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Resumo 
 

 

A infertilidade afeta cerca de 186 milhões de pessoas em todo o mundo 
e 9-10% dos casais em Portugal, causando problemas financeiros, 
sociais e de saúde. Constitui procedimento padrão a avaliação da 
qualidade dos embriões baseadas em características morfológicas. No 
entanto, tais avaliações são subjetivas e demoradas e resultam em 
classificações discrepantes entre embriologistas e clínicas causando 
problemas na avaliação do potencial do embrião. Embora as tecnologias 
de reprodução medicamente assistida, como a fertilização in vitro, 
acoplada à tecnologia time-lapse, tenham diminuído o problema da 
infertilidade, existem limitações significativas, mesmo considerando a 
análise morfocinética. Outrossim, muitas pacientes necessitam de 
múltiplos ciclos de fertilização para alcançar a gravidez, tornando a 
seleção do embrião com maior potencial de implantação e geração de 
nados vivos um desafio crítico. No presente projeto demonstramos a 
prova do conceito da confiabilidade de Machine Learning (aprendizagem 
automática), especialmente Deep Learning baseado em TensorFlow e 
Keras, para extrair e discriminar caraterísticas associadas ao potencial 
embrionário, em imagens time-lapse. Igualmente, apresentamos um 
pipeline para que clínicos e investigadores, sem experiência em 
Machine Learning, possam utilizar com facilidade, rapidez e precisão 
Deep Learning como ferramenta de apoio à decisão clínica em estudos 
de viabilidade de embriões, bem como noutras áreas médicas onde a 
análise de imagens seja proeminente. 
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Abstract 

 
Infertility affects about 186 million people worldwide and 9-10% of 
couples in Portugal, causing financial, social and medical problems. 
Evaluation of embryo quality based morphological features is the 
standard in vitro fertilization (IVF) clinics around the world. This process 
is subjective and time-consuming, and results in discrepant 
classifications among embryologists and clinics, leading to fail in predict 
accurately embryo implantation and live birth potential. Although assisted 
reproductive technologies (ART) such as IVF coupled with time lapse 
elimination of periodic transfer to microscopy assessment and stable 
embryo culture conditions for embryos development, has alleviated the 
infertility problem, there are significant limitations even considering 
morphokinetic analysis. Likewise, many patients require multiple IVF 
cycles to achieve pregnancy, making the selection of single embryo for 
transfer a critical challenge. Here, we demonstrate the reliability of 
machine learning, especially deep learning based on TensorFlow open 
source and Keras libraries for embryo raw TLI images features extraction 
and classification in clinical practice. Equally, we present a follow up 
pipeline for clinicians and researchers, with no expertise in machine 
learning, to easily, rapid and accurately utilize deep learning as a clinical 
decision support tool in embryos viability studies, as well in other medical 
field where the analysis of images is preeminent.  
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I. INTRODUCTION 

1. PREAMBLE  

Infertility is defined as the failure to conceive after 12 months of regular, unprotected 

sexual intercourse (six months if the women is over 35 years) or the inability to maintain the 

pregnancy until term1. It affects about 186 million people worldwide2 and 9-10% of couples 

(260 to 290 thousand couples) in Portugal, according to Portuguese Infertility Association.  

Since the birth of first assisted conceived baby, in vitro fertilization (IVF) has become 

the most common assisted reproductive technique (ART) for infertility treatment. IVF involves 

ovarian simulation followed by retrieval of several oocytes, fertilization and embryo culture for 

1-6 days, under a restricted laboratory condition. The final goal is a birth of single healthy and 

normal baby. To increase pregnancy rate multiple embryo transfer are normally achieved, 

elevating the risk of multiple gestations, increasing as well financial, social and medical 

implications. This trade-off between successful outcomes and multiple pregnancy lead most 

countries to adopt more rigids policies in IVF. Selection of a single embryo with right 

developmental competence become the practices among the ART´s. Consequently, visual 

quality assessment of an embryo´s shape and development are main determinant of 

implantation and pregnancy in IVF. While this image selection method is universal in clinical 

practice, is subjective and time consuming. With the introduction of time-lapse imaging (TLI) 

this morphological assessment has become more objective and allows the identification of the 

very best embryo for uterine transfer. 

Henceforth, 40-60% of good quality time-lapsed embryo in IVF fail to conduct to 

pregnancy and only 4.7% result in live births3. Indeed, these low performant results could and 

should improve if one use complementary probing approaches.  There is a close correlation 

between morphological parameters and stages of development of the embryo at given time 

points and developmental competence such as defined in Alphaa and European Society of 

Human Reproduction and Embryology (ESHERE)  consensus4, but is dependent and subject to 

inter and intra-operator variations. Machine learning oriented clinical decision, coupling time-

lapse imaging and deep learning could potentially  improve this long-standing problem.   

                                                   

 

 

a
 International forum for scientists in reproductive medicine. For more info: http://alphascientists.org  

http://alphascientists.org/
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Following Payne and co-workers first publication to report in vitro monitorization of 

embryo developmental events5, many time-lapse based algorithms have been developed trying 

to investigate whether morphological and kinetics markers can assist in embryo selection and 

predict overall implantation rate. Therefore, many of these morphokinetics algorithms are 

study-specific, that is, they are mostly performant when applied to the clinics own data6, 

denoting clearly a biased orientation; failing when applied in a cross study. Compared to 

conventional embryo incubation, there is no clear differences in clinical pregnancy, live birth 

or stillbirth7, indeed there is a lack of robust and fully automated method to analyse TLI data. 
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2. HUMAN IN VITRO FERTILIZATION  

Globally more than five million babies have been born from assisted conception and this 

population is now increasing by over one million per annum - of which a large number was by 

in vitro fertilization (IVF)8. Although the procedure is not fully established until the last 

decades of the 20th century, the history of IVF goes back to several decades early. It was first 

studied in non-mammalian species. The first observation of sperm penetration into an egg was 

reported in Ascaris mystax by Nelson in 18519. Since then, studies in non-mammalian species 

have provide crucial details of the fertilization process.  

The first IVF on mammalian eggs was performed by S.L. Schenk, in 1878, working with 

rabbit and guinea pig, where he noted that cell division happens in culture after sperm were 

added to ova10. In 1935 Gregory Pincus, described the first experiment that allowed rabbit 

oocytes to mature in vitro, reaching the metaphase stage of meiosis II11. At same United State 

research institute as Pincus - Worcester Foundation for Experimental Biology, Chang in 1959 

showed that in vitro-matured rabbit oocytes could be fertilized in vitro and give rise to viable 

embryos. When transferred back to adult females, they produce viable offspring12. Chang's 

findings represented a significant advance. Still there was  a need for pre-incubation of the 

sperm in the female uterus prior to the attempt to fertilize the oocyte12. In 1963, Chang and 

Yanagimachi correct the initial Chang idea, when they identified experimental in vitro 

conditions through which hamster spermatozoa could fertilize oocytes, without prior in vivo 

sperm activation, and give rise to 2-cell stage embryos13. 

At beginning of the 20th century, reproduction researchers started to discuss the 

possibility and conditions that could allow the fertilization of human oocytes, with no progress 

until early 1960s, due in large part to the complexity of fertilization processes, despite the 

significant advances in animal research. The problems faced by the early human reproduction 

investigators include the control the oocyte maturation process, retrieve oocytes at a 

developmental stage suitable for IVF, the ability to activate sperm in vitro, define conditions 

that would promote fertilization as well as early embryo development in vitro and finally, a 

method through which early embryos could be transferred back to the uterus of the mother14–16. 

In 1965, Robert G. Edwards solved the problems of the access of mature oocytes for IVF 

and identify buffer conditions to promote their maturation in vitro, finding that they require 24 

hours of incubation before initiating the maturation process14,15,17. In the final years of the 

1960s Steptoe publish a laparoscopy method that allowed the visualization of the human 

female reproductive tract and opening the possibility to aspirate oocytes from the ovary18,19. 
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The combination of Edwards and Steptoe findings would be crucial to the born of the first 

healthy IVF conceived baby, named Louise J. Brown in 1978, as a result of transferring early 

embryos from IVF back into female uterus. The Edwards´s IVF process is shown in Figure 1.  

Human IVF is a process of insemination of female oocytes by sperm male cells, involves 

ovarian stimulation followed by retrieval of several oocytes, fertilization and embryo culture 

for 2-3 days (cleavage stage) or 5-6 days (blastocyst stage), under a restricted laboratory 

condition. Once  embryos are formed, they are placed in the  uterus. It was initially adopted for 

treatment of female with inoperable tubal blockage. Since 1978, when the first in vitro 

conceived normal healthy baby was born16,20 IVF has evolved considerably to become the most 

important ART to treat infertility worldwide21. Today IVF is indicated for treatment of absence 

of functional fallopian tube, endometriosis, low sperm counts and/or quality and refractory 

anovulation1,2.  

IVF born children are, in general, as healthy as children born after natural conception. 

However, is denoted a higher prevalence of multiple births associated with IVF treatments 

compared to normal pregnancies8,22–26, largely due to multiple embryo transfer during IVF 

cycles. Multiple embryo transfer results in multiple pregnancies and associated perinatal and 

postnatal health complications to the mother as well to the babies. To avoid the consequences 

of multiple pregnancy many countries adopted restrictive policies limiting the number of 

embryos to be transferred in a single cycle, adding a challenge to select only the most viable 

ones for transfer1,8. Making the identification of embryo with greatest potential to develop a 

foetus the main problems faced by this treatment. 
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Figure 1: Edwards´s IVF process
b
. By Steptoe´s Laparoscopy oocytes are retrieved prior to 

fertilization and placed in a culture dish with medium. Sperm are added and activated by the dish conditions. 

The fertilization resulting from sperm and egg fusion, form an embryo that undergo a series of cell division, 

since 8-cell stage when they are transferred back to the uterus, using thin needle. Further embryo 

development will take place between wall of uterus and endometrium.  

 

2.1. EMBRYO GRADING SYSTEMS 

Human embryo development begins with fertilization, a process by which the male 

spermatozoon fuse with female oocyte to give rise to a new organism – the zygote (1-cell)27. 

The single cell divide itself by first mitosis to become a two-cell embryo, at first cleavage 

about 19 hours after fertilization. The two-cell (2C) divide, during the second and third 

cleavage to 3-cell and 4-cell embryo on day 2 and so on28. These blastomeres cells, become 

smaller with each cleavage division until 8-cell stage, where they are loosely arranged.  At day 

4, embryo start to compact into a 16-cell morula and shortly develop a blastocoel – a fluid 

filled cavity27. Blastocoel formation define a blastocyst stage29. At day 5, the embryonic cells 

differentiate and inner cells become the inner cell mass (ICM) and the surround cells the outer 

cell mass (OCM). The ICM develop into the embryo and OCM into trophectoderm (TE). TE is 

responsible for the formation and subsequent expansion of the blastocoel which later 

                                                   

 

 

b
 Advanced information. NobelPrize.org. Nobel Media AB 2019. Wed. 23 Oct 2019. 

https://www.nobelprize.org/prizes/medicine/2010/advanced-information/ 

https://www.nobelprize.org/prizes/medicine/2010/advanced-information/
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contribute to the placenta30. At day 5-6, usually occurs a hatching, a process by which 

mammalian embryo escape from the multilayer glycoprotein membrane called zona pellucida 

(ZP). The early human embryo development is shown in Figure 2.  

 

 

Figure 2: Outline of early stages of development of pre-implanted human embryo. (A) oocyte at 

pronuclear stage at 19 hours; (B) 2-cell stage at 34 hours; (C) 3-cell stage at 37 hours;(D) 4-cell stage at 45 

hours; (E) 8-cell stage at 63 hours; (F) morula stage at 87 hours; (G) blastocyst stage at 105 hours; (H) 

expanding blastocyst at 114 hours, prior embryo transfer. Each embryo develops at different rate. Images 

kindly provided by Ferticentro, Fertility Study Center, S.A., Coimbra, Portugal.  

 

One of most challenging problem in infertility by IVF treatment is a precise embryo 

quality evaluation, crystalized in the selection of the embryo with greatest developmental 

competence. Examination and therefore graduation of embryo resulting in the improved 

pregnancies outcome and reduced number of embryos to be transferred to the uterus, thus 

avoiding multifetal pregnancies31. 

Currently practice recommend Single embryo transfer (SET)32. SET has a high benefit to 

the mother as well to the babies31,33,34. To select the most viable and competent embryo, 

elegant grading systems have been developed over time. They vary according to stage of 

development of the embryo and rely in visual morphology and, with the introduction of time-

lapse imaging technology, kinetics analysis35–37 (see time-lapse section, 2.2).  

Most of grading schemes are based in degree of fragmentation, presence and number of 

nuclei, number and symmetry of blastomeres. Blastocysts are evaluated considering expansion 

of blastocoel, the number and properties of cells in ICM and TE. Key morphological features 
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for embryo scoring are shown in Figure 3. However, all different scoring systems can be 

grouped considering three main stages: zygote, embryo cleavage and blastocyst38. With the 

introduction of TLI, researchers and embryologist focus on the key time of specific 

developmental events such as pronuclei  fading, first cleavage or duration of cell cycle39.  

To reduce inter-laboratory variations and in the quest of an international consensus in the 

morphological assessment of embryo, in 2011, the Alpha Executive and ESHRE Special 

Interest Group of Embryology, published the results of a convened workshop to establish 

common criteria and terminology for grading oocytes, zygotes and embryos that would be used 

in routine application in any IVF laboratory4. The consensus is presented at each scoring 

systems.  

 
Figure 3: Key morphological features at different developmental stage. (A) fertilized oocyte with 

pronuclei and polar bodies (B) Cleaved embryo showing blastomeres and fragment formation and (C) 

blastocyst with blastocoel fluid cavity, ICM (Inner Cell Mass) and TE (trophectoderm). ZP stand for Zona 

Pellucida. Image A adapted from
39

, B and C kindly provided by Ferticentro, S.A. 

 

2.1.1. PRONUCLEATE OOCYTE SCORING 

Normally the zygote evaluation is done about 16-18 hours after fertilization, considering 

the formation and subsequent size increase of pronuclei, the symmetry, size, number, quality 

and distribution of nucleoli and the breakdown of pronuclear membrane39. 

Payne and colleagues were the first to document earliest events of embryo development 

by video recording body extrusion and formation of the male and female pronuclei and relating 

them with embryo quality5.   

The fact that alignment and number of nucleoli within each nucleus can be used to assess 

human embryo developmental outcome, was shown by Scott & Smith40 and Tesarick & 
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Greco41, leading Scott and co-workers to develop pronuclear scoring system42, widely accepted 

in the reduction of embryo number required to achieve pregnancy39 and selection of embryos 

with better implantation rates. Scott scoring consider five grades based on both number and 

distribution of nucleoli in the pronuclei, been 1 the high quality one and 5 for one with poor 

developmental potential. Zygote grade 1 to 3 (Z1 to Z3) are proper for IVF (See Table 1, for 

comparison)43. 

The Alpha Executive and ESHRE Special Interest Group of Embryology consensus4 

consider as optimal oocyte morphology that with a spherical structure enclosed by a uniform 

zona pellucida, uniform translucent cytoplasm free of inclusions and a size-appropriate polar 

body. They propose using three categoric systems for grading pronuclei symmetry: category 1 

as good quality for symmetrical one, 2 representing medium quality and category 3 for 

abnormal and lowest quality (Table 1).  

In 2014, Aguilar and co-workers investigate morphology of fertilization events such as 

second polar body extrusion, pronuclear fading and length of S-phase by time-lapse 

technology, concluding that the timings they occurred, 3.3-10.6 h, 22.2-25.9 h and 5.7-13.8 h, 

respectively, were linked to successful embryo implantation44. 

Gardner and Balaban analysing morphological scoring systems, such as presented by 

Aguilar, time-lapse imaging technology and associated algorithms for computer-assisted 

scoring, propose as key features for high viable oocytes, the following characteristics:  number 

of nucleolar precursor bodies (NPB) in both pronuclei never differed by more than 3; NPB 

must be always polarized or not polarized in both pronuclei but never differently polarized and 

the angle from the axis of pronuclei and the furthest polar body must be less than 50°39.  

 

Table 1: Alpha and ESHRE Consensus scoring system for pronuclei. Adapted from
4
. 

Category Rating  Description 

1 Symmetrical Equivalent to Z1 and Z2 from Scott scoring (2003) and Gardner & 

Balaban key features for high viable oocytes 

2 Non-symmetrical  Other arrangements, incluidng peripheral sited pronuclei  

3 Abnormal  Pronuclei with one or no NPB  

 

2.1.2. CLEAVAGE STAGE SCORING  

There are many scoring systems based on morphological features of the splitting embryo 

such as degree of fragmentation, symmetry of the blastomeres, presence of multinucleation or 
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compaction status45–50. The Alpha and ESHRE consensus4 consider that an optimal day 2 

embryo would have four equally sized mononucleated blastomeres in a three-dimensional 

tetrahedral arrangement, with 10% fragmentation. Day 3 embryo would have 8 equally sized 

mononucleated blastomeres, with 10% fragmentation (Table 2) at which should be added the 

cell number. 

 

Table 2: Alpha and ESHRE Consensus scoring system for cleavage stage. Adapted from
4
. 

Category Rating  Description 

1 Good  Less than 10% fragmentation, stage-specific cell size and no multinucleation  

2 Fair  10-25% of fragmentation, stage-specific cell size for majority of cell and no 

evidence of multinucleation 

3 Poor  Severe fragmentation (more than 25%), Cell size not stage-specific and evidence 

of multinucleation 

 

Gardner and Balaban propose mononucleated blastomeres, equal cell size and less than 

20% of fragmentation for early cleavage and adding at least 7 blastomeres for day 3 cleavage 

as key morphological features of the cleavage stages39.  

 

2.1.3. BLASTOCYST SCORING  

Blastocyst stage is characterized by formation of blastocoel at the centre of the embryo, 

surrounded internally by TE and ICM. Externally is surrounded by ZP until hatching51. Refer 

to Figure 3C.  

Gardner and Lane52 introduced the blastocyst transfer in human IVF in 1997. Since then 

several grading systems were proposed for embryo blastocyst grading. The commonly used is 

the Gardner classification53. According to this grading system each blastocyst embryo consists 

in three individual scores. The development of blastocyst ranges from 1 to 6, being 6 for the 

hatched blastocyst. The ICM is qualified as A, B or C, being A for the tightly packed and many 

cells ICM. The TE quality are classified as a, b or c, being a for one with many cells that form 

tightly epithelium. Indeed, Van den Abbeel and co-workers54 confirm that the degree of 

expansion of blastocyst, assessment of high quality TE and ICM increase pregnancy and live 

birth rates. The same authors concluded that blastocyst with ICM grade A may reduce the risk 

of early pregnancy loss.  Du and colleagues55, using logistic regression analysis, confirmed the 

importance of blastocyst expansion, as well ICM and TE quality but in different extension, in 
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the prediction of live birth. Zhao et al., in a recent publication re-investigate the expansion of 

blastocoel as essential for successful pregnancy56.  

For the Alpha consensus an optimal blastocyst stage embryo should be fully expanded, 

with a distinguished and many cells ICM and cohesive epithelium TE, as shown in Table 3.  

 

Table 3: Alpha and ESHRE Consensus scoring system for blastocyst stage. Adapted from
4
. 

 Categoty Rating  Description 

Stage of 

development  

1 

2 

3 

4 

  

Early blastocyst expanded   

 

Hatched/hatching  

ICM 1 

 

2 

3 

Good  

 

Fair  

Poor  

Proeminent, easily discemible with many cells that are 

compacted and tighly adhered toghter  

Easily discemible with many cells that are loosely and grouped 

toghter  

Difficult to discern, with few cells 

TE 1 

2 

3 

Good 

Fair 

Poor 

Many cells formimg a cohesive epithelium  

Few cells formimg a loose epithelium 

Very few cells  

 

Only about 20-40% of embryo morphologic-based characterization will be implanted57. 

With the advances in TLI many researchers starting to use these images for grading day 5 

embryos. Santos Filho58 presented in 2012, a semi-automated method using Support Vector 

Machine (SVM) classifier. In 2015, Singh et al.59 following Santos Filho studies, publish a 

fully automated method for segmentation and measurement of TE region of blastocyst. Both 

studies proposed to automate human embryo analysis and eliminate the inter-observer 

variations from previously grading methods. 

 

2.2. AUTOMATION OF HUMAN EMBRYO ANALYSIS  

Most of grading systems for human embryo quality assessment are subject to inter- and 

intra-observer variation. To mitigate this problem computer-assisted scoring and automation of 

embryo visualization has been shown to improve embryo quality assessment by providing 

quantitative and objective information to complement traditional morphological analysis.  
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2.2.1. TIME-LAPSE IMAGING TECHNOLOGY  

Time-lapsed animal embryos observation were reported as early as the 1950’s60, but had 

not been applied to human embryos until the late 1990’s5. Payne and colleagues5 monitoring in 

vitro embryo events such polar body extrusion and formation of the male and female pronuclei, 

during 17-20 hours of intracytoplasmic sperm injection (ICSI). The team analysed such 

fertilization events in 50 oocytes that underwent ICSI in a Perspex chamber equipped with an 

Olympus IX-70 inverted microscope.  The vacant decades from animal to human experiments 

were due to technical limitations in the manufacture of the incubator and high-resolution 

automated imaging technology. Early monitoring of human embryo was performed with 

internal equipment mainly for experimental purposes and observing only one embryo/oocyte at 

a time5,61.  

Only in 2010, the time-lapse monitoring of human embryos for therapeutic purposes has 

been emerging in the literature, with the use of commercially available time-lapse devices62. 

Other technologies has been experimented such as preimplantation genetic screening63,64, 

metabolomics or proteomics65 to identify embryo with high implantation potential35,66, but 

some of them require the use of complex technology, embryo cryopreservation35,66  and thus 

increasing treatment expenses57.  

Over recent years time-lapse systems (TLS), has been presented as alternative to 

traditional displacement of embryo from conventional incubators for quality assessment. This 

non-invasive microscopic technology offers solutions to overcome most of the problems of the 

standard embryo morphological analysis. It allows safely incubation of embryo in stable 

culture conditions, minimizing the potential impact of changes in temperature or gas 

composition, enhance our knowledge of embryo kinetics and allow the evaluation of 

quantitative and qualitative parameters67, improving single blastocyst selection for SET3,66 and 

reducing inter- and intra-observer variations (Figure 4). TLS provides uninterrupted and 

precise timing events of embryo development such as pronuclear formation, early cleavage, 

cell cycle intervals, cell division and initiation of blastulation, without removing them from 

incubators67. Aiding the likelihood of selecting the best single embryo for uterine transfer.  
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Figure 4: Time-lapse-based and traditional embryo assessment. TLM eliminate periodic transfer 

of the embryos to microscopy for morphological assessment, allowing stable culture conditions for embryos 

development. The time points for quality assessment are according from Alpha and ESHRE consensus. 

Adapted from
67

.  

 

Nowadays, there are four commercially available time-lapse systems: Primo Vision 

(Vitrolife), Embryoscope (Fertilitech)68, Eeva (Early Embryonic Viability Assessment, 

Auxogyn) system and Ecso Miri (Ecso Medical)69. All of them consist on the same technology 

strategies, a digital inverted microscope camera that takes pictures of embryos at selected 

intervals. With proper software, a video follows their development. Ecso Miri and 

Embryoscope both use a compact, self-contained incubator with built-in camera. While, Primo 

Visio and Eeva use cameras that is placed in a traditional incubator67. Each system differs in 

source of light and in the way that embryo is transported to the field of view. Primo Visio, 

Embryoscope and Ecso Miri uses bright fields technology allowing the assessment both 

kinetics and morphologic parameters, instead Eeva uses dark field technology thus allowing 

limited morphologic parameters70.   

There are many evidences of the technology usefulness, but does the use of TLM 

improve outcomes for embryo incubation and selection? Several studies have claimed 

favourable outcomes in prediction of blastocyst formation36,71,72, implantation73,74 and 

pregnancy rate74. However as shown by Chen et al.75 in a meta-analysis and systematic review 

of randomized controlled trials, clinical TLI may have the potential to improve IVF outcomes 

but currently there is insufficient evidence to support regular TLI use when considering 
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ongoing pregnancy rates and blastocyst formation rates, that is, there no sufficient evidence to 

support that TLI is superior to conventional methods for human embryo incubation and 

selection. The idea are supported by Armstrong and co-workers7 as well as several other 

authors76–78.  

High and successful implantation IVF is achieved by transferring embryos with highest 

developmental competence79. Thus, to select just one highly developmental competent embryo, 

reliable and informative biomarkers is sought.  

Payne and other TLM findings encourage many other groups to investigate whether 

kinetic markers can assist in embryo selection and, thus, predict implantation potential.  

2.2.2. TIME-LAPSE IMAGING-BASED ALGORITHMS  

The first algorithm designed to improve clinical outcomes by predicting embryo viability 

come from Wong et al.36. The authors correlate time-lapse image analysis and gene 

expression profiling through preimplantation development from the zygote to the blastocyst 

stage, predicting which embryo will reach blastocyst stage using three dynamics parameters: 

cytokinesis, time between first and second mitoses and time between second and third mitoses.  

After the publication of consensus paper on morphological criteria for embryo 

assessment from Alpha and ESHRE experts4, late in 2011, and the advances of time-lapse 

monitoring imaging technology allowing the mapping of morphological changes with exact 

timepoint5,35 coupled, in time, to the definition of such criteria80,  several studies have been 

published describing morphokinetic algorithm based on parameters defined by time-lapse 

imaging to improve implantation rate.  

Meseguer team81 and Basile et al.82 presented algorithms that select the best embryo for 

transfer by morphologically screening embryos and assessing them for the presence of 

exclusion criteria. These algorithms follow different hierarchical classification trees with eight 

morphokinetic scoring levels (A+ as the highest to F as the lowest). Meseguer classifies 

embryos through a combination of morphological assessment, inclusion and exclusion criteria. 

Indeed, this algorithm consider not only morphological criteria but also kinetics markers.  

Conaghan and co-workers83 using data from five United State fertilization clinics, 

present an algorithm based on early cleavage time intervals, that combine time-lapse image 

analysis with cell-tracking software, Eeva to measure early embryo development and generate 

blastocyst predictions by day 3. It includes two categories: Eeva high and Eeva low. Vermilyea 

et al.84 extend Conahan studies adding Eeva medium to the previously categories. Using data 

from six clinics and Eeva imaging systems, the authors examine and stablish relationships 
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between computer outputs derived by Eeva (High, Medium and Low) with embryo 

implantation and clinical pregnancy. Eeva algorithm could provide valuable information, 

improve the success of cleavage stage and facilitate the trend of SET.  

Goodman et al.85 designed an algorithm based on morphological and kinetics 

parameters, for day 5 embryo selection. The embryo is select by an accumulation of positives 

and negatives points, from 4 to -2 points. This algorithm does not improve clinical 

reproductive outcomes but is associated with blastocyst implantation rate.  

In the same year (2016) Liu et al.86 used embryo with known implantation data (KID) at 

day 3. The algorithm uses quantitative features such as poor conventional day 3 morphology, 

abnormal cleavage patterns and qualitative ones as pronuclear fading to 5-cell stage and 

duration of 3-cell stage. Grading them in 7 levels from A+ (highest) to F (lowest), using a 

morphokinetic algorithm with pronuclear fading as reference starting point.    

According to Peterson et al.87 the majority on these algorithms are at risk of only 

performing adequately on dataset it was developed because they are based on specific data 

with few been tested in prospective trials. Some of these algorithms37,82 have been tested on 

independent datasets or in other clinical settings with varying outcomes. Petersen and 

colleagues87 presented a KIDScore algorithm, that like a Liu et al. is also based on KID data 

from 24 clinics, ranking time-lapse monitored embryos according to their blastocyst formation, 

independently of culture conditions and fertilization method. This algorithm does not require 

initial screening phase based on morphology and score the embryos only based on decision 

tree (from 5 to highest to 1 to the lowest). The developed KIDScore algorithm are based on 

pronuclei number at 1-cell stage and time from insemination to 2-cell, 3-cell, 5-cell and 8-cell 

stage, and predict implantation potential with area under the curve (AUC) of 0.650, obtaining 

AUC of 0.745 for blastocyst development and 0.679 for its quality.  

Kovacs et al.66 in prospective, randomized and controlled studies carried in two clinics 

from 2012-2015, determined whether a selection of a single blastocyst based on an algorithm 

comprising kinetic and morphologic scores assessed through continuous time-lapse monitoring 

results improve clinical outcome compared to embryo selection based on morphology alone 

and assess whether a time-lapse score based on kinetic and morphologic parameters was 

predictive of implantation, concluding that selection of a single blastocyst based on 

information derived from time-lapse monitoring can aid embryo selection for single embryo 

transfer. 

Storr et al.6 (2018) in a prospective study examined the agreement among some of these 

algorithms and between then and embryologists, found that is highly variable and may be site-
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specific and they involve low number of embryos from single center and lack of validation in 

independent studies. Otherwise, in recent studies, Armstrong and colleagues7, aimed to 

determine the effect of a time-lapse systems (with or without assisted embryo selection 

software) compared to conventional embryo incubation and assessment on clinical outcomes in 

couples undergoing assisted reproduction, conclude that there is insufficient evidence of 

differences in live birth, miscarriage, stillbirth or clinical pregnancy to choose between the 

time-lapse systems and conventional incubation. These results disagree with the meta-analysis 

of randomized controlled trials done by Pribensky and co-workers3 showing increasing of 

pregnancy successful rates, increase of live birth rates and no significant difference in stillbirth. 

Similar results were found from prospective, blinded, large-sample and multi-center study, 

carried by Vermilyea et al.37 showing that computer-automated time-lapse analysis correlate 

well with pregnancy rate and embryo implantation and gave objective and quantitative 

information to embryologists to improve embryo selection. 

The infancy of this fascinating field has, of course, some inconsistence across studies, 

inviting us to be cautious in the interpretation of time-lapse images and pursue high quality 

evidence studies in the implementation of this system and based algorithms.  
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3. MACHINE LEARNING  

Artificial Intelligence (AI) go backs to 1950´s when computers science pioneers start to 

hypothesize automate intellectual tasks performed by humans. Thereby, AI include Machine 

learning (ML) and Deep learning (DL), as such many more other approaches that does not 

involve a learning process88. Refer to Figure 5 with AI, ML and DL timeline and basic 

supporting idea.   

ML is the practice of using algorithms - a set of rules that must be followed to solve a 

specific problem, to analyse data, learn from that data, and then make prediction about new 

data89,90. The supporting idea of ML is learning from the data and the ability to derive 

predictive models without a need for strong assumptions about underlying mechanism91. The 

performance and accuracy of the ML algorithms depend on how well trained was to classify 

and process information. Typical ML workflow involves data harmonization, representation 

learning, model fitting, validation, deployment and updating. The objective of harmonization 

step is the transformation of the information in order to extract relevant features (representation 

learning) for training the model (model fitting). A final step involves testing and evaluation 

(validation) of the training model92. ML algorithms comprises four broad categories: 

unsupervised, supervised, semi-supervised, and reinforcement learning.  

 

SUPERVISED MACHINE LEARNING 

In this kind of learning process, the goal is to build a concise model of distribution of 

class labels in terms of predicted features. The resulting classifier is then used to assign class 

labels to the testing instances where the values of predictor features are known, but the class of 

the label unknown93. It consists of learning to map input data to known targets, given a set of 

examples. That is, having an input variables (x) and an output variable (y), is used an algorithm 

to learn the mapping function from the input to the output such as y = f(x).   

This type of learning algorithms has a supervisor that assure and supervise the process. 

The predictions from training data by the algorithms is corrected by supervisor until reaches 

optimal performance90,93. Supervised machine learning refers typical to regression and 

classification. That is, prediction on continuous scale and prediction on categorical scale. It 

includes some popular algorithms such as regression (linear and non-linear ), random forest 

(RF) support vector machines (SVM) and Artificial Neural Networks (ANN)  often used in 

prediction and classification problems88.  
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UNSUPERVISED MACHINE LEARNING  

Unsupervised machine learning seek  interesting transformation of the input data with no 

helping targets for data visualization, denoising clustering detection, etc., to better understand 

the associations presented in the data88.  The goal is typically improve our insight of a dataset 

before attempting a supervised learning approach and is usually indicated for data exploration. 

Examples of this type of learning algorithms are dimension reduction to discover the rules 

under a large amount of data and clustering to discover inherited groupings in the data94. This 

type of ML includes Apriori Algorithms for association rules learning and K-means for 

clustering problems94,95, latent structures projections and principal component analysis.  

 

SEMI-SUPERVISED MACHINE LEARNING 

Semi-supervised learning is a learning paradigm concerned with the study of how 

computers and natural systems such as humans learn in the presence of both labelled and 

unlabelled data. Traditionally, learning has been studied either in the unsupervised paradigm 

(e.g., clustering, outlier detection) where all the data are unlabelled, or in the supervised 

paradigm (e.g., classification, regression) where all the data are labelled96. This type of 

algorithms works better when using small amounts of labelled data and a large amount of 

unlabelled data97. 

 The goal is to understand how combining labelled and unlabelled data may change the 

learning behaviour, and design algorithms that take advantage of such a combination. Over the 

years has aroused great interest in machine learning and data mining because it can use readily 

available unlabelled data to improve supervised learning tasks when the labelled data are 

scarce or expensive96.  

 

REINFORCEMENT MACHINE LEARNING 

Reinforcement learning begun capture the attention after the success of Google 

DeepMind98.  In this type of ML, the algorithm learns how to act given an observation of the 

world. Every action has some impact in the environment, and the environment provides 

feedback that guides the learning algorithm. In reinforcement learning, an agent receives 

information about its environment and learns to choose actions that will maximize some 

reward99. Currently, deep learning is enabling reinforcement learning to scale to problems that 

were previously intractable, such as learning to play video games directly from pixels. Are also 



 

Embryo selection through time-lapse image analysis: a Deep Learning approach 

    November 2019 | 18  

 

applied to robotics, allowing control policies for robots to be learned directly from camera 

inputs in the real world99. 

3.1. DEEP LEARNING 

Deep learning (DL) is a sub-field of machine learning were algorithms or models are 

based on structure and function of human brain neural networks. Is a mathematical framework 

for learning representations from data. The networks are called Artificial Neural Network 

(ANN). ANN is computing systems comprising connected units of nodes. The nodes are 

organized into layers. If the ANN has more than one hidden layer is called a deep ANN.  The 

signal received by a node is processed and transmitted to downstream nodes within a network. 

Adding more hidden layers to the network allows a deep architecture to express more complex 

structures as the hidden layers capture the nonlinear relationships100.  

 

Figure 5: Artificial Intelligence landscape, showing timeline and differences in data processing. 

Deep Learning is a modern branch of machine learning, that learn from representation layers of rules. 

Artificial Intelligence use data and rules to program algorithms, instead machine learning feed in data and 

answer to develop algorithm.  

 

DL differs from traditional ML in the number of layers, their connections and how 

representations are learned from raw data101. Indeed, DL allows models with multiple 

processing layers based in neural networks to learn representations of data with multiple levels 



 

Embryo selection through time-lapse image analysis: a Deep Learning approach 

    November 2019 | 19  

 

of abstraction100. In DL process every layer produces a representation of the observed patterns 

from data of previously layer by optimizing a local unsupervised criterion. The key aspect of 

deep learning is that these layers of features are not designed by human engineers, instead they 

are learned from data using a general-purpose learning procedure100 That is, DL completely 

automate the feature engineering, instead manually engineer good layers of representations for 

the data all features are learnt in one pass rather than having to engineer them, often replacing 

sophisticated multistage pipelines with a single, simple, end-to-end deep-learning model88.  

 

 

Figure 6: Architecture of Artificial Neural Network and Deep Learning. Traditional ML have a 

basic ANN architecture with three layers of representations toward the final outputs, instead DL model has 

multiples layers of neural networks (deep in DL). These layers of representations allow to be efficiently 

tuned and extract deep structures from inputs data to serve as high-level features for a better prediction. 

Adapted from
101

.  

 

As fast-growing branch of machine learning, the representations layers of DL tries to 

model hierarchical features behind the raw data, being images102,103, objects104, sounds105,106, 

text107 or language108, and classify then by stacking multiple layers of representations.  

Google DeepMind AlphaGo project, Google translator, Google´s street view and image 

search engine, Android voice recognition109, Microsoft real time language translation or 

Apple´s virtual assistant Siri, are all example of successfully applications of DL to ruling Big 

data for competitive advantages110.  

DL has been widely used in medical and clinical imaging to automate and extract 

relevant features. Example applications include the use of computed tomography images for 

classification of interstitial lung diseases111 and for anatomical organ or body-part-specific 
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classification112, x-ray images for classification of tuberculosis manifestation113, colour fundus 

images for detection of haemorrhages114 and retinopathy diabetic115. Or the use of Magnetic 

Resonance Imaging for early diagnosis of Alzheimer disease116, to predict risk of osteoarthritis 

in knee cartilage117 and to segment multiple sclerosis lesions118. In genomics it was been used 

to predict the splicing activity of individual exons119, specificities of DNA and RNA binding 

proteins120 or chromatin marks from DNA sequence121. This unprecedent success of DL 

applications come from advances in central processing units (CPU´s) and central graphing 

units (GPU´s), availability of large amount of data and developments of learnings 

algorithms100,122.  

 

3.1.1. CONVOLUTIONAL NEURAL NETWORK 

Convolutional neural network (CNN) was inspired by Hubel and Wiesel’s work on the 

cat’s visual cortex. Is the most employed DL architectures123. Its architecture can be defined as 

an interleaved set of feed-forward layers implementing convolutional filters followed by 

reduction, rectification or pooling layers. Each layer in the network originates a high-level 

abstract feature 123. Given the huge number of nodes and parameters to be trained most of the 

DL architectures are not proper for multidimensional input correlated data such an image. 

Different from other deep structures, nodes in CNN extract features of small portion of input 

image95. CNN has been designed to better utilize spatial and configuration information by 

taking 2D or 3D image as input data122,124. 

Standard CNN are composed structurally by convolutional layers interspersed with 

polling layers, followed by fully connected layers. And, in some cases, by a softmax layer. The 

convolution filters are applied many times to an image, resulting in series of overlapping 

receptive fields – the input image is convolved using several small filters, the resulted image is 

subsampled and are a new input image for the next convolution layer. The process is repeated 

until top quality features can be extracted. At the end CNN use fully-connected layer to 

convert the feature format to 1D for final classification (for full review of CNN and DL 

structures see 95,100. Typical CNN architecture (Figure 7) involves convolutional, pooling and 

fully connected layers, Rectified linear unit (ReLU) activation function, loss function and 

batch normalization.  

A convolution layer is largely used in computer vision and image analysis. Comprises 

several small two-dimensional filters and feature detectors. These filters are learnt as part of 

the network training which is known as representation learning – the training is done alongside 
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the classifier training. These learnt filters are convolved with the input image and the resulting 

feature responses are passed upstream to the next processing layer125. These convolutional 

filters share the same parameters in every small portion of the image, reducing the number of 

hyperparameters in the model124. The convolution layers are normally interleaved with pooling 

layers.  

 

 

Figure 7: Typical CNN architecture. Sequence of convolution and subsample layers of CNN to 

efficiently process the input image. 

 

Polling layers, take advantage of the stationarity properties of images, annotating the 

mean, the maximum and other statistics of the features at various locations in the feature’s 

maps, reducing the variance and propagating dominant features. The most common polling 

types are maximum (max) pooling and average or mean pooling. The max pooling capture 

only the dominant feature response at the poling window. Average polling computes and 

propagate the mean of all features of the pooling window122. Figure 8 shows examples of both. 

This subsampling also contributes to reduction number of hyperparameters in the model and 

make the optimization process convenient100.  

 

Figure 8: Examples of simple representation of max pooling and average pooling.  
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After interleaved convolution and pooling layers the deep neural network is completed 

by a fully connected layer. As indicated by the name, in fully connected layers all nodes from 

a layer are linked with elements of preceding layer, resulting in a dense connecting pattern, as 

shown in Figure 9. To pass from one layer to the next, a set of units compute a weighted sum 

of their inputs from the previous layer and pass the result through a non-linear function100. 

Nowadays, the most popular non-linear function is Rectified linear unit (ReLU), an activation 

function.  

 

Figure 9: Graph representation of two fully connected layer (k-1) and (k), connected by a weight 

matrix, w (k).  

 

ReLU is an activation function that combines non-linearity and rectification layers in 

CNN. The ReLU formula is f (x) = max (0, x), where x is the input ReLU, as showing in Figure 

1088. This activation function and its variants shows superior performance compared to 

hyperbolic or logistic ones. ReLU propagate the gradient efficiently reducing the likelihood of 

vanishing gradient problem, threshold negative values to zero, solving the cancellation 

problem and result in more sparse activation volume at its output (providing robustness in 

small changes in input such as noise) and consist only in simple computational operations been 

more efficient to implement126.  
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Figure 10: Visualization of ReLU non-linearity 
88

. 

 

Another important component of CNN is Batch normalization. Batch normalization 

normalize or standardize the output distribution of every node in a layer, to achieve stable 

distribution of activation values throughout training127. To do that it normalizes the output of a 

previous activation layer by subtracting the batch mean and dividing by the standard deviation, 

putting all data point in the same scale88:  

 

i. z = x - mean/std, normalize output x from training function  

ii. z * g, multiple normalize output z by arbitrary parameter g  

iii. z*g + b, add arbitrary parameter b to resulting product (z*b) 

 

Additionally, there are two key concepts to configuring learning process in deep CNN: 

Loss function and optimizers. The loss function is the quantity to minimize during training, 

thereby represent a measure of success for the task that we trying to solve. Loss function 

measure the discrepancy between the output of the network depend on the model parameters 

and the expected results, that is, the true class label in classification tasks, or true level in 

prediction class128. The optimizer, in other hand, specifies the exact way in which the gradient 

of the loss will be used to update parameters. The loss function compares the predictions to the 

targets, producing a loss value that measure the match of the network’s predictions and 

expectations. The optimizer uses this loss value to determine how learning proceeds88.  
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3.1.2. DEEP LEARNING WITH KERAS AND TENSORFLOW 

Keras is a high-level neural network Application Programming Interface (API), written 

in Python that can run on top of TensorFlow (among others, like Theano). This modular, 

extensible and open source API enables fast execution with deep neural networks and allows 

easy and fast prototyping. Keras offers consistent and simple API, minimizes the number of 

user actions required for some common tasks129. Provide high-level building blocks for 

developing deep-learning models. Require a specialized well-optimized tensor library do that, 

serving as the backend engine. One of this backend deep-learning execution engines of Keras 

is TensorFlow130,131.  Over TensorFlow, Keras can run on both CPUs and GPUs. However, on 

GPU TensorFlow encompasses a library of well-optimized deep-learning operation132.  

TensorFlow is an open-source software library, developed and released in 2015 by 

Google for systems capable of building and training neural networks, using different datasets. 

Initially, the main goal was to detect and decipher patterns and correlations, similarly to the 

learning and reasoning of humans133. TensorFlow uses a unified dataflow graph to represent 

both the computation in an algorithm and the state on which the algorithm operates132. It uses 

numerical computation and data flow graphs134.  

TensorFlow name derived from the operations that neural networks perform on “tensors” 

that are multidimensional data arrays. Since is designed for numerical computation it uses 

nodes and graph edges. The nodes represent mathematical operations and the graph edges 

represent the tensors communicated between them131,134. Also, this framework improves 

efficiency and modularisation in distributed computation by TensorBoard, a supporting tool for 

in-depth visualization of training process, facilitating global representations of complex model, 

debugging and checking along development of the model135 (Figure 11).  To perform an action 

in TensorFlow, is required to perform some other tasks before the execution of the action, and 

in Keras these tasks can be performed with a simple line of code129,130.  
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Figure 11: Deep neural network with two hidden layers in TensorBoard. TensorBoard provide 

supporting tool for deep visualization of training process and simplify the model representations. Adapted 

from 
135

.  

 

4. AIMS  

The objectives of this thesis project were to shows the viability of deep learning 

approach for embryos selection, construct an analysis pipeline for embryos classification and 

acquire acquittance in vast and complex domain such as ML. The framework is based on 

TensorFlow open source and Keras libraries and are developed to extract and classify features 

associated with embryos outcomes to assist the clinician in selection of embryos with better 

prognosis.  
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II. MATERIALS AND METHODS 

1. IMAGE ACQUISITION AND PREPARATION  

This study includes 117 Human embryo images, gently provided by Ferticentro, 

stored in JPEG format and labelled by EmbryoscopeTM software classified from 1(worst 

quality) to 6 (best quality)(Figure 12A). The images were captured using EmbryoScope  

time-lapse system (VitrolifeTM, Sweden), with a built-in microscope. The system captures 

the images 110 h post-insemination, using single red LED (635 nm) every 20 minutes, with 

seven focal depths of the embryo taken each time.  

There were 79 day-5 embryos images scored between 1 and 4, and 38 images scored 

as 5 or 6 (Figure 12B). Two images were removed due to dark background.  We labelled the 

images classified by the software score 5 and 6 as prone to be implanted and categorized as 

good quality and 1- 4 as not prone to be implanted as poor-quality ones, following the 

Adolfsson et al. study in which highest live birth and pregnancy rates was superior with 

KIDScore 5 and 6 embryos, decreasing with KID 4 and 3 and being KID 2 and 1 similar 

live birth and pregnancy rates136. The KID scores reflect implantation potential by analysing 

large database of embryo development with known clinical outcome. The models are 

developed by analysing how embryo morphokinetics, cleavage patterns and morphology 

correlates with implantation outcome after transfer87. 

For this work all images are directly used as the input data, without any pre-

processing methods, such as deconvolution137 or algorithms to identify cells manually138. 

Images modifications are warranted to improve training process by artificially increasing 

the search space with image variations. The images are split into training, validation and 

test groups. 80% are allocated to training dataset and the remaining 20% to the test dataset. 

The datasets did not overlap. The framework is shown in Figure 13.   
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Figure 12: Pattern of collected images. A. Images representing each KIDScore group. KIDScore 1 

embryos are the ones with too fast start up to three cells. The group 2 embryos have too slow initial 

development. KIDScore 3 embryos have irregular divisions with increasing development speed between the 

two and five-cell stages. KIDScore 4 embryos are composed of two types of embryos: those that have 

irregular divisions and those that do not reach eight cells prior to 66 hours post insemination. Group 5 and 6 

are those that have passed all avoidance criteria
136

. B. Images groups distributions. Images 1, 2, 3 and 4 are 

classified as poor quality ones, that is not prone to be implanted. Images 5 and 6 are classified as good quality 

ones and prone to be implanted. Images kindly given by Ferticentro, S. A.  

 

2. MODELS DEFINITION AND TRAINING   

To implement our framework, we used TensorFlow version 1.1.0 (Abadi, 2015) and 

the Keras 2.2.4 for defining, training, and evaluating models. Training of our CNN method 

was performed on a server running the R version 3.5.1 (2018-07-02) under Windows 10 

Home, 64-bit operating system. This server is powered by four NVIDIA GeForce GT 620M 

with 8 GB of memory and 1.70-GHz Intel® Core ™ i5 CPUs. 

Our Deep Learning framework is based on CNN, as our input data are raw image instead 

of extracted features, which reduce the dimensionality of learnable parameters, and alleviate 

the training process, through several constraints on the synaptic weights139. We resize the input 

image to 28 x 28, exploiting local features with convolutional receptive field of 3 x 3, reducing 

parameters and to force network going deeper. Resizing the images data make them more 

analytically computational, less expensive and thus faster, gaining space storage, transmission 

time and management efficiency and querying124.  
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The CNN architecture comprise several convolutions to pass the results to the next 

layer125, pooling layers to combine the outputs of nodes into single nodes100,122 and fully 

connected layers that is the outputs. The first two 2D convolutional layers are combined with a 

max pooling operation, with the pool size 2×2 to reduce the size of feature maps down to two 

times88, two ReLU activation functions at each convolutional layer, as neuron model to avoid 

vanishing the gradient problem and a dropout layer – a regularization method based on 

efficient ensemble learning, with dropout rate of 0.25 to prevent overfitting125. The 2D 

convolutional layers will deal with the 2-dimensional matrices input images. The model 

follows with the repetition of the previously architecture. The model architecture ends with a 

fully connected layer and a softmax output layer to map the nonnormalized output to a 

probability distribution over predicted output classes, which means that the model will make 

its prediction based on the option with highest probability95,100. The final layer outputs a length 

2 vector (probabilities for each class 0 and 1) using a softmax activation function (Figure 14, 

model architecture).  

To compile the model three parameters were used. The optimizer to determine how fast 

the optimal weights are calculated, loss functions and accuracy metrics to accuracy score when 

we train the model.  As optimizer we chose Adam which adjust learning rate throughout the 

training. The method is straightforward to implement, is computationally efficient, has little 

memory requirements, are appropriate for non-stationary objectives and problems with very 

noisy and/or sparse gradients140. The hyper-parameters have intuitive interpretations and 

typically require little tuning140. To estimate the error of the model and update the weight to 

reduce the loss of next evaluation we choose binary cross entropy classification, that is the 

state-of-art for binary classification problems.  

The fit() function is used to run CNN on our training data. The object is our model, 

and x and y coordinates are our training data in a list of inputs images. The batch_size 

reflects the number samples per gradient update within each epoch. Epochs are used to 

control the number training cycles. Typically, we want to keep the batch size high since this 

decreases the error within each training cycle (epoch). We also want epochs to be large, which 

is important in visualizing the training history. The validation_split is slated to 0.20 to 

include 20% of the data for model validation, which mitigates overfitting. The training process 

runs in a few minutes.  

Due to a low number of images and to increase artificially the number of image data, to 

reduce overfitting, as well to improve performance of machine learning framework in 

imbalanced class problems, we used “data augmentation”, that enlarge the training dataset. 
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Data augmentation constitute also a good technique to make our model invariant to changes in 

size, translation, viewpoint or illumination141. The generation of new labelled images can be 

done rotating the original images, flipping horizontally or vertically the images, zooming, 

width or height shift range the images, creating a warped version of training data, using 

image_data_generator from Keras.  In our data augmentation the transformed images are 

generated in R code on the CPU, with very little computation and no need to be store on disk. 

Prior to augmented training process, we additionally use manually transformed image on test 

set to verify the adverse examples impact in overall training process and study the effect of 

balanced dataset on designed neural network.  

 

3. MODEL TESTING AND EVALUATION 

The performance of the model was not the aim of this study (which was constrained by 

the low number of images), but instead to demonstrate that deep learning could be applied to 

help to select the best embryo in clinical practice. Therefore, the assessment gives us the state 

and response of framework to different training parameters. To evaluate the performance of 

proposed framework is required a collection of statistics parameters derived from confusion 

matrix – a specific table that allows the visualization of the performance of an algorithm (Table 

4). We use accuracy measurement to identify the portion of image correctly identified and 

AUC (ROC Area under curve), to measure the trade-offs between sensitivity and specificity in 

our binary classifier. Accuracy is a critical measure for evaluating the performance of a 

classification algorithm. When all instances in a dataset have the same weight, the accuracy of 

a classifier on a dataset is defined as the number of instances predicted correctly over the total 

number of instances142. The receiver operating characteristics (ROCs) reflect the plotting of 

true positive rate (TPR, specificity) against false positive rate (FPR, or 1 - sensitivity) at 

various threshold settings142,143. The metrics are used to measure classification performance 

and accuracy of classification model. The accuracy is measured by the area under the ROC 

curve (AUC)143.  

 

    (142) 

  

 For binary classification, accuracy can also be calculated in terms of positives and 

negatives, such as:  
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Where TP stand for True Positives, TN for true negatives, FP and FN for false positives 

and false negatives, respectively. The confusion matrix summarizes the binary classification 

results, where FP and FN correspond to the classification errors.  

 

Table 4: Confusion matrix 

 Actual class 0 Actual class 1 

Predicted class 0 True negative (TN) False negative (FN) 

Predicted class 1 False positive (FP) True positive (TP) 

from it to illustrate certain performance criteria, 

 

Due to limited image dataset and to obtain a fairly reliable accuracy estimation, as well 

as to ensure that every embryos image from the dataset pass to the training and validation sets, 

thus reducing the classification error, we employ a k-fold cross validation. In this technique the 

model is trained a total of k times, leaving each time a fraction of 1/k for validation, leading to 

k distinct folds. Each fold provides the model performance metrics summary, and the overall 

assessment of the model performance are the average of each fold result142. Similarly, since 

labelled class 0 is twice the class 1 embryos images, we pay attention to the effect of class 

imbalance on test dataset in each fold accuracies.  

For a given training conditions we present a learning curve. The learning curve depicts 

the plot of training and validation accuracy as function of the number of training data91. It 

measures how well the model perform with the training and unseen data, comparing training 

and testing accuracies and post the degree of convergence between them. The train learning 

curve are calculated from training dataset and shows how well the model is learning. The 

validation learning come from the hold-out validation dataset and represent the generalization 

process of the model91,94.  
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III. RESULTS AND DISCUSSION 

1. THE FRAMEWORK AND DESIGNED DEEP LEARNING NETWORK  

The overall framework of our method is shown in Figure 13. An image obtained from 

EmbryoscopeTM time-lapse system and ranked from 1 to 6 by KIDScore software, are labelled 

as poor quality (0) and good quality (1), for embryos ranked from 1 to 4 and from 5 to 6, 

respectively, based on their live birth rate and pregnancy likehood. The labelled image, with no 

further transformation but the ones required to improve the network performance, is presented 

to designed network that generate a numeric values representing the morphology of the 

embryos and provide an output class that represent the current quality of the embryos, that is 

the likehood of an embryo to be implanted and results in a pregnancy and successful live birth.  

In our study, the embryo images are raw time lapse images taken after fertilization with no 

further segmentation by advanced image analysis techniques, thus the images quality could 

have more impact on the embryo grading outcome. The training and validation phase are done 

under the designed network shown in Figure 14, at which the learnable parameters are adjust 

as described in method section 2.  

The model architecture is shown in Figure 14, as well as tensor board graph in Figure 15. 

The designed deep convolutional network comprehends a combination of convolved layers 

with varying output channels and kernel sizes, polling layers, rectified linear unit layers, 

dropout layers, flattened layer, fully connected layers and a softmax layer that shows the 

probability of class from an embryo image. Each input is propagated through separate 

convolution, pooling and dropout layers. The output of each layer is combined to form a flatten 

vector, reaching a fully connected layer and dropout layers. A new fully connected dense layer 

and softmax function output the class probability. 

From learnt a feature in a specific location of the image by convolution layer, adding a 

fully connected layer allow to recognize these features anywhere in each image. Increasing the 

efficiency in embryos images processing and allow the model to generalize better in a few sets 

of images samples. By duplicating the convolution layers, the first layer will learn small local 

features and the second layer will learn larger patterns of first convolved layer, allow the CNN 

to learn spatial hierarchies of patterns100,128. The pooling layer insertion after two convolutions 

allow the parameters reduction in the model, by down sample the data representation, reduce 

the computational cost in the network88 and control the overfitting144. Dropout, in turn, will 

deactivating a percentage of weights of the network (randomly) during training stage by adjust  
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Figure 13: The proposed framework. This flowchart illustrates the design and assessment of 

proposed framework. Human embryo images are provided from the embryology lab and classified by 

Embryoscope time lapse system software KIDScore. Then classified embryos images are labelled as poor 

quality [0] or good quality [1], based on their live birth and pregnancy rates. The labelled class are presented 

to designed network to generate the numeric values that represent the morphology of the embryo. The 

network evaluates the values and provide an output classes that represent the quality of the embryo.  

 

 

Figure 14: Simplified designed architecture. The day-5 embryos are first processed by two rounds 

of two convolutions followed by max polling, dropout regularization and ReLU layers. The (4, 4, 64) outputs 

are flattened to (1064) before through dense connected layer, both under dropout regularization and ReLu 

non-linearity, follows. The last hidden dense layer, under a softmax function, output the class scores. These 

scores are used to calculate the loss function and to make class predictions in the training and test stages. FC 

stands for fully connected layer. 
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their values to zero144. The network receives as input raw images of size 28 x 28 with 3 

channels, each for a color Red, Green and Blue (RGB) and a dropout with 25% of keeping 

probability during the training phase. ReLU was used as activation function for all layers 

except the output, in which was used softmax function (Figure 14). The full description of the 

network architecture is in method section 3.  

 

 

Figure 15: TensorBoard visualization of training process and model architecture. The 

TensorFlow Graph shows the presented convolutional neural network for embryos images classification, 

displaying a dataflow between groups of operations, with auxiliary nodes extracted to the side.  

 

2. MODEL TRAINING AND EVALUATION  

After defining and performing a fine-tuning for all the layers of the network parameters, 

such as image size (100 x 100, 40 x 40, 28 x 28 pixels), batch size, dropout regularization (0.0 
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to 0.5) to find proper CNN structure, we trained our deep learning network to classifies the 

training and test sets images. The results show that the trained framework was able to identify 

good and poor-quality embryo with up 99% of accuracy for training dataset and 86% for test 

dataset, as show in confusion matrix tables in Figure 16B and 16C, with AUC of 0.52. 

Therefore, the difference between the accuracy of a model on examples that it was built on and 

examples that it have not seen before, coupled with low AUC value, suggest that model 

learned rules specifically for training dataset and those rules do not generalize well beyond the 

train set. This tendency is shown on Figure 16A. The training loss decrease, and training 

accuracy increase with every epoch. Otherwise, the performance on new data started to stall at 

epoch 40, compared to continue improvement of training data. The model appears to 

underestimate the good quality class of embryos . Should be the case that learned specific rules 

on train dataset work against the test dataset. 

 

 

Figure 16: Training and validation metrics of the network. Results reflecting the general relations 

between the input and output data (A). The network was training for 80 epochs with batch size 32 and 

dropout of 0.25. It fairly predicts the class labels of training images (B) and new images as shown on 

confusion matrix table for test (C) and the first five training images predictions (D).  
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The observed overfitting phenomena (Figure 16A) could be explained at large scale due 

very few numbers of dataset or by complexity of the model. The model excessively adjusts to 

the training data, that is, consider patterns that are specific to the training data but do not exist 

or irrelevant on the new data. Consequently, it performs fairly but not full accurately on new 

data. As stated by numbers of works111,113,117,118,125, the fewer samples for training, the more 

models can fit or adjust to the data. When the data increase, fewer model would be able to 

explain them. Nevertheless, the CNN demonstrated robustness in the consistency of the 

classification, through several learning sessions. 

 

2.1. ADVERSE SAMPLING  

Popular techniques to avoid overfitting and improve model generalization include 

increase training data, regularization such as dropout, reduce network size or add weight 

regularizer and balance dataset88.  Dropout and weight regularizer are already include in the 

network architecture and layers reduction provide no evidence of improvement (data not 

shown).  Next, we try the effect of manually transformed and artificial augmented images on 

the CNN.  

To evaluate the performance of trained network with adverse samples, we add new 

manually transformed images to the training and test set. The manually transformed images 

involve single spatial transformation per image, such as rotation, flipping or brighten the 

images (see Figure 18, for transformed images examples). The predicted class are compared 

with the true classes to estimate identification accuracy. Our network was capable of predicts 

the class label of new raw images and can recognize the transformed ones (Figure 17).  

Manually transformed images has little effect on CNN performance. The neural network 

performs almost in the same way as no transformed image dataset. In fact, the major impact is 

seen on validation performance (17C and 17D) and test data set. When these are coupled to test 

data there is a loss increasing and a concomitant accuracy decreasing (Table 5). We 

hypothesize that these transformations are so simple that combined features do not add 

additional information and/or don´t provide new images that network has not seen before.  
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Figure 17: Tensor board graphs of training network with adverse sampling result reflects the 

general relations between the input and output data. The images reflect the overall accuracy (A), loss (B), 

validation accuracy (C) validation loss (D). The numeric values of train and validation accuracy and loss are 

shown on Table 5. Tensor board images with runs normal images data (rose), training set with 10% manually 

transformed images (orange), test set with 25% manually transformed images (blue), Training and test both 

with 10 and 25% manually transformed images, respectively (red) and test set with 50% manually 

transformed images (sky blue). It accurately predicts the class labels of new images. 

 

Table 5: Loss and accuracy of train and test sets with different dataset type.   

 

2.2. DATA AUGMENTATION   

The network fit well in training data, but the real challenge is generalizing to new data. 

In deep learning approach the number of images is known to be an important factor to improve 

accuracy and avoid overfitting and reducing generalization error by simulating realistic 

  

Dataset type  

Train  Test  

Loss  Accuracy  Loss  Accuracy  

No transformed images     0.02 0.99 0.45 0.86 

Transformed images on training set    0.02 0.99 0.86 0.73 

Transformed images on test set 0.04 0.98 1.09 0.68 

Transformed images on both  0.02 0.99 0.05 0.84 

Test set with half of transformed images  0.17 0.93 1.08 0.82 
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variation of the training data128. These artificial variations of images mimic the appearance of 

future test samples that deviate from the training group.  

To address the data scarcity problem, we use artificial images augmentation from Keras, 

using training images datasets. The test set remain unchanged. In the augmented training 

process (Figure 19 and 20), every iteration presents a new and random modified version of 

existing images to the network. So, the model would be exposed to huge amount of possible 

aspect of the image data distribution and generalize better. We present to the CNN 45% 

rotated, 20% flipped, random translated images vertically and horizontally, random sheared 

and zoomed images, as well standardize pixel values across the entire dataset by feature 

standardization setting “featurewise center” and “feature_std_normalization” arguments on 

Image data generator. Example of augmented image are shown in Figure 18. 

 

 

 

Figure 18: Data augmentation. Example of data-augmented images. All the presented images 

were obtained from a single image by randomly rotating, translating, zooming in/out and horizontally 

flipping, flopping, sheer or applying filter to the image. 
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Image data augmentation does not improve the performance of the CNN. It does not 

increase the network ability to generalize to unseen image variations. In fact, it appears to 

worsen the overfitting limitation and decrease the overall accuracy. The validation accuracy 

ultimately reached approximately 35% (Figure 19). It appears that heavily transformations 

performed by image data generator on Keras, such as shear and zoom range or vertical and 

horizontal translations, deprive useful information to the model and could act as distracting 

noise, increasing overfitting and generalization error. Indeed, when these arguments are turned 

false or eliminated are denoted a network improvement, reaching an accuracy of 0.66 and 0.71 

for training and test, respectively. Nevertheless, the training and validation loss remain large 

(Figure 20). In time-lapse embryos images, orientation, intensity and lateral/horizontal 

asymmetry sound to be important to the embryo morphology, so heavily augmentation 

technique might damage the image semantic content and difficult features extraction by the 

network145. It is noted that, at some instances, the augmentation techniques adopted have a 

large effect in class discrimination and network generalization performance, putting the 

transformations outside of the range and may not preserve the class specificity.  

 

 

Figure 19: Training process with artificial image augmentation. The network was training for 10 

epochs with batch size 32, dropout of 0,25, 5000 steps for epochs and validation steps. The overall accuracy 

was 0,35 for training and test sets. 
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Figure 20: Training process with artificial image augmentation (balanced dataset). Heavily 

augmentation turned off or eliminated. The network was training for 10 epochs with batch size 32, dropout of 

0,25, 1000 steps for epochs and validation steps. The overall accuracy was 0.71 and 0.66 for training and test, 

respectively. It underestimates class 1 embryos as shown on confusion matrix table for training (B) and test 

(C). 

 

2.3. K-FOLD CROSS VALIDATION  

Finally, we evaluate the generalization capacity of the model passing every embryos 

image to training and test sets. The results for each fold are presented in Table 6. The cross 

validation average accuracies are 0.96 for training datasets and 0.71 for test. As noted 

previously, the model appeared to underestimate the class 1 embryos. A test accuracy reaches 

80% with balanced number of good and poor class embryos and increase to 99% when 

presented larger group of poor quality embryos on test. It seen that the model does not learn all 

the features that characterize the embryos prone to be implanted, due to few numbers of these 

class of embryos presented during training process.  In other words, for the presented input 

images datasets, the imbalance of class should cause an over-classification of poor quality 

class embryos due its prior probability146 and underestimate good quality class embryos.  
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Table 6: Accuracy for each iteration of cross validation study 

 

 

A comparison of all training process shows some consistent results (Table 6). The model 

performs well on training dataset; therefore, the model is overfitting, mostly due to reduced 

number of training dataset. Exception to augmented training process where are show and 

underfitting phenomena (Figure 19 and 20). The model seems do not recognize the 

morphological features on the random transformed images presented. On other hand, the 

training data seem not to be enough to learn the required embryo features.  

As shown in Table 7, we try to balance the dataset even considering that we are reducing 

the overall training dataset. And, as expected doesn´t improve the generalization properties but 

clearly reduce the good quality class underestimation (Figure 21).  

 

Table 7: Summary of training and test accuracies* 

 Training Accuracy Test Accuracy 

Normal data  

Data with adverse sampes 

0.99 

0.99 

0.86 

0.84 

Augmented data  0.71 0.66 

Cross validation 

Balanced data  

0.96 

1 

0.71 

0.71 

from it to illustrate certain performance criter 

* The best results are shown, otherwise for Cross Validation the mean of all the iteration. 
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To observe the effect of class balance, we try different the loss of function and balance 

the dataset approximating the classes numbers data88,146. Change to new loss function can 

allow the minority samples to contribute more to the loss146. To training balanced dataset we 

reduce the total of training datasets to 70. From all the studied panel of loss of function binary 

cross-entropy perform better (Figure 21). The accuracy decreases to stable 71%, compared to 

imbalanced data (Figure 16 and Table 7), for test data set and accurately predicts all training 

data (Figure 21).  

 

Figure 21: Training process with balanced images data. The network was training for 80 epochs 

with batch size 32, dropout of 0.25 and loss of function binary cross entropy. The overall accuracy was 1 for 

training and 0.71 for test sets. It accurately predicts the class labels of all images as shown on confusion 

matrix table (B) and first five images (C) on training dataset but fail to predict all the validation sets (D and 

E). 
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IV. CONCLUDING REMARKS AND FUTURE PERSPECTIVES  

Human embryo evaluation based on static morphological features such as TE, ICM and 

ZP is the standard IVF clinics around the world4,39. The subjective nature of this time-

consuming process results in discrepant classifications among embryologist and clinics leading 

to fail in accurately predict embryo implantation and live birth potential3,39,57,87. Time lapse 

elimination of periodic transfer to microscopy assessment, stable embryo culture conditions for 

embryo development and morphokinetic properties, has alleviate the problem. Therefore, there 

are significant limitations even considering morphokinetics analysis. Likewise, many patients 

require multiple IVF to achieve pregnancy, making the selection of single embryo for transfer 

a critical challenge. 

Few studies involving TLI of human embryos and deep learning have been done since 

the introduction of TLI in clinical election of single best embryo for intrauterine transfer. TLI 

give rise to images consistence in terms of light, size, quality and developmental timing 

records, which is particularly important when quantifying blastocyst expansion147. TensorFlow 

in tandem with the Keras library, become Deep learning more accessible for companies as well 

for individuals148. Deep learning allows the discover of structures in a large dataset using a 

back-propagation algorithm and to conduct small changes in its parameters in order to achieve 

the algorithm with the optimal representation of the dataset100. Henceforth, there is lack of 

automated methods to extract and quantify features associated to embryos outcomes in TLI 

data. To the best of our knowledge this is the first study in Portugal to develop an automated 

embryo classification system that should allow a more objective and accurate analyses and 

guide the clinicians in decision-making. 

The current study presents a pipeline based on deep learning for TLI classification. The 

accuracy on the final validation dataset reached, in the best scenario, 86% (Table 6). Although 

the results presented here are preliminary, the framework allows clinicians and researchers, 

with no expertise in machine learning, to utilize deep learning to gather information about 

embryo quality. Furthermore, these results suggest that as much relevant clinical information 

as possible, including pregnancy rate, birth rate for viable or duration of pregnancy, should be 

stored for future use, levering the potential coupling with logistic regression. Only three known 

study to date reach such predictions capacity. Iwata and colleagues148 using 118 images of 

human embryos obtained from high-resolution time-lapse cinematography could predictively 

determine good-quality embryos with 94% for training dataset and 70% for validation dataset. 

Khoshavi and colleagues147, in a more robust study using 10,148 TLI of human embryos and 
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trained deep neural network Inception-V1 called STORK, found prediction accuracy of 98%, 

with 0,98 AUC. In a more recent study, Chen and co-workers149, develop a CNN-based 

prediction model with three classification categories of blastocyst, ICM, and TE. They achieve 

an overall predictive accuracy of 75,36% using more than 170,000 embryo raw digital images 

from Asian populations. The CNN are based on ImageNet architecture. Our framework shows 

a promising improvement of accuracy performance, however it involves low number of 

embryos images from a single fertilization clinic and lack of independent studies. Inferior 

performance are achieved by Iwata and colleagues, which used same Keras libraries and image 

number approach. Compared to STORK and Chen´s framework, we used our proper designed 

CNN architecture, instead of pre-trained one, with consistent results. Also, we do not use 

common images segmentation techniques, instead we use a raw TLI, leading the CNN to 

access features and images patterns that embryologist and clinical practitioners are not able to 

access147.  

One of the greatest challenges associated with machine learning, including deep 

learning, is the prevention of overfitting - a condition in which the model cannot be applied to 

unknown data because it has been overly adjusted to the training data88. In the present study, 

the discrepancy between the training curve and validation curve suggests that overfitting 

occurred (Figure 16), most likely due to the small number of included images110,141,148.  

We explored methods to improve the generalization properties and to mitigate 

overfitting under the extremely limitation of an insufficient number of images, by augment 

artificially the image data via random transformations of existing images. The goal was 

exposing the model to more aspect of data and help it to generalize better, once it will not see 

the same image twice. The results do not show an improvement of CNN. Indeed, augmentation 

seem to worse the overfitting limitations. The results suggest this performance deterioration are 

due to heavily transformations that deprive useful information to the model and could act as 

distracting noise, increasing overfitting and generalization error145. This idea is observed when 

these arguments are turned false or eliminated (Figure 21 and 22) or when manually 

transformed images are added to training and test datasets (Figure 17). As suggested by 

Gardner and co-workers39 in time lapse images embryos, features orientation, intensity and 

lateral/horizontal asymmetry sound to be important to the embryo morphology, so heavily 

augmentation technique might damage the image content and difficult features extraction by 

the network145. It appears that the augmentation techniques adopted have a large effect in class 

discrimination and network generalization performance, putting the transformations outside of 

the range and may not preserve the class specificity. In fact, with deformation on time lapse 
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images of blastocyst, in a heavily augmentation techniques on Keras, some important features 

directly related with strong clinical outcomes, such as full blastocoel cavity, ICM with tightly 

packed numerous cells and TE with many cells39, should be degraded or even lost.  

At some instances of results evaluation is seem that our model underestimates the 

labelled good quality class embryos (Figure 16, 22 and Table 6). Such class underestimation is 

due to class imbalance, since class 0 or poor-quality embryos, are twice of good quality class 

embryos. In binary classification problem with data samples from two groups, class 

imbalance occurs when one class contains significantly fewer samples than the other class. 

Should be the case, that model over-classify the poor quality class embryos, with more data, 

due its prior probability and underestimate minor good quality class group146. In fact, the 

cross-validation study denotes a clear over-estimation of poor quality embryos. Due to few 

numbers of good quality input images, the convolution operations do not extract all the 

hierarchical features associated with such class of embryos. 

Here we propose and experimentally demonstrate the huge potential of deep learning 

combined with time-lapse imaging technology for embryo selection. Indeed, the presented 

framework represent a proof-of-concept that deep neural network discovers and exploits key 

biological features associated with day 5 time-lapsed embryos and should access time lapse 

images patterns that are not easily accessed by clinicians’ practitioners. The approach 

presented in this thesis, suggest an immediate and wide applicability to improve time-lapsed 

embryos selection and over-pass the problem specific of embryo selection. The method is 

automatic, reproducible and objective in human blastocyst evaluation. Otherwise, the powerful 

learning capability of the deep learning approach to recognize and use biological features that 

are class-dependent from raw images, eliminate manual design and optimization of these 

features. Although not exhaustive, we present here a small contribution to the study of image 

augmentation processes in deep learning approaches in embryology images studies and 

medical imaging in general147. 

 The pipeline and designed network were able to predict embryos quality with 86% of 

accuracy. Although the predictions accuracy and generalization properties must be improved, 

which can be achieve first by increase the number of image data, and second, with the data 

increment, update the deep learning properties. Also, coupled with new TLI data, there is a 

need to annotate relevant clinical information such pregnancy rate, duration of pregnancy, live 
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birth rate and born of health child rate. Therefore, this information should be protected by 

General Data Protection Regulationc. Otherwise, it will be interesting to investigate the black- 

box of features extraction of deep learning using LIME - Local Interpretable Model-agnostic 

Explanation, to explain the prediction of our binary classification.  

                                                   

 

 

c
Article 9 of Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April. 
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