/2 activation 

(Figure 1B). In agreement with other studies performed in human PCa cells [31], no significant 

reduction in AR protein levels was detectable after four days of treatment with enzalutamide 

(Figure 1B). 

To further assess the therapeutic potential of enzalutamide in vivo, TRAMP-C2 cells were injected 

subcutaneously in syngeneic male mice. When tumors reached a size equal to ~80mm3, mice were 

treated or not with 3 mg/kg of enzalutamide in the drinking water. As shown in Figure 1C-D, 

treatment with enzalutamide significantly delayed and reduced tumor volume, resulting in an 

impairment of tumor growth when compared to the control group. 

 

Enzalutamide delays tumor onset and progression in TRAMP mice. 

In the C57BL/6 background of the multistage TRAMP model, the age-dependent transformation of 

the prostate starts at 8-10 weeks with prostatic intraepithelial neoplasia (PIN) and progresses to well 

differentiated carcinoma and poorly differentiated adenocarcinoma [32]. The therapeutic potential 

of enzalutamide was tested in the TRAMP model by treating mice with 3 mg/kg of enzalutamide in 



the drinking water starting from 12 weeks of age, when tumor onset has already started. Then, 

animals were examined for prostate tumor growth at 18, 22, 25 and 30 weeks. 

As shown in Figure 2A, the weight of the genitourinary (GU) apparatus of TRAMP mice increases 

over time following tumor progression, reflecting tumor burden and organ oversizing/impairment. 

In enzalutamide-treated mice, the GU weight remains similar to that measured in healthy/wild type 

(WT) mice up to 22 weeks of age, starting to increase from week 25 and reaching the weight of the 

untreated TRAMP group at week 30.  

Figure 2B shows representative H&E pictures of anterior prostate sections from wild-type (WT), 

TRAMP and enzalutamide-treated TRAMP mice at 18, 25 and 30 weeks. As described, the anterior 

prostate of WT mice has a normal morphology with alveolar gland lined by cubic epithelium with 

finger-like projections and the cells containing typically central nuclei. At variance, we observed a 

progressive increase of pathological areas in TRAMP mice, characterized by neoplastic 

proliferation of epithelial cells with nuclear atypia (hyperchromatic elongated nuclei or 

heterochromatic round nuclei). Indeed, smallest cells appear in several layers, they tend to occupy 

the gland lumen, even though at this stage the glandular architecture is still present.  

In keeping with variations in the weight of the GU apparatus, histopathological analysis of the 

anterior prostate lobes revealed that the percentage of total pathological areas in untreated TRAMP 

mice increases from (17.4 ± 2.0)% at 12 weeks to (38.0 ± 3.9)% and (53.2 ± 3.7)% at 22 and 30 

weeks of age, respectively (Figure 2C). This was paralleled by a decrease of normal/healthy (NH) 

prostatic tissue, an increase of PIN areas until week 22 and of well-differentiated (WD) carcinoma 

areas up to week 30 (Figure 2D). At variance, the percentage of total, PIN and WD pathological 

areas remains stable in the enzalutamide-treated TRAMP group at 18 and 22 weeks, to increase 

significantly thereafter (Figure 2C-D).  

The early anti-tumor effect of enzalutamide observed at 18 weeks and the subsequent progressive 

transformation of TRAMP prostate occurring at week 25 was confirmed by the increase of 

proliferating/Ki67+ areas in enzalutamide-treated 25-week old mice (Figure 2E). Together, these 



data indicate that the inhibitory effect exerted by enzalutamide on TRAMP tumor progression is 

progressively lost from week 25 onward.  

 

Model prediction of tumor kinetics and onset of resistance following enzalutamide treatments. 

The in vitro and in vivo data where used to develop the mathematical model described in the quick 

guide, and allowed investigating the dynamics of sensitive (S) and resistant (R) cells in silico with 

and without enzalutamide treatment.  

As shown in Figure 3, the percentage of pathological area in the prostate of TRAMP mice (scattered 

dots) differently develops with time, in absence (A) and in presence (B) of enzalutamide continuous 

treatment. The mathematical model (blue continuous lines with 95% CI – orange and green 

continuous lines) recapitulates tumor growth, for instance ~94% of experimental observations fall 

in the 99.8% of the model simulations. The percentage of pathological area was calculated 

assuming that the maximum was reached at a volume of 1000 mm3. The value was calculated from 

the estimated carrying capacity, K, by assuming a standard deviation of approximately 20% of K. 

Moreover, in silico prediction of the time course of tumor distributions show that the tumor 

increases constantly in time in the absence of treatment. From week 22, the tumor distribution 

reaches its maximum at around 500/600 mm3 (Figure 3C). In the presence of enzalutamide 

treatment, the distribution is almost unchanged between week 12 and week 22, with a slight 

improvement at 18 weeks. However, the distribution shows that the tumor volume starts to increase 

at week 25 to continue in the following weeks (Figure 3D). Such behavior reflects the experimental 

evidence shown in Figure 2B.  

The model suggests that untreated/control tumors are dominated by the growth dynamics of S cells, 

while enzalutamide-treated tumors are dominated by the switch from S to R cells and consequently 

by the dynamics of R cells.  

Drug-induced mutation/transition, in the absence and in the presence of enzalutamide, is shown in 

terms of the dynamics of the proportion of S and R cells (dotted and continuous lines, respectively 



in Figure 4A-B and in Supplementary Figure S2). On the contrary, in the presence of enzalutamide 

(Figure 4B), R cells arise and become the dominant population soon after the beginning of the 

treatment. This is explained by the fact that the inhospitable tumor microenvironment is 

characterized by increased acidity (with the pH varying from an initial value of 7.2 to a value in the 

range of 6.5 to 7.0), and a sensible decrease in oxygen (minimum 1.5%) while S cells invade the 

prostate (Supplementary Figure S3). In this more hostile context, drug-resistant cells have a fitness 

advantage when compared to their drug-sensitive parental cells, and this is not only due to the drug 

sensitivity and/or to the different mechanisms by which the drug acts on the cells, but also to the 

more effective way R cells respond to hypoxia and acidosis. Indeed, the reduction in growth of the 

R cells in the inhospitable environment is in fact less than half the reduction calculated for S cells.   

In the attempt to find a “therapeutic window”, our model was applied to evaluate in silico the 

cellular response to different treatment schedules with enzalutamide. The main aim was to decrease 

the number of S cells while avoiding the emergence of R cells. Three in silico experiments were 

performed, varying the dose and timing of enzalutamide administration, with no significant 

improvement in the therapeutic outcome (Figure 4C-E). In most of the conditions evaluated it was 

possible to control the growth of S cells, but not relevant effect was observed in the emergence of R 

cells that will dominate tumor growth (Figure 4C-E). A possible explanation is that even though 

high levels of enzalutamide are able to kill S cells, they cause a strong “metagenetic” response, with 

S cells mutating into the R type, which is capable of proliferating despite the adverse environmental 

conditions.  In silico experiments also showed that, due to the heterogeneous nature of cancer cells, 

which implies that cells might develop some kind of resistance even in absence of enzalutamide, the 

use of lower levels of enzalutamide will not prevent the appearance of high fitness resistant cells 

and tumor relapse. 

 

Enzalutamide-resistant TRAMP-C2 cells show CRPC markers and metabolic fitness 



In order to mimic and better understand the emergence of enzalutamide resistance in vivo, we 

generated an enzalutamide-resistant cell line by culturing TRAMP-C2 cells in media gradually 

enriched with increasing concentrations of the drug (from 3µM to 40µM) up to 6 months. These 

resistant cells did not show morphological changes when compared to their aged-matched parental 

cells (Figure 5A). As evidence of the acquisition of enzalutamide-resistance features, qPCR analysis 

revealed a significant up-regulation of full-length AR mRNA and a strong down-modulation of 

TMEFF2 [33] and TMPRSS2 [34], two crucial modulators of the castration-resistant status in PCa 

[35] (Figure 5B). These data suggest that TRAMP-C2 cells efficiently overcome the ligand 

deficiency conferred by long-term enzalutamide treatment by elevating AR levels and decreasing 

androgen-dependent genes exerting anti-proliferative effects. Accordingly, enzalutamide-resistant 

TRAMP-C2 cells showed an increased IC50 (83µM) following an acute enzalutamide treatment 

when compared to aged-matched parental cells IC50 (24µM) (Figure 5C).  

The in vitro characterization of enzalutamide-resistant TRAMP-C2 revealed that these cells were 

endowed with a reduced proliferative rate compared with their parental counterpart (Supplementary 

Mathematical Model). On the other hand, the mathematical model suggested that R cells appear to 

be much more efficient in dealing with oxygen deprived and lower pH conditions when grown in 

vivo, showing a higher fitness than S cells.  For this reason, we further characterized enzalutamide-

treated cells by measuring their main metabolic pathways with Seahorse analyzer. In particular, 

mitochondrial oxidative phosphorylation and glycolysis were measured simultaneously via OCR 

(oxygen consumption rate) and ECAR (extracellular acidification rate). The energy map based on 

extracellular flux analysis (Figure 5D) showed that enzalutamide-resistant cells have altered 

mitochondrial bioenergetics as indicated by reduction of oxidative phosphorylation and a distinct 

acidic phenotype, as indicated by their increased glycolysis capacity.  

These findings are in keeping with the NMR-based metabolomics analysis that revealed 

conspicuous differences in metabolic profile between enzalutamide-resistant cells and their parental 

aged-matched cells (Figure 5E). Spectra acquisition show some hydrophilic signals commonly 



identified as hallmark of castration resistant cell secretion, such as pyruvate and lactate, highly up 

regulated in resistant cells and indicating high glucose consumption (enhanced glycolysis) and 

hyper-acidosis. Metabolite analysis in resistant cells also indicated a lower ATP production and 

augmented levels of alanine, glycine, and other amino acids, indicating propensity in synthesizing 

amino acids. Moreover, the levels of several substrates used in TCA cycle by different mitochondria 

complexes, such as glutamate and succinate, were up regulated in resistant cells, thus indicating a 

reduced use of oxidative phosphorylation to produce energy in this phenotype. 

Overall, these data were consistent with the topology-based pathway analysis, which indicated the 

metabolic networks potentially affected during the transition of TRAMP-C2 cells from an 

enzalutamide-sensitive to a resistant phenotype. As shown in Figure 5F, the most impacted 

metabolic pathways were related to alanine, aspartate and glutamate metabolism as specified by the 

volume and the color of the spheres (yellow, least relevant; red, most relevant) according to their 

statistical relevance P and impact value.  

 

Model prediction and evaluation of enzalutamide-based combination therapies. 

In order to overcome resistance to enzalutamide treatment we implemented the mathematical model 

to evaluate the effect of two clinically relevant drugs: everolimus, an mTOR inhibitor currently in 

clinical trial in combination with second-generation AR inhibitors [36], and cabazitaxel, a next-

generation taxane approved for the treatment of metastatic CRPC in patients previously treated with 

docetaxel [37]. In vitro proliferation assays performed on parental and enzalutamide-resistant 

TRAMP-C2 cells were used to determine the IC50 and the dose response of both everolimus and 

cabazitaxel alone or in combination with enzalutamide (Figure 6A-D). 

These data were used for the parametrization of the enriched mathematical model where both the 

equations of the new-drugs pharmacokinetic, and the interaction between enzalutamide and the two 

new drugs were considered (details in the Supplementary Mathematical Model). The model was run 

for the simulation of in vivo tumor growth under treatment with enzalutamide, everolimus and 



cabazitaxel. The parameterization concerned the new functions and equations, while all other 

parameters stayed as previously evaluated.  As shown in Figure 6E-F, treatment with enzalutamide 

plus cabazitaxel was expected to have a higher impact in delaying tumor growth, resulting in 

smaller tumors at the latest volume point considered for the simulation (>70 days). 

We therefore validated the in silico drug combination to overcome the resistance to enzalutamide in 

vivo. An in vivo challenge on s.c. injected TRAMP-C2 cells confirmed that treatment with 

everolimus alone or in combination with enzalutamide resulted in no significant improvement in 

terms of anti-tumor activity when compared with enzalutamide given as single agent (Figure 7A). 

Interestingly, in agreement with the stochastic model simulation, treatment with cabazitaxel alone 

significantly delayed tumor growth when compared with enzalutamide, and the combination 

enzalutamide plus cabazitaxel emerged as the most effective therapeutic setting (Figure 7B).  

As a proof of concept, the experimental tumor growth curves (represented by dots in Figure 6E-F) 

fall into the confidence intervals of the simulation in both combination treatments, revealing and 

confirming that enzalutamide plus cabazitaxel represents the best performing approach able to 

longer control tumor growth. 

Prompted by the encouraging result obtained in silico and in vivo, we also run the simulation on the 

multistage tumor growth of TRAMP mice to predict the impact of the treatment on the evolution of 

the pathology. The model suggested that an in vivo enzalutamide plus cabazitaxel therapy would be 

successful in eliminating the tumor within 40 weeks (Figure 7C and Supplementary Figure S4).  On 

this basis, TRAMP mice were treated with enzalutamide and cabazitaxel in single or combination 

regimens. As shown in Figure 7D, the enzalutamide plus cabazitaxel therapy exerted a significant 

impact on tumor growth, as assessed at the later time point considered (30 weeks), compared to 

single agent treatment. Accordingly, histopathological analysis (and GU/body weight ratio; 

Supplementary Figure S5) confirmed a significant impact of the combination regimen on tumor 

progression, resulting in very low (or no) pathological areas at the end of the experimental 

procedure (Figure 7D).  Finally, a sensitivity analysis performed on several parameters revealed 



that, depending on the considered drug combination, the system’s behavior is more robust, in terms 

of the effect of the drug interaction, on either R or S cells. For each of the two introduced drugs the 

sensitive parameters would mostly refer to only one of the two phenotypes, and particularly to S 

cells for cabazitaxel and to R cells for everolimus (see Supplementary Figure S5 and Supplementary 

Mathematical Model).   



DISCUSSION 

As a leading cause of morbidity and mortality in men, prostate cancer has been widely studied and 

characterized in preclinical settings in order to bring therapeutic benefits to patients. Despite a first 

line response to canonical ADT and other new treatments, androgen independent tumors arise 

frequently with bad prognosis and poor therapeutic alternatives.  

In this study, we characterized the full-time course of prostate tumors in response to enzalutamide 

taking advantage of the genetic murine TRAMP multistage model of PCa and related TRAMP-C2 

cells in vitro and in vivo. Treatment with enzalutamide shows a significant effect on TRAMP-C2 

cells both when cultured in vitro and when injected subcutaneously in syngeneic mice. Moreover, 

the therapeutic profile of enzalutamide-treated multistage TRAMP mice reveals that tumor 

progression is initially arrested for a significant time period (up to week 22 of age), when the 

percentage of pathological areas measured in the anterior prostate lobe is similar to that detectable 

in untreated TRAMP animals at week 12. Mirroring what happens in the clinics [13], long term 

administration of the drug resulted in the generation of enzalutamide-resistant TRAMP-C2 cells in 

vitro, and in the occurrence of tumor relapse both in subcutaneous TRAMP-C2 grafts and in 

multistage TRAMP mice in vivo. Indeed, TRAMP-C2 tumors start growing in vivo after a 

significant first line response. The amount of pathological areas in the prostate of TRAMP mice 

starts to increase at week 25, which represents the main “relapse time point” to be considered in 

enzalutamide-treatment experiments.  

In a translational perspective, these TRAMP-integrated models represent a potential syngeneic 

platform to investigate the evolution of a therapeutic response to PCa and CRPC. Initial success and 

relapse are anticipated outcomes that resemble the clinical setting of PCa during its treatment. 

Different mechanisms have been found to be responsible for tumor progression after treatment with 

enzalutamide in murine and human models [38, 39]. AR alterations leading to androgen-

independent activation, such as the AR-V7 variant [40] and the F876L mutant [41], have been 

identified and characterized in patients with progressive disease. Increase of glucocorticoid receptor 



and transcription factors involved in the regulation of epithelial to mesenchymal transition (i.e. 

Twist and Snail) have also been described in human PCa cells treated with enzalutamide [42, 43]. 

Other bypassing mechanisms, including activation of PI3K/AKT pathway [44], increase of intra-

tumor androgen biosynthesis through overexpression of AKR1C3 [45], or neuroendocrine/lineage 

switching following TP53 and RB1 alterations [46] have been associated with resistance to 

enzalutamide. 

Notably, independently of the specific mechanism leading to resistance, in this work all data 

collected during in vitro and in vivo experiments were used for the first time to build a solid 

parametrization of growth conditions of PCa cells in the presence or absence of the therapeutic 

drug. Mathematical modeling of tumor behavior represents a seldom exploited, but extremely 

powerful and promising approach to investigate, and possibly predict, cancer ongoing and response 

in preclinical and clinical settings [47]. Studies conducted on PCa, colorectal and ovarian cancer 

(just to mention some of them) proved that by integrating empirical data with a mathematical 

framework of tumor growth it is possible to gain insights into the dynamics of intratumoral 

evolution [25, 26]; predict the effect of different combinations of drugs on patient survival rate [22, 

48]; forecast the progression of the disease and develop personal adaptive therapeutic strategies 

[49]; and understand what strategies will be the most effective ones in controlling tumor growth 

[50]. 

Here, the mathematical analysis of tumor response describes how the number of drug-sensitive cells 

in pathological prostate adenomers decreases over time under enzalutamide-treatment conditions, 

while resistant cells outgrow and emerge as the predominant population. The numerical simulation 

nicely shows that this tendency is maintained over time in a high number (up to 1000) of 

realizations of the model, and regardless of the treatment schedule. Despite its first line efficacy, an 

enzalutamide-resistant cell subpopulation emerges and will emerge under different conditions.  The 

mathematical model also shows how even if resistant cells exhibit a low rate of growth in vitro, they 

display a much higher fitness than their sensitive parental cells when grown in vivo under 



suboptimal nutrient and pH conditions. This agrees with the major metabolic perturbations in amino 

acid metabolism and sugar-associated pathways observed in enzalutamide-resistant cells. In 

particular, resistant cells are endowed with increased levels of glutamate, succinate, alanine, 

glycine, taurine, pyruvate and lactate, while other metabolites, such as glutathione, UDP-N-

acetylglucosamine and ATP, were down regulated in respect to their aged-matched parental cells. 

Moreover, the implementation of the stochastic model allowed the evaluation of combination 

strategies aimed to overcome resistance or to improve the therapeutic profile/response. As a proof 

of concept, clinically relevant drugs (i.e. everolimus and cabazitaxel) resulted in different benefits 

in terms of anti-tumor activity, when combined with enzalutamide, and the mathematical simulation 

nicely predicted these experimental findings. For instance, in accordance with recently published 

clinical data, cabazitaxel alone showed a promising therapeutic profile [37], and the still unexplored 

combination enzalutamide plus cabazitaxel resulted as the best therapeutic setting to prolong 

survival and impact on tumor growth on both s.c. and multistage PCa models.  

Interestingly, the interpretation of the sensitivity analysis results revealed that in combined 

treatments with enzalutamide (and bona fide with other drug candidates) the most sensitive 

parameters, which decide the outcome of the tumor growth, are the drug administered dose and the 

parameters representing the efficacy of the drug combination on either cell phenotype. Moreover, 

what emerged from this study is that no single parameter is reliably able to predict combination 

effects, and that to predict the therapeutic effect or the delay of tumor relapse it is necessary to 

focus on the combined effect of the interacting drugs (i.e. enzalutamide-cabazitaxel) on resistant 

cells. This aspect is of crucial importance and should be considered to screen and evaluate candidate 

drugs to be associated with enzalutamide or other first line therapies for the treatment of PCa and 

CRPC.  

In conclusion, we implemented an integrated syngeneic “TRAMP-based platform” (see Graphical 

Abstract), widely exploited as a useful model to study PCa, by generating in vitro and in vivo 

enzalutamide-resistant cells, and by describing the evolution of PCa in response to second-



generation AR signaling blocker with a stochastic multiscale mathematical model. The outcome 

represents a powerful tool to test and validate new drugs to be used in combination with 

enzalutamide for the treatment of PCa and CRPC. The mathematical model described in this work 

can be used effectively to predict and validate the response of new drugs in PCa as well as to 

envision combination treatments following collection of new in vitro and in vivo evidence. Also, 

following existing approaches [22] the model can be easily integrated to account for the dynamics 

of multiple drugs and of metastatic cells.  Once again, this study confirms that combination 

therapies remain the unmet strategy to be pursued in PCa treatment to avoid relapse and lethal 

progression of the disease. Future integrations of this mathematical model with clinical data from 

PCa patients and combination therapy parameters/equations could predict/evaluate the best 

treatment schedules to be used in CRPC treatment. 
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FIGURE LEGENDS 

Figure 1. TRAMP-C2 cell response to enzalutamide in vitro and in vivo. 

Cell proliferation (A) and Western blot analysis (B) on TRAMP-C2 cells treated with increasing 

concentrations of enzalutamide (Enza). DMSO was used as control, NT= not treated.  C) In vivo 

tumor growth (pictures and tumor weight at the explant, in D) of subcutaneous TRAMP-C2 tumors. 

The arrow indicates treatment start (continuous oral administration); data are the mean ± SEM of 8-

10 tumors/group; ** P<0.01, *** P<0.001). 

 

Figure 2. Effect of enzalutamide in TRAMP mice. 

A) Wild type (WT), TRAMP and enzalutamide-treated TRAMP mice were sacrificed at different 

time points (12, 18, 22, 25 and 30 weeks) and the genitourinary to body weight ratio determined. B) 

Representative picture (H&E) of anterior prostate lobes of Wild type, TRAMP and enzalutamide-

treated TRAMP mice at 18, 25 and 30 weeks (scale bar: 100µm). C) Quantification (percentage) of 

the pathological area in the anterior prostate of TRAMP mice treated (+Enza) or not with 

enzalutamide. D) Histopathological evaluation of prostate tissue after explantation; the graph shows 

the percentage of normal healthy tissue (NH, in grey), prostatic intraepithelial neoplasia (PIN, in 

green) and well differentiated tumor area (WD, in white) in the prostate of untreated (-) or treated 

(+E) TRAMP mice. E) Representative pictures and quantification of Ki67+ areas in prostate 

adenomers at 18 and 25 weeks (scale bar: 50µm). Data are the mean ± SEM; n= 8 or more 

animals/group; *p<0.05, **p<0.01, ***p<0.001. 

 

Figure 3. Numerical simulations and time course of tumor distribution. 

Plots A and B show how the percentage of pathological area in the prostate develops with time, in 

absence (A) and in presence (B) of enzalutamide continuous treatment. Starting from above the 

continuous lines represent the upper bound of the 3σ confidence interval (CI), the mean, and the 



lower bound of the CI of all model realizations given the parameter values in Table S1. All points 

represent experimental data. Plots Ca and Da show 1000 realizations of the dynamics of 

enzalutamide-sensitive and -resistant tumor cells in time, described by the stochastic equations (E.1) 

and (E.2), in absence and presence of enzalutamide treatment respectively.  Plots C(b-f) and D(b-f) 

represent the tumor distributions for the 1000 realizations in absence (A plots) and presence (B 

plots) of treatment at 12, 18, 22, 25 and 30 weeks.   

 

Figure 4. Model of resistant cells onset and in silico simulation of enzalutamide treatment 

schedules. 

Plots A and B show the behavior of the proportion of sensitive (dotted lines) and resistant cells 

(continuous lines) in absence (A) and presence (B) of enzalutamide over time. C-E) In silico 

experiments showing the effects on R (i=3) and S (i=2) cells number of three enzalutamide 

treatments (i=1). In Ci (i=1,2,3) increasing doses of enzalutamide (per week) are administered daily 

for 1 week followed by 2 weeks off.  In Di (i=1,2,3) enzalutamide is administered daily for 2 weeks 

followed by 4 weeks off, with a higher dose during the first week. In Ei (i=1,2,3) enzalutamide is 

administered daily for 3 weeks followed by 3 weeks off with equal doses for each week.  

 

Figure 5. Validation of enzalutamide resistance acquisition in TRAMPC2 cells. 

A) Bright field microscopy images showing cell morphology of parental and enzalutamide-resistant 

TRAMP-C2 cells (magnification: 400X and 200X). B) qPCR analysis of the genes driving 

androgen deprivation resistance in enzalutamide-resistant cells (AR-FL: Androgen Receptor full-

length, TMEFF2: Tomoregulin-2, TMPRSS2: transmembrane serine protease; *p <0.05, **p<0.01; 

t-test). C) Cell proliferation response of parental and enzalutamide-resistant TRAMP-C2 cells to 

increasing concentrations of enzalutamide. Data are shown as mean ± SEM of 3 independent 

experiments. D) Oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) 

were determined using the Seahorse XF96 Analyzer in TRAMPC2 and enzalutamide-resistant cells. 



Data are represented as the mean ± SEM (n=24).  E) S-line plot generated by multivariate data 

analysis of the NMR spectra. Metabolic changes in enzalutamide-resistant cells compared with 

parental cells are shown in blue as the least significant changes and in red as the most significant. F) 

Topology-based pathway analysis showing metabolic networks mainly affected in enzalutamide-

resistant cells according to their statistical relevance P and impact value. 

 

Figure 6. Simulations of drug combinations to overcome resistance to enzalutamide. 

In vitro cell proliferation assay performed on TRAMP-C2 parental or TRAMP-C2 enzalutamide-

resistant cells to test everolimus (A), everolimus in combination with enzalutamide (B), or 

cabazitaxel alone (C) and in combination with enzalutamide (D). In silico simulation of 

enzalutamide plus everolimus (E) and enzalutamide plus cabazitaxel (F). 

 

Figure 7. Validation of the in silico drug combinations to overcome the resistance to 

enzalutamide in vivo. 

In vivo tumor growth of subcutaneous TRAMP-C2 tumors treated with enzalutamide plus 

everolimus (A) and enzalutamide plus cabazitaxel (B). Data are the mean ± SEM of 8-10 

tumors/group). C) In silico simulation of tumor progression in TRAMP mice. D) In vivo: 

quantification (percentage) of the pathological area in the anterior prostate of TRAMP mice (at 30 

weeks of age) treated with the indicated drugs and combination. * P<0.05, ** P<0.01, **** 

P<0.0001).  

 

	
















