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Abstract. Monocular visual odometry and depth estimation plays an important role in augmented reality and robots8

applications. Recently, deep learning technologies have been widely used in these areas. However, most existing9

works utilize supervised learning which requires large amounts of labeled data, and assumes that the scene is static. In10

this paper, we propose a novel framework, called as Un-VDNet, based on unsupervised convolutional neural networks11

(CNNs) to predict camera ego-motion and depth maps from image sequences. The framework includes three sub-12

networks (PoseNet, DepthNet, and FlowNet), and learns temporal motion and spatial association information in an13

end-to-end network. Specially, we propose a novel pose consistency loss to penalize errors about the translation and14

rotation drifts of the pose estimated from the PoseNet. Furthermore, a novel geometric consistency loss, between the15

structure flow and scene flow learned from the FlowNet, is proposed to deal with dynamic objects in the real-world16

scene, which is combined with spatial and temporal photometric consistency constraints. Extensive experiments on17

the KITTI and TUM datasets demonstrate that our proposed Un-VDNet outperforms the state-of-the-art methods for18

visual odometry and depth estimation in dealing with dynamic objects of outdoor and indoor scenes.19
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1 Introduction22

Visual odometry and depth estimation is a key enabling technique of robots and autonomous ve-23

hicles, which effectively captures environment information for location, navigation, and target24

tracking, etc.1 and has attracted more and more attention recently.2 Although recent researches25

in visual odometry and depth estimation have achieved remarkable progress, there are still many26

challenges in accuracy and robustness due to dynamic scenes, etc.27

Classical Structure-from-Motion (SfM) methods have been researched on visual odometry and28

depth estimation for several decades,3, 4 which achieve more effective performance in reconstruc-29

tion and navigation systems,5 and capture the semantic information of the scene.6 However, tra-30

ditional SfM methods, extracting the low-level features, cannot deal with outliers and mismatches31
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in texture-less regions,7 and motion drifts resulted by dynamic objects. In order to overcome32

these limitations of classical SfM, many end-to-end model learning methods have been proposed33

to estimate the camera trajectories and depth maps simultaneously through learning convolutional34

neural network (CNN) features benefited from big-data.8 Methods based on CNNs have made35

large progress in pixel-level estimation tasks,9 so that they are more robust in camera motion and36

challenging environments.10 However, most deep learning methods require large amounts of la-37

beled data for supervision or assume a static and general environment. In fact, there are usually38

many dynamic objects in the real-world, so they are unsuitable when dynamic objects account for39

a large proportion in the scene.11
40

In this paper, we propose a novel unsupervised deep learning framework, Un-VDNet, for si-41

multaneously estimating visual odometry and depth from monocular image sequences, which ef-42

fectively deals with dynamic objects in both outdoor and indoor scenes. The Un-VDNet consists43

of three sub-networks, PoseNet, DepthNet, and FlowNet. The PoseNet is constructed to learn44

camera ego-motion between adjacent frames and estimate camera trajectories for visual odometry.45

It is constrained by temporal photometry and trained with a forward-backward consistency and46

a pose consistency loss. The DepthNet is proposed to estimate pixel-level depth maps with spa-47

tial photometric consistency constraints. We formulate structure-flow based on camera poses and48

depth maps predicted from the PoseNet and DepthNet, respectively. The geometric estimator of49

our framework, FlowNet, predicts the scene optical flow to assist in handle dynamic objects. We50

propose a novel geometric consistency loss to train our network between structure-flow and scene51

optical flow, which effectively improves the performance of our model and enhances our predic-52

tions on camera poses and depth maps. The Un-VDNet is trained on stereo image sequences and53

tested on monocular sequences. The illustration of our proposed framework is shown in Figure 1.54
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Fig 1 Illustration of our proposed framework Un-VDNet. The network consists of three sub-networks, PoseNet.
DepthNet, and FlowNet. It is trained on unlabeled RGB images in unsupervised manner and estimates the camera
pose T(t,r) and image depth, where T ∈ R4×4 is transform matrix, t ∈ R3 is translation, and r ∈ R3 is rotation.

Our contributions can be summarized as follows :55

1) we propose a novel unsupervised network, Un-VDNet, to estimate camera ego-motion and56

depth maps, which not only predicts the static structure without any label but also handles the57

problems caused by dynamic objects in the outdoor and indoor scenes for the first time;58

2) we construct a novel loss based on pose consistency to enhance the camera translation and59

rotation estimations;60

3) we construct a geometric estimator trained with a novel geometric consistency loss between61

scene optical flow and structure-flow to overcome challenges on motion-blur in dynamic scenes.62

Experiments on KITTI dataset12 and TUM dataset13 demonstrate the effectiveness of our pro-63

posed framework in both outdoor and indoor dynamic scenes, and our unsupervised network out-64

performs previous CNNs methods in visual odometry and depth estimation from photometry to65

geometry.66

The rest of this paper is organized as follows. Section 2 reviews related works about visual67

odometry and depth estimation based on CNNs. Section 3 introduces our proposed framework68

and loss functions. Section 4 presents our experiments and results on KITTI dataset12 and TUM69
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dataset13 about visual odometry and depth estimation. Our conclusions are summarized in Sec-70

tion 5.71

2 Related Work72

Visual odometry has been widely researched after first proposed by Nister14 for ego-motion and73

depth estimation. Traditional methods not only need to capture and match hand-craft features, but74

also have a heavy cost.15 In order to learn camera pose and depth map more efficiently, methods75

based on CNNs have been introduced recently.16 In this section, we summarize some related works76

about visual odometry and depth estimation based on CNNs.77

2.1 Visual Odometry Based on CNNs78

Visual odometry is the process of predicting camera ego-motion by analyzing the multi-view ge-79

ometry between adjacent frames. Compared with traditional visual odometry based on features80

or direct methods, approaches based on deep learning estimated the camera pose in an end-to-end81

model and didn’t rely on complex geometric operations, which were more intuitive and concise.82

Kendall et al.17 were the first to propose an end-to-end CNN, pose-net, to regress the 6-DOF cam-83

era pose for re-localization from a single RGB image without additional engineering or graph op-84

timization. The pose-net was faster than traditional ego-motion estimation methods based on SfM,85

but its accuracy on translation and orientation estimation was lower than mainstreams. Costante86

et al.18 applied CNNs to learn both the optimal features and the best estimator to estimate the87

F2F camera motion with dense optical flow. Their method outperformed pose-net17 in translation88

estimation but had poor performance in rotation. Handa et al. 19 designed an end-to-end network89

by extending a spatial transform network to regress the classical computer vision methods. They90
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constructed geometric vision with a neural network (gvnn) including a global transformation and91

pixel transformation kernel M estimator to estimate the camera pose based on RGB-D data. Their92

approach ensured that the loss functions are as close as 0 when converging, and the missing pixels93

could be properly processed. Wu et al.20 imported BranchNet including two branches for orien-94

tation and translation prediction respectively based on pose-net,17 and they proposed the Euler6 to95

represent orientation. But the method was limited in some scenarios where depth is unavailable.96

In addition to above-mentioned supervised CNNs, there were also many unsupervised methods97

for visual odometry. SfM-Learner,21 a multi-view end-to-end network proposed by Google, con-98

sisted of single-view depth and multi-view pose networks with view synthesis as the supervisory99

signal. However, it caused a larger error when dynamic objects appeared in the scene. Li et al.22
100

proposed a monocular visual odometry pipeline UnDeepVO, which applied two salient features:101

an unsupervised deep learning scheme, and an absolute scale recovery. They trained the network to102

recover the scale using stereo images based on spatial and temporal dense information and tested103

on consecutive monocular images. Both their mean translational error is three times and the mean104

rotational error is one time lower than SfM-Learner,21 but they also ignored dynamic objects in105

the scene. Therefore, we propose an unsupervised network with a pose consistency loss to reduce106

errors of translation and rotation estimation, and a geometry consistency loss to deal with dynamic107

scenes.108

2.2 Depth Estimation Based on CNNs109

Accurate depth information plays an important role in 3D reconstruction and SLAM. Classic SfM110

methods usually take stereo matching algorithms and the triangulation principle to calculate the111

disparity and estimate the view depth.23 However, its scope and accuracy are limited in dynamic112
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scenes. Depth estimation based on CNNs is popular with researchers along with the development113

of deep learning, and it can overcome the challenges of SfM.114

Eigen et al.12 were the first to propose a multi-scale network to predict depth maps, but most115

maps contained outliers, especially in objects edges, windows, and reflective surfaces. Tateno et116

al. 7 put forward a propagation system, CNN-SLAM, extending ResNet-5024 to a full convolution117

network. They minimized the soft-max layer and entropy loss functions using back-propagation118

and stochastic gradient descent (SGD). The pipeline combined the depth predicted by CNN and119

SLAM respectively to estimate depth map. Garg et al.25 performed an unsupervised encoder-120

decoder network to minimize the color constancy error for well-warps. The reconstruction loss121

for their encoder is the photometric error. However, they assumed that the scene was static and122

ignored dynamic objects. Sudheendra et al.26 proposed a geometry-aware network, SfM-Net,123

which converted depth prediction into a dense flow field in videos. The network was trained124

with the re-projection photometric error and depth provided by RGB-D sensors. Although the log125

RMSE was 0.31 with respect to ground truth, it had low tolerance to dynamic regions. Godard126

et al. 27 carried out a CNN network named monodepth using parasitic geometric constraints to127

generate disparity map. Their model learned to perform a single image depth estimation with good128

performance and robustness. DeMoN10 was the first CNNs to predict single view depth from two129

unconstrained images, whose core part was an iterative encoder-decoder network. It was trained130

on spatial relative differences to estimate depth maps. But its flexibility was not as good as the131

traditional SfM methods when the camera’s internal parameters changed. Zhan et al.28 proposed132

an unsupervised single view depth estimation network, Depth-VO-Feat, trained with a deep feature133

reconstruction loss with self-embedded depth features. However, they also assumed that the scene134

was static and there were no dynamic objects in the view.135
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How to effectively treat dynamic objects in the scene is still a challenge task for visual odometry136

and depth estimation.137

3 Our Proposed Method138

In this section, we firstly elaborate an overview of the proposed framework, Un-VDNet, for si-139

multaneously predicting camera ego-motion and depth maps from a monocular sequence. Then140

we illustrate details about its three sub-networks: PoseNet, DepthNet, and FlowNet, and training141

losses constrained by photometric and geometric consistency.142

3.1 Overview of Un-VDNet143

The proposed framework, Un-VDNet, as shown in Figure 2, perceives the 3D scene structure in144

an unsupervised learning. Un-VDNet is trained on stereo sequences and tested on a monocular145

sequence so it takes advantage of the temporal and spatial photometric consistency. Our network146

is divided into three modules: PoseNet, DepthNet, and FlowNet, to perform visual odometry and147

depth estimation in both outdoor and indoor scenes. Camera pose T (t,r) and depth d are regressed148

from PoseNet and DepthNet respectively with photometric consistency constraints, and then fused149

to generate the structure flow f s. The FlowNet predicts scene optical flow f f , which is minimized150

to the structure flow f s with the geometric consistency. Since each sub-network constructs a151

special task, 3D scene understanding becomes much easier. These three parts are trained in an152

unsupervised manner jointly and regressed simultaneously. We utilize view reconstruction as the153

fundamental supervision for our network from photometry and geometry without any other labels.154
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Fig 2 Architecture of our proposed framework, Un-VDNet. The framework consists of three sub-networks: a PoseNet
for camera pose, a DepthNet for depth map, and a FlowNet for flow estimation. Details are described in Section 3.

3.2 PoseNet155

The PoseNet is based on ResNet-5024 architecture with two groups of fully-connected (FC) layers.156

It takes monocular sequences as input and estimates the 6-DOF camera pose T (t,r) between adja-157

cent frames, where t is 3D translation vector and r is 3D Euler angle.29 To better predict translation158

and rotation in an unsupervised learning, we add two groups of fully-connected layers behind the159

convolutional layers.160

Forward−Backward Consistency Loss. The PoseNet is constrained by temporal photo-161

metric consistency between two consequent monocular images. To learn camera ego-motion, we162

minimize the forward-backward photometric consistency loss between t th and (t+1) th frame. We163

denote pt as one pixel in I t, pt+1 as the corresponding pixel in I t+1, and t th and (t+1) th pair-wise164

images as
{
I tp, I

t+1
p

}
, taken by calibrated monocular with camera intrinsics K. The relationship165
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between pt and pt+1 can be formulated as:166

pt+1 = KTt,t+1d (pt)K−1pt (1)

where Tt,t+1 is the camera 6-DOF pose from the frame I tp to frame I t+1
p , d (pt) is depth value of167

the pixel pt in the frame I tp. Tt,t+1 is a transformation matrix computed from 3D translation vector168

t and 3D rotation vector r.169

We can synthesize I t
′

p from I t+1
p , and I t+1

′

p from I tp with predicted camera pose Tt,t+1 and170

image depth d (pt) through Spatial Transformer ,30 which is similar to Figure 3. For simplicity,171

we define synthesized images I t
′

p and I t+1
′

p as Isp , original images I tp and I t+1
p as Iop . Therefore, we172

minimize the forward-backward consistency loss fused by a L1 norm and a SSIM term between173

original images Iop and synthesized images Isp as follows:31
174

Lp =
∑
p

α
1− SSIM

(
Iop , I

s
p

)
2

+
∑
p

(1− α) ||Iop − Isp ||1 (2)

where
{
Iop , I

s
p

}
are original and synthesized pair-wise images, Isp is the synthesized image from175

original image by Spatial Transformer, and α is a weight between L1 norm and SSIM term.176

In most regression problems, the cost function is generally L1 norm for the Manhattan distance177

or L2 norm for the Euclidean distance. L1 is sensitive to small errors and calculates all pixels in178

patches. L2 can suppress large errors, but it is highly tolerant of small errors. The Structural Sim-179

ilarity Index Metric (SSIM) proposed by Wang et al.32 is sensitive to local information changes180

and can be derived, but it only calculates the central pixel of the patch and then applies it to each181

pixel in the patch. The larger the SSIM, the better the visual effect of the image. To be closer to182
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the perception of the human vision system and estimate the structural similarity of images,33 we183

combine the L1 norm and SSIM term like literature.31 SSIM term for pixel p is defined as :32
184

SSIM (p) =
2µxµy + C1

µ2
x + µ2

y + C1

· 2σxy + C2

σ2
x + σ2

y + C2

(3)

where µx and µy are means, and σ2
x, σ2

y , and σxy are deviations, which are computed with a Gaus-185

sian filter with standard deviation. C1 and C2 are two different constants.186

Pose Consistency Loss. Apart from the forward-backward consistency loss for I tp and I t+1
p187

images, we propose a novel pose consistency loss between the predicted transformations To(t, r)188

of original image and Ts(t, r) of synthesized image. These estimated camera poses from the orig-189

inal and the synthesized image should be equivalent ideally. That is, the predicted transformations190

To(t, r) and Ts(t, r) are as close as possible. In order to penalize the difference between them191

and improve the adaptive capabilities of the PoseNet, we formulate a novel cost function about 3D192

translation and rotation vectors additionally:193

Ltr = θ||to − ts||22 + (1− θ)||ro − rs||22 (4)

where θ is the weight of translation and rotation consistency, (to, ro) is the estimated pose194

of the original image, and (ts, rs) is the estimated pose of the synthesized image obtained from195

Spatial Transformer .30 These 3D vectors to and ts ∈ R3 represent translations, and ro and196

rs ∈ so3 are axis-angle representations.197

In short, we mainly train the PoseNet by a forward-backward consistency loss and a pose198

consistency loss to learn visual odometry. However, it should be pointed out that we assume the199
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scene is static when we utilize a photometric consistency loss. Dynamic objects in the scene may200

cause large drifts during the translation and rotation learning. Therefore, we construct a geometric201

estimator, FlowNet, to deal with dynamic scenes and enhance the PoseNet, which is described in202

Section 3.4.203

3.3 DepthNet204

For single-view depth estimation, we adopt the network similar as DispNet34 with multi-scale pre-205

dictions based on the encoder-decoder architecture. It takes stereo sequences as training data and206

estimates depth maps between left and right images. At test, our DepthNet predicts the dispar-207

ity D(p) for a monocular image, and then converts to a depth map d(p) with the known camera208

intrinsics.209

Left−Right Consistency Loss. The DepthNet is constrained by spatial photometric con-210

sistency between stereo sequences to predict single-view depth. We minimize the left-right con-211

sistency loss between left and right frames. We denote stereo pair-wise images as
{
I lp, I

r
p

}
, taken212

by calibrated stereo cameras with focal length f and baseline B. Supposing the inverse depth at213

pixel p is z (p) predicted from our network, the view disparity D (p) equals to fB/z (p). We ap-214

ply “Spatial Transformer”30 to synthesize another image from one image with disparity D (p)215

as shown in Figure 3, so that we obtain the synthesized pair-wise images
{
I l

′

p , I
r
′

p

}
. Like the216

PoseNet, we denote original images as Iop and synthesized images as Isp . Therefore, we introduce217

the left-right photometric consistency loss Ld which is similar to Eq. 2 .218

Disparity Smoothness Loss. There are depth discontinuities in image gradients due to219

some sudden changes in image gray-scale, and multiple disparities can produce the same warps.220

We thus need prior knowledge to obtain a unique depth map. Following the method adopted by221
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Spatial Transformer

 

Depth Estimation

Left-Right Consistency Error

R L
R

Inverse depth R

Fig 3 The process of left image warping. The DepthNet predicts inverse depth from left image L. Then we use Spatial
Transformer (STN) 30 to synthesize a new right image R’ with inverse depth map and raw right image R. In STN, X
and Y are feature maps, TP is transformation parameters, and G is sampling grid. We can synthesize a new left image
L’ in the same way.

Zhou et al.21 and Zhan et al.,28 we formulate this cost through a disparity smoothness loss with222

edge-aware terms,223

Lsmooth =
∑
p

(
|∂xDp| · e−||∂xIp|| + |∂yDp| · e−||∂yIp||

)
(5)

where ∂x and ∂y are gradients in horizontal and vertical direction respectively, and Dp is dis-224

parity map.225

In short, the DepthNet is trained with a photometric consistency and a disparity smooth loss226

to learn smooth depth maps. Similar to the PoseNet, the left-right consistency constraint ignores227

dynamic objects such as cars and pedestrians in the real-world scenes, which are disarrangement228

and lead to motion-blur. Therefore, the FlowNet with geometric estimation efficiently strengthen229

the PoseNet and the DepthNet in dynamic scenes.230
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3.4 FlowNet231

Since the PoseNet and the DepthNet depend on the assumption that the scene is static and ignore232

dynamic objects, these regressions about camera pose and depth map have large errors with respect233

to the ground truth. The universal optical flow is commonly applied to off-the-shelf deep learning234

networks,35 which can directly simulate unconstrained motion. The pose and depth estimation give235

satisfactory results in most static scene, while the flow estimation focuses on localizing dynamic236

scenes, such as cars and persons. Therefore, we propose a geometric estimator, FlowNet, to deal237

with dynamic objects in the view to enhance visual odometry and depth estimation. The FlowNet238

of our Un-VDNet is adopted from the ResFlowNet36 which estimates the scene optical flow f f
t (p).239

Based on our estimated the 6-DOF camera pose Tt,t+1 between t th and (t+1) th images and depth240

map dt (p), we obtain the structure flow f s
t (p) through241

f s
t (p) = KTt,t+1dt (p)K−1pt − pt (6)

where K is calibrated camera intrinsics, Tt,t+1 is the camera 6-DOF transformation from the frame242

It to frame It+1, dt (p) is depth map, and pt is the homogeneous coordinates of a pixel in frame It.243

Thus, when we obtain the scene optical flow f f
t (p) and the estimated camera pose Tt,t+1, we can244

update the t th depth map dt (p) based on Eq.(6). Similarly, we can also adjust the transformation245

Tt,t+1 between t th and (t+1) th images with the scene optical flow f f
t (p) and the estimated depth246

map dt (p).247

Geometry Consistency Loss. In order to better learn in dynamic scenes, we constrain248

the structure flow f s
t (p) and scene optical flow f f

t (p) from the FlowNet with geometric flow249

consistency. We formulate a geometric consistency loss between them, which is constructed by L1250
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norm as follow,251

Lf =
∑
p

(
||f f

t (p)− f s
t (p) ||1

)
(7)

It can not only rectify wrong prediction in the PoseNet and the DepthNet but also refine imper-252

fect results which are caused by dynamic objects in the scene.253

The final loss function of our proposed framework contains previous losses together as follows:254

Lfinal =
∑
p

(λp (Lp + Ltr) + λd (Ld + Lsmooth) + λfLf ) (8)

where λp, λd, and λf are the loss weights for each term.255

3.5 Network Architecture256

Our Un-VDNet mainly contains three sub-networks, the PoseNet, the DepthNet, and the FlowNet.257

Since both DepthNet and FlowNet construct pixel-level predictions, we adopt the encoder-decoder258

network architecture as a backbone. The encoder follows the basic structure of ResNet-5024 due259

to its feed-forward connection manners and effectiveness for pixel-level learning tasks as follow260

previous works. The decoder is made up of deconvolution layers to enlarge the spatial feature261

maps to full scale as input. To preserve both global high-level and local detailed information, we262

use skip connections between encoder and decoder parts at different corresponding resolutions.263

Both the depth map and scene optical flow are predicted in a multi-scale scheme. To overcome264

over-fitting, we construct each convolutional layer followed by a global max-pooling layer of the265

encoder of DepthNet. Our DepthNet regresses depth map in a full scale as input. The input to the266

FlowNet includes batches of tensors cascade in channel dimension, including the image pairs Iot267
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and Ist , the structure flow f s
t , and its error map. The outputs of our FlowNet are the scene flow268

vectors for updating the estimated camera poses and depth maps. Our PoseNet regresses the 6-269

DoF camera pose, i.e. the 3D translation vector and the 3D Euler angle. The architecture is similar270

with SfM-Learner,21 which contains 8 convolutional layers followed by two group fully-connected271

layers before final prediction. The kernel size is 3 for all convolutional layers except for the first272

two convolutional layer in two modules where their kernel sizes are 7 and 5, respectively. What’s273

more, the stride of each convolutional layer is 2. We adopt batch normalization 37 and ReLUs 38
274

interlaced with all the convolutional layers.275

4 Experiments and Results276

In this section, we evaluate our Un-VDNet with qualitative and quantitative results of visual odom-277

etry and depth estimation, and compare those to the state-of-the-art methods on KITTI dataset12
278

and TUM dataset.13 The test time for each sample is comparable to previous works.279

4.1 Implementation details280

Our network is built on the TensorFlow framework.39 Though these sub-networks can be trained281

together in an end-to-end manner, there is no guarantee that the local gradient optimization could282

get the network to the optimal point.11 Therefore, we adopt a stage-wise training strategy, reducing283

the computational consumption and memory cost. Generally speaking, we first train the PoseNet284

and the DepthNet, and then by fixing their weights, train the FlowNet thereafter. We perform285

random resizing, cropping, and other color augmentations to prevent over-fitting. We train our286

Un-VDNet with Adam optimizer, where β1 = 0.9 and β2 = 0.99, on eight cores of 3.4 GHZ Intel287

Core i7-3770 and a NVIDIA TITAN X GPU. The base learning rate is 0.002 and it is decreased288
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manually, and the mini-batch size is 8 for each sub-network. The training typically converges after289

about 200 epochs with a batch size of 16. For photometric consistency loss, we empirically set α290

= 0.85. For the pose consistency loss, we set θ = 0.25 on KITTI dataset and 0.75 on TUM dataset291

verified by experiments. For the loss weights of the final loss function, we empirically find that the292

combination (λp, λd, λf ) = (1.0, 0.1, 10.0) leads to a stable training process.293

KITTI dataset12 contains 61 outdoor video sequences with 42,382 rectified stereo sequences294

and the image size of 1242× 375. We resize images into 608× 160 in our training setup to reduce295

processing time and computation cost. For visual odometry, we utilize the KITTIodom split40 which296

contains 21 sequences. We use Seq.00 - 08 to train PoseNet while the rest of sequences to test like297

SfM-Learner.21 During training, we set the sequence length as 5. For depth estimation, we utilize298

the KITTIeigen12 split, which contains 23,488 stereo images of 33 scenes for training, and 697299

images of 28 sequences for testing. We follow this setup and set the sequence length as 3.300

TUM dataset13 contains 89 indoor video sequences taken with three Microsoft Kinect cam-301

eras, which divided into 52 sequences for training, 33 sequences for validating, and 4 sequences302

for testing. We train our Un-VDNet using 52 sequences and test on three sequences including303

moving persons, such as seq1 (fr2/desk-with-person), seq2 (fr3/sitting-xyz), and seq3 (fr3/walk-304

xyz). Besides, we resize the images from 640 × 480 to 320 × 240 for reducing processing time305

and recover them before output following the previous work.7306

Performance Metric. Following Eigen et al.,12 we adopt the following performance metric:307

308

RMS :

√
1

T

∑
i∈T

||di − dgti ||2 (9)
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309

log RMS :

√
1

T

∑
i∈T

||log (di)− log
(
dgti
)
||2 (10)

310

abs. relative :
1

T

∑
i∈T

di − dgti
dgti

(11)

311

sq. relative :
1

T

∑
i∈T

||di − dgti ||2

dgti
(12)

312

accuracies : % of di s.t. max

(
di

dgti
,
dgti
di

)
= δ < thr (13)

313

ATERMSE :

√
1

T

∑
i∈T

||di − dgti ||2. (14)

where di and dgti are the predicted depths and ground-truth depth respectively at pixel indexed by314

i, and T is the total number of pixels in all the evaluated images.315

4.2 Results of Visual Odometry316

We use the KITTIodom split40 and TUM dataset13 mentioned above to evaluated the performance of317

our proposed PoseNet. The test time is 7ms per image. The results on KITTI dataset are compared318

with Zhou et al.,21 Kendall et al.,17 Yin et al.,11 and Zhan et al.,28 for camera motion estimation.319

The detailed results of translation and rotation estimation on KITTI dataset are listed in Table 1.320

Average translation RMSE drift trel (%) and average rotation RMSE drift rrel (◦/100m) on the321

length of 100m - 800m are adopted. As can be seen from the Table 1, whether it is translation or322

rotation error, the predictions of our proposed Un-VDNet outperform other four methods which323
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Fig 4 Visual comparison of monocular depth estimation on KITTI dataset.

assume that the scene is a static or don’t consider pose consistency constraint. Our trel is 4% and324

rrel is 1.5◦/100m lower than the mean translation error and the mean rotation average error rate of325

others on Seq.09, while 10.9% and 4.0◦/100m on Seq.10. Because we apply a pose consistency326

loss to minimize the translation and rotation errors between adjacent frames.327

The trajectories of Seq.11 - 15 on KITTIodom split40 learned from different methods are shown328

in Figure 4. Figure 4 (a) and (b) about Seq.11 indicates that the estimated ego-motion of the Un-329

VDNet is the closet to the ground-truth while the Seq.11 trajectory predicted from Kendall et al.17
330

is farthest. Our method yields better visualizations with clearer transitions and consistent local331

details, especially at corners. For example, at x(m) = −150 and z(m) = 370 in (a), our predicted332

camera pose is coincident with the ground-truth. In addition, errors between the estimated trajecto-333

ries and ground-truth increase over time because of the accumulation of previous prediction errors.334

However, our results are still the closest to the ground-truth as can be seen from (b).335
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Table 1 Visual odometry results on Seq.09-10 of KITTI. trel (%) and rrel (
◦/100m) are average translation and

rotation RMSE drift on the length of 100 m - 800 m respectively.

Method Seq. 09 Seq. 10

trel rrel trel rrel

Zhou et al.21 15.37 4.06 37.91 17.78

Kendall et al.17 17.84 6.78 12.45 3.46

Yin et al.11 12.27 3.78 23.61 4.11

Zhan et al.28 11.93 3.91 12.95 3.64

Our Un-VDNet 10.07 3.14 11.06 3.29

Table 2 Absolute trajectory error (ATE) on TUM dataset. Seq1 is fr2/desk-with-person, seq2 is fr3/sitting-xyz, and
seq3 is fr3/walk-xyz.

Method seq1 seq2 seq3

Zhou et al.21 1.818 1.228 0.914

Tateno et al.7 1.927 1.567 0.636

Kendall et al.17 1.329 1.592 0.706

Yin et al.11 0.946 1.273 0.682

Zhan et al.28 1.105 0.981 0.660

Our Un-VDNet 0.881 0.864 0.598

Similarly, Figure 4 (c) - (f) demonstrate that our performance is superior to other methods and336

robust when the camera is in a pure-rotation station.337

Besides, our predicted Absolute Trajectory Error (ATE) is compared with the state-of-the-art338

methods on TUM dataset13 as shown in Table 2, which is computed as the root mean square error339

between the learned camera trajectory and the ground-truth for each tested sequence, fr/desk-with-340

person, fr3/sitting-xyz, and fr3/walk-xyz. The ATE of our proposed Un-VDNet is the lowest of all341

three sequences and our mean ATE is 0.38 lower than the average of all other methods on these342

three sequences, which proves that our network is more efficient and performs better than other343

methods in indoor scenes.344

19



From Table 1 and 2, we can summarize that camera poses estimated from our network outper-345

form other methods, and a large part of the reason is that we have added a pose consistency loss346

and constructed a geometric consistency constraint to reduce the errors caused by dynamic objects.347

4.3 Results of Depth Estimation348

To evaluate the performance of our Un-VDNet in monocular depth estimation, we take the split of349

KITTIeigen12 and TUM dataset13 for training. The test time of our proposed network is 10ms for350

predicting one image depth. The results are compared with Eigen et al.,12 Liu et al.,42 Garg et351

al.,25 Godard et al.,27 Zhan et al.,28 and Li et al.22 for depth map estimation.352

Table 3 reports the performance comparison on the KITTI dataset. We can see the proposed353

Un-VDNet achieves better depth estimation performance in terms of abs.Rel, logRMS, RMS,354

and threshold accuracy metrics as compared to the state-of-the-art methods. In term of sq. Rel,355

Un-VDNet outperforms most compared methods and has quite marginal performance degradation356

as compared to the approaches in Garg et al..25 Figure 5 illustrates some example depth maps357

produced by our Un-VDNet and the state-of-the-art methods. It can be observed that our proposed358

framework characterizes the global structure of the scene more precisely and more effectively. Our359

method predicts better depth map especially in the part of the dynamic car, which presents a clearer360

contour. We can learn that these depth maps are closet to the ground-truth in the dynamic areas. In361

addition, we can also estimate the depth for fine objects.362

Moreover, Table 4 reports the performance comparison on TUM dataset.13 Our predicted error363

metrics are the lowest except RMS and all accuracy metrics are the highest. Therefore, we can364

observe that the proposed Un-VDNet achieves consistent performance improvements in terms of365

error and accuracy metrics as compared to the state-of-the art methods. Figure 6 illustrates some366
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Table 3 The error and accuracy metrics of depth estimation on KITTI dataset.

Method Error Accuracy

abs. Rel. sq. Rel. log RMS RMS δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al.12 0.203 1.548 0.282 6.307 0.702 0.890 0.958

Liu et al.42 0.201 1.584 0.273 6.471 0.680 0.898 0.967

Garg et al.25 0.152 1.226 0.246 5.849 0.784 0.921 0.967

Godard et al.27 0.148 1.344 0.247 5.927 0.803 0.922 0.964

Zhan et al.28 0.144 1.391 0.241 5.869 0.803 0.928 0.969

Li et al.22 0.183 1.730 0.268 6.570 0.691 0.902 0.968

Our Un-VDNet 0.144 1.312 0.242 5.827 0.816 0.931 0.970

Table 4 The error and accuracy metrics of depth estimation on TUM dataset.

Method Error Accuracy

abs. Rel. sq. Rel. log RMS RMS δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al.12 1.709 0.270 0.183 1.159 0.734 0.902 0.959

Liu et al.42 1.565 0.275 0.198 1.836 0.718 0.901 0.960

Garg et al.25 0.737 0.232 0.153 1.328 0.802 0.934 0.972

Godard et al.27 0.541 0.273 0.169 1.080 0.740 0.904 0.962

Zhan et al.28 0.698 0.221 0.143 1.162 0.810 0.947 0.982

Li et al.22 0.857 0.233 0.155 1.296 0.793 0.931 0.973

Our Un-VDNet 0.401 0.186 0.132 1.097 0.853 0.971 0.995

example depth maps produced by the Un-VDNet on three dynamic scenes of TUM dataset.13 We367

can see that the error of depth map estimated from our UN-VDNet is the lowest especially in the368

part of moving persons, compared to the ground-truth. Especially for the moving body or arms, our369

proposed method can clearly predict the depth and has a more complete outlines. It can be drawn370

that the geometric consistency constraint combined with photometric consistency contributes to371

the performance of our network and makes it more robust to the dynamic environment.372
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Fig 5 Visual comparison of monocular depth estimation on KITTI dataset.

Fig 6 Visual comparison of monocular depth estimation on TUM dataset.

4.4 Ablation Studies373

We conducted ablation experiments on KITTI and TUM dataset to investigate the effectiveness of374

our proposed Un-VDNet.375

Effectiveness of Pose Consistency. Table 5 reports the performance in visual odometry376

of the Un-VDNet and its several variants on KITTI and TUM dataset. Un-VDNet \ P refers to377

the Un-VDNet without the use of pose consistency constraint. From the Table 5, we can obtain378

the following observations: Un-VDNet \ P results in heave performance degradation in absolute379

trajectory error (ATE) compared to the Un-VDNet. The ATE of Un-VDNet is 34% lower than380

Un-VDNet \ P on KITTI dataset, and 23% on TUM dataset. It demonstrates that the pose consis-381

tency constraint is useful for improving camera ego-motion estimation and leads to more accurate382

trajectories.383
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Table 5 Evaluation of the effectiveness of pose consistency of ATE in visual odometry within the Un-VDNet. “K”
means KITTI and “T” means TUM dataset.

Method Dataset Seq.09 Seq.10 Seq.1 Seq.2 Seq.3

Un-VDNet \ P K 0.020 ± 0.006 0.029 ± 0.007 — — —

Un-VDNet K 0.012 ± 0.008 0.013 ± 0.009 — — —

Un-VDNet \ P T — — 1.132 1.147 0.760

Un-VDNet T — — 0.881 0.846 0.598

Table 6 Evaluation of the effectiveness of flow estimation in depth maps within the Un-VDNet on KITTI dataset.

Method Error Accuracy

abs. Rel. sq. Rel. log RMS RMS δ < 1.25 δ < 1.252 δ < 1.253

Un-VDNet \ F 0.173 1.439 0.261 5.890 0.645 0.881 0.959

Un-VDNet 0.144 1.312 0.242 5.827 0.816 0.931 0.970

Effectiveness of Flow Estimation. Table 6 reports the performance comparison on KITTI384

dataset between our proposed Un-VDNet network and the similar model without the FlowNet385

module. Un-VDNet \ F refers to the model without flow estimation. From the Table 6, we can386

see that the Un-VDNet with flow estimation constrained by geometric consistency achieves better387

performance improvements in terms of all error and accuracy metrics. For example, the Un-VDNet388

obtains only 0.144 abs.Rel. and achieves 16.76% error decrease as compared to the Un-VDNet \389

F. In terms of the threshold accuracy with δ < 1.25, it achieves 0.816 accuracy which is 26.51%390

better than the model without flow estimation. These results demonstrate that the network with391

flow estimation is able to boost depth estimation by geometric consistency constraint.392

5 Conclusion393

In this paper, we propose a novel framework, Un-VDNet, based on unsupervised CNNs for monoc-394

ular visual odometry and depth estimation between outdoor and indoor scenes. We train the entire395
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framework with stereo sequences and test on monocular sequences based on TensorFlow. Different396

from previous CNN-based networks which assume that the scene is static, our network considers397

dynamic objects additionally. The PoseNet and the DepthNet learn 6-DOF camera pose and depth398

map with photometric consistency constraints firstly, and then we train the FlowNet with a geo-399

metric consistency loss to penalize the error between the scene optical flow and the structure flow400

generated by predicted pose and depth. Considering the dynamic scenes, the proposed geometric401

estimator, FlowNet, enhances the performance of the structure estimator, PoseNet and DepthNet.402

Moreover, we also propose a novel pose consistency to constrain the estimated translation and rota-403

tion vectors of frame-to-frame odometry without scale ambiguity. The experimental results show404

that Un-VDNet outperforms state-of-the-art methods in pose and depth estimation at pixel-level405

without costly ground-truth, and it is more effective in dealing with dynamic scenes compared406

with previous methods on KITTI dataset and TUM dataset.407

The main limitation of our approach is that it doesn’t exploit any semantic information, which408

can be explored in the future work. We would like to introduce semantic estimation into our409

framework and reconstruct the scene structure with 3D and semantic cues. Another potential410

research direction is to apply our depth estimation model to traditional visual tasks and benefit411

them, such as object detection, segmentation, and so on.412
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19 A. Handa, M. Bloesch, V. Pătrăucean, et al., “Gvnn: Neural network library for geometric466

computer vision,” in European Conference on Computer Vision, 67–82, Springer (2016).467

20 J. Wu, L. Ma, and X. Hu, “Delving deeper into convolutional neural networks for camera468

relocalization,” in IEEE International Conference on Robotics and Automation, 5644–5651,469

IEEE (2017).470

21 T. Zhou, M. Brown, N. Snavely, et al., “Unsupervised learning of depth and ego-motion from471

video,” in IEEE Conference on Computer Vision and Pattern Recognition, 1851–1858, IEEE472

(2017).473

22 R. Li, S. Wang, Z. Long, et al., “Undeepvo: Monocular visual odometry through unsuper-474

vised deep learning,” in IEEE International Conference on Robotics and Automation, 7286–475

7291, IEEE (2018).476

23 C. Sweeney, T. Sattler, T. Hollerer, et al., “Optimizing the viewing graph for structure-from-477

motion,” in IEEE International Conference on Computer Vision, 801–809 (2015).478

24 K. He, X. Zhang, S. Ren, et al., “Deep residual learning for image recognition,” in IEEE479

Conference on Computer Vision and Pattern Recognition, 770–778, IEEE (2016).480

25 R. Garg, V. K. BG, G. Carneiro, et al., “Unsupervised cnn for single view depth estimation:481

27



Geometry to the rescue,” in European Conference on Computer Vision, 740–756, Springer482

(2016).483

26 S. Vijayanarasimhan, S. Ricco, C. Schmid, et al., “Sfm-net: Learning of structure and motion484

from video,” arXiv preprint arXiv:1704.07804 (2017).485

27 C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular depth estimation486

with left-right consistency,” in IEEE Conference on Computer Vision and Pattern Recogni-487

tion, 270–279, IEEE (2017).488

28 H. Zhan, R. Garg, C. S. Weerasekera, et al., “Unsupervised learning of monocular depth489

estimation and visual odometry with deep feature reconstruction,” in IEEE Conference on490

Computer Vision and Pattern Recognition, 340–349, IEEE (2018).491

29 R. Pio, “Euler angle transformations,” IEEE Transactions on Automatic Control 11(4), 707–492

715 (1966).493

30 M. Jaderberg, K. Simonyan, A. Zisserman, et al., “Spatial transformer networks,” in Ad-494

vances in Neural Information Processing Systems, 2017–2025, Curran Associates, Inc.495

(2015).496

31 H. Zhao, O. Gallo, I. Frosio, et al., “Loss functions for neural networks for image processing,”497

arXiv preprint arXiv:1511.08861 (2015).498

32 Z. Wang, A. C. Bovik, H. R. Sheikh, et al., “Image quality assessment: from error visibility499

to structural similarity,” IEEE Transactions on Image Processing 13(4), 600–612 (2004).500

33 L. Zhang, L. Zhang, X. Mou, et al., “A comprehensive evaluation of full reference im-501

age quality assessment algorithms,” in IEEE International Conference on Image Processing,502

1477–1480, IEEE (2012).503

28



34 N. Mayer, E. Ilg, P. Hausser, et al., “A large dataset to train convolutional networks for504

disparity, optical flow, and scene flow estimation,” in IEEE Conference on Computer Vision505

and Pattern Recognition, 4040–4048, IEEE (2016).506

35 E. Ilg, N. Mayer, T. Saikia, et al., “Flownet 2.0: Evolution of optical flow estimation with507

deep networks,” in IEEE Conference on Computer Vision and Pattern Recognition, 2462–508

2470, IEEE (2017).509

36 A. Dosovitskiy, P. Fischer, E. Ilg, et al., “Flownet: Learning optical flow with convolutional510

networks,” in IEEE International Conference on Computer Vision, 2758–2766, IEEE (2015).511

37 S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reduc-512

ing internal covariate shift,” arXiv preprint arXiv:1502.03167 (2015).513

38 V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in514

International Conference on Machine Learning, 807–814, IMLS (2010).515

39 M. Abadi, P. Barham, J. Chen, et al., “Tensorflow: a system for large-scale machine learning,”516

in 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}517

16), 265–283, USENIX Association (2016).518

40 A. Geiger, “Are we ready for autonomous driving? the kitti vision benchmark suite,” in IEEE519

Conference on Computer Vision and Pattern Recognition, 3354–3361, IEEE (2012).520

41 D. Xu, E. Ricci, W. Ouyang, et al., “Multi-scale continuous crfs as sequential deep net-521

works for monocular depth estimation,” in IEEE Conference on Computer Vision and Pattern522

Recognition, 5354–5362, IEEE (2017).523

42 F. Liu, C. Shen, G. Lin, et al., “Learning depth from single monocular images using deep524

29



convolutional neural fields,” IEEE Transactions on Pattern Analysis and Machine Intelligence525

38(10), 2024–2039 (2015).526

43 O. H. Jafari, O. Groth, A. Kirillov, et al., “Analyzing modular cnn architectures for joint depth527

prediction and semantic segmentation,” in IEEE International Conference on Robotics and528

Automation, 4620–4627, IEEE (2017).529

44 I. Laina, C. Rupprecht, V. Belagiannis, et al., “Deeper depth prediction with fully convolu-530

tional residual networks,” in IEEE International Conference on 3D Vision (3DV), 239–248,531

IEEE (2016).532

Xuyang Meng is a Ph.D student at Beijing University of Posts and Telecommunications. She533

received her BS degree in engineering from Yanshan University in 2016, and her MS degree in534

engineering from Beijing University of Posts and Telecommunications in 2019.535

Chunxiao Fan is currently a professor and director of Center for information electronic and in-536

telligence system. She served as a member of Chinese Sensor network working group. She was537

elevated to evaluation expert of Beijing Scientific and Technical Academy Awards. Her research538

interests include Heterogeneous media data analysis, Internet of Things, data mining, communi-539

cation software. She has published more than 30 papers in international journals and conferences,540

authored and edited three books and authorized several invention patents.541

Yue Ming received the Ph.D degree in Signal and Information Processing from Beijing Jiaotong542

University, China, in 2013. She worked as a visiting scholar in Carnegie Mellon University, U.S.,543

between 2010 and 2011. Since 2013, she has been working as a faculty member at Beijing Uni-544

versity of Posts and Telecommunications. Her research interests are in the areas of biometrics,545

30



computer vision, computer graphics, information retrieval, pattern recognition, etc. She has au-546

thored more than 40 scientific papers.547

Yuan Shen received the Ph.D. degree in 2014, from Beijing Jiaotong University, Beijing, China.548

His research interests include Machine Learning, Deep Learning, objects detection and segmenta-549

tion, multi-object tracking, and trajectory analysis. Now, he is working on autonomous driving for550

environmental perception in Autonomous Driving Center, Tencent Technology (Beijing) Co., Ltd.551

Hui Yu is Professor with the University of Portsmouth, UK. Prof. He used to work at the University552

of Glasgow before moving to the University of Portsmouth. His research interests include methods553

and practical development in vision, machine learning and AI with applications to human-machine554

interaction, Virtual and Augmented reality, robotics and geometric processing of facial expres-555

sion. He serves as an Associate Editor of IEEE Transactions on Human-Machine Systems and556

Neurocomputing journal.557

List of Figures558

1 Illustration of our proposed framework Un-VDNet. The network consists of three559

sub-networks, PoseNet. DepthNet, and FlowNet. It is trained on unlabeled RGB560

images in unsupervised manner and estimates the camera pose T(t,r) and image561

depth, where T ∈ R4×4 is transform matrix, t ∈ R3 is translation, and r ∈ R3 is562

rotation.563

2 Architecture of our proposed framework, Un-VDNet. The framework consists of564

three sub-networks: a PoseNet for camera pose, a DepthNet for depth map, and a565

FlowNet for flow estimation. Details are described in Section 3.566

31



3 The process of left image warping. The DepthNet predicts inverse depth from567

left image L. Then we use Spatial Transformer (STN) 30 to synthesize a new right568

image R’ with inverse depth map and raw right image R. In STN, X and Y are569

feature maps, TP is transformation parameters, and G is sampling grid. We can570

synthesize a new left image L’ in the same way.571

4 Visual comparison of monocular depth estimation on KITTI dataset.572

5 Visual comparison of monocular depth estimation on KITTI dataset.573

6 Visual comparison of monocular depth estimation on TUM dataset.574

List of Tables575

1 Visual odometry results on Seq.09-10 of KITTI. trel (%) and rrel (
◦/100m) are576

average translation and rotation RMSE drift on the length of 100 m - 800 m re-577

spectively.578

2 Absolute trajectory error (ATE) on TUM dataset. Seq1 is fr2/desk-with-person,579

seq2 is fr3/sitting-xyz, and seq3 is fr3/walk-xyz.580

3 The error and accuracy metrics of depth estimation on KITTI dataset.581

4 The error and accuracy metrics of depth estimation on TUM dataset.582

5 Evaluation of the effectiveness of pose consistency of ATE in visual odometry583

within the Un-VDNet. “K” means KITTI and “T” means TUM dataset.584

6 Evaluation of the effectiveness of flow estimation in depth maps within the Un-585

VDNet on KITTI dataset.586

32


	Introduction
	Related Work
	Visual Odometry Based on CNNs
	Depth Estimation Based on CNNs

	Our Proposed Method
	Overview of Un-VDNet
	PoseNet
	DepthNet
	FlowNet
	Network Architecture

	Experiments and Results
	Implementation details
	Results of Visual Odometry
	Results of Depth Estimation
	Ablation Studies

	Conclusion

