
Universidade de Aveiro Departamento de Engenharia Mecânica
2018

Rúben Miguel

Borges Lourenço

Desenvolvimento de software modular para

análise pelo Método dos Elementos Finitos em

incompressibilidade

Development of a modular software based on the Finite
Element Method for incompressible problems

Universidade de Aveiro Departamento de Engenharia Mecânica
2018

Rúben Miguel

Borges Lourenço

Desenvolvimento de software modular para

análise pelo Método dos Elementos Finitos em

incompressibilidade

Development of a modular software based on the Finite
Element Method for incompressible problems

Dissertação apresentada à Universidade de Aveiro para cumprimento dos re-
quisitos necessários à obtenção do grau de Mestre em Engenharia Mecânica,
realizada sob orientação cientí�ca de Robertt Angelo Fontes Valente, Pro-
fessor Associado do Departamento de Engenharia Mecânica e de Joaquim
Alexandre Mendes de Pinho da Cruz, Professor Auxiliar do Departamento
de Engenharia Mecânica da Universidade de Aveiro.

Este trabalho de investigação teve o apoio do Departamento de Engenharia
Mecânica da Universidade de Aveiro e do Centro de Tecnologia Mecânica e
Automação (TEMA), ao abrigo dos projectos 00481/2013-FCT e CENTRO-
01-0145-FEDER-022083.

o júri / the jury

presidente / president Prof. Doutor Ricardo José Alves de Sousa
Professor Auxiliar com Agregação, Universidade de Aveiro

Doutor Renato Manuel Natal Jorge
Professor Associado com Agregação, Faculdade de Engenharia, Universidade do

Porto

Prof. Doutor Robertt Angelo Fontes Valente
Professor Associado, Universidade de Aveiro (orientador)

agradecimentos /
acknowledgements

Ao Professor Doutor Robertt Valente pelo rigor e organização na ori-
entação deste trabalho, pelo conhecimento transmitido e disponibilidade
permanente. Um agradecimento especial pela amizade, colaboração e apoio
demonstrados ao longo deste percurso.

Ao Professor Doutor João Oliveira pela sugestão do tema deste tra-
balho, pelo conhecimento transmitido e em especial pela grande amizade e
estreita colaboração ao longo destes quatro anos de trabalho.

Ao Professor Doutor Joaquim Cruz, pelos preciosos ensinamentos nesta
área, pelo entusiasmo contagiante e disponibilidade demonstrada.

Ao Tiago Ávila e ao Luís Ávila, pela grande amizade e apoio presta-
dos.

Ao Eng.º José Bastos pelas grandes jantaradas e noitadas de tra-
balho e estudo. E em especial pela grande amizade e apoio prestado.

Aos meus pais e avós, pela preocupação e apoio incansáveis. Um
eterno agradecimento pelo sacrí�cio demonstrado e por possibilitarem esta
oportunidade.

keywords Finite Element Method, Incompressibility, Locking, Enhanced strain, Selec-
tive integration, MATLAB, Software development, Numerical simulation

abstract The importance of numerical simulation in the engineering �eld makes rel-
evant the development of computational tools, based on the Finite Element
Method, to solve structural problems. However, the application of the
classical Finite Element approach to incompressible (or near-incompressible)
situations has been a source of numerical problems, such as volumetric
locking.

This Dissertation describes several formulations used in the analysis
of incompressible problems, with focus on the four-node bi-linear quadri-
lateral element. Over the last decades special attention has been given to
improve the performance of this element under incompressibility due to its
computational e�ectiveness, making it attractive to be used in complex
problems. The devised solutions are often targeted at treating the e�ects
of volumetric locking, although some of them were originally targeted at
the treatment of shear locking. In this context, the studied formulations
were the selective integration approach, the B-bar method, the mixed (u/p)
method and the enhanced strain method, which includes compatible and
incompatible mode elements.

In order to computationally implement these �nite element formula-
tions, a revision of the fundamental concepts and basic formulas of the
classical method, and for each alternative formulation, is carried out. In the
context of incompressibility, the underlying concept is presented and the
problem of locking is described.

The development of an in-house software, also in the context of this
Dissertation, targeted at solving incompressible problems is discussed. Some
important sub-routines and programming approaches are referred to with
code examples.

Finally, the quality of implementation and e�ciency of the �nite ele-
ment formulations is evaluated by analyzing a series of benchmark tests,
using the developed in-house software and comparing the results against
the ones coming from a commercial �nite element software.

palavras-chave Método dos Elementos Finitos, Incompressibilidade, Retenção, Deformações
acrescentadas, Integração selectiva, MATLAB, Desenvolvimento de soft-

ware, Simulação numérica

resumo A importância da simulação numérica no campo da engenharia torna
relevante o desenvolvimento de ferramentas computacionais, baseadas
no Método dos Elementos Finitos, destinadas à resolução de problemas
estruturais. Contudo, a aplicação do Método dos Elementos Finitos a
problemas incompressíveis ou (quasi-incompressíveis) apresenta tipicamente
uma série de problemas, nomeadamente de retenção numérica.

Nesta dissertação são descritas várias formulações destinadas à análise de
problemas incompressívies com enfoque no elemento �nito quadrilátero
(bilinear) de quatro nós. Nas últimas décadas, este elemento tem vindo
a receber especial atenção no sentido de melhorar a sua performance
em problemas de incompressibilidade, devido à sua elevada e�ciência
em termos computacionais, o que o torna atractivo para ser utilizado
em problemas mais complexos. Geralmente, as soluções desenvolvidas
passam por estratégias de minimização dos efeitos de retenção volumétrica,
embora algumas dessas formulações se destinassem orginalmente a resolver
problemas de retenção associados às componentes de deformação de corte.
Neste contexto, as formulações estudadas foram a integração selectiva,
o método B-bar, o método misto deslocamento/pressão e o método das
deformações acrescentadas, o qual inclui formulações de modos compatíveis
e incompatíveis.

Tendo em vista a implementação computacional destas formulações
de elementos �nitos, efectua-se uma revisão dos conceitos básicos funda-
mentais do método clássico e das formulações alternativas. No contexto da
incompressibilidade, apresenta-se o conceito básico e uma breve referência
ao problema da retenção.

No contexto desta dissertação foi desenvolvido um software destinado
a resolver problemas de incompressibilidade. Algumas sub-rotinas são
apresentadas fazendo referência a algumas abordagens de programação com
exempli�cação de código.

Finalmente, avalia-se a qualidade da implementação e a e�ciência
das formulações implementadas através da análise de resultados de diversos
benchmarks, usando o software desenvolvido e comparando os resultados
obtidos com aqueles provenientes de um software comercial.

Contents

1 Introduction 1

1.1 Overview and motivation . 1

1.2 Objectives . 2

1.3 Methodology . 2

1.4 Reading guide . 3

2 The Finite Element Method 5

2.1 General concept . 5

2.2 Linear elasticity . 6

2.2.1 Finite element approximation . 7

2.2.2 Plane stress and plane strain . 9

2.2.3 Isoparametric four-node quadrilateral element 10

3 Incompressibility 15

3.1 Introduction . 15

3.2 Volumetric locking . 16

3.3 Mixed (u/p) formulation . 17

3.4 Selective reduced integration . 18

3.4.1 Overview . 18

3.4.2 Selective integration of hydrostatic component 19

3.4.3 Selective integration of shear components 20

3.5 B-bar method . 21

3.5.1 Overview . 21

3.5.2 B-bar formulation . 21

3.5.3 Plane strain state . 22

3.6 The enhanced strain method . 23

3.6.1 Overview . 23

3.6.2 The Q6 element formulation . 25

3.6.3 The QM6 element formulation . 27

3.6.4 The Q4/6I element formulation . 28

3.6.5 The Q4/4I element formulation . 29

3.6.6 The Qi5 element formulation . 29

3.6.7 The Qi6 element formulation . 30

i

4 Computational implementation 31
4.1 Overview . 31
4.2 Program architecture . 32
4.3 Pre-processing . 33

4.3.1 Model de�nition . 33
4.3.2 Boundary conditions . 35

4.4 Finite element formulas . 37
4.4.1 Shape functions generation . 37
4.4.2 Gauss points generation . 39
4.4.3 Assembly algorithm . 40

4.5 Post-processing . 41
4.5.1 Stress recovery . 41
4.5.2 Results visualization . 43

5 Benchmark analyses 47
5.1 Rectangular plate with concentrated load 49
5.2 Rectangular plate with distributed load 51
5.3 In�nite plate with circular hole . 53
5.4 One-element test . 57
5.5 Beam under bending . 59
5.6 Cook's membrane . 62
5.7 Distortion test . 65

6 Conclusions and future works 67

Bibliography 68

A Program architecture 73

B Abaqus input �le structure 77

C Gauss-Legendre quadrature algorithm 81

D Element sti�ness assembly algorithm 85

ii

List of Tables

2.1 Natural coordinates and weights for Gauss rules of order 1× 1 and 2× 2. 13

3.1 Shape functions for the six incompatible modes. 28
3.2 Shape function derivatives for the six incompatible modes 28

5.1 Relative deviation of the results for the horizontal and vertical displace-
ments using di�erent mesh sizes. 50

5.2 Stress results, in MPa, measured along the left bottom-half of the plate. . 52
5.3 Normal stress σxx at the edge of the hole and relative error with respect

to the analytical solution for R/W = 0.25. 55
5.4 Horizontal displacement at node 1. 58
5.5 Speci�cations for the machine running the computational analysis. 64

iii

.

Intentionally blank page.

List of Figures

2.1 Spatial discretization of a given domain, using �nite elements. 5
2.2 Solid elastic body of volume Ω and surface Γ, subjected to body and

surface loads under static equilibrium. 6
2.3 Representation of states of (a) plane stress and (b) plane strain. 9
2.4 Con�guration of the Q4 element in the (a) global Oxy coordinate system

and (b) in the natural Oξη coordinate system. 11
2.5 Natural coordinates of the integration points for Gauss rules of order (a)

2× 2 and (b) 1× 1. 13

3.1 Locking of a mesh of linear triangles under incompressibility and possible
displacements for elements 1 and 2. 16

3.2 Discretization of a beam subjected to a bending moment and spurious
shear response of the Q4 element. 25

3.3 Shape functions for the enhanced strain �eld of the element Q6. 26

4.1 Meshed geometry representation with (a) node selection using data brush
and (b) boundary condition representation. 35

4.2 Idealized Gauss element for a bi-linear quadrilateral. 42
4.3 Visual representation of the deformed state for the example from Section

5.5. Countour plot representation for (a) the horizontal and (b) vertical
displacement �elds and the stress �elds (c) σxx, (d) σyy and (e) τxy. . . . 44

4.4 Probing node values by means of (a) the data brush tool and (b) table
populated with the corresponding information, in this example the (σxx)
stresses. 45

5.1 Thin rectangular plate subjected to concentrated load on its top-right
corner. Structure dimensions are in meters. 49

5.2 Linearized results obtained for (a) the horizontal and (b) vertical displace-
ments of the top-right corner node of the beam under plane stress. 50

5.3 Linearized results obtained for (a) the horizontal and (b) vertical displace-
ments of the top-right corner node of the beam under plane strain. 50

5.4 Thin rectangular plate subjected to distributed load on its right side
(structure dimensions are in meters). 51

5.5 Contour plots of (a) the horizontal and (b) vertical displacement �elds
(top images come from Abaqus, bottom images come from the developed
program). 51

5.6 Contour plots of the normal stress �elds (a) σxx and (b) σyy (top images
come from Abaqus, bottom images come from the developed program). . . 52

5.7 Elastic plate with circular hole: problem de�nition for R/W = 0.25. . . . 53

v

5.8 Stress concentration factor Kt in terms of the ratio R/W (adapted from
[30]). 54

5.9 Elastic plate with circular hole: mesh de�nition for R/W = 0.25. 55
5.10 Deformed con�guration of the quarter plate for R/W = 0.25 using the Qi5

element, with contour plots of: (a) horizontal displacement, (b) vertical
displacement, (c) normal stress σxx, (d) normal stress σyy, (e) shear stress
τxy and (f) von Mises stress. 56

5.11 Di�erent con�gurations of loads and boundary conditions. 57
5.12 Deformation using the Q4 element in the compressible case, for both test

con�gurations (top); deformation using (c) the Q4 element and (d) the
QM6 element, for ν = 0.4999999 (con�guration of Fig. 5.11a). 58

5.13 Finite element model of the beam under bending. 59
5.14 Results of the mesh convergence analysis for the bending problem, using

the implemented formulations (top) and those from Abaqus (bottom). . . 61
5.15 Vertical displacement at the reference node for di�erent values of log (λ/µ). 61
5.16 Cook's membrane problem: geometry, boundary and load conditions. . . . 62
5.17 Vertical displacement at the reference node for increasing mesh sizes. . . . 63
5.18 Execution time for the Cook's membrane analysis. 64
5.19 Finite element model used for the distortion test (left) and geometry, load

and boundary conditions (right). 65
5.20 Error for the horizontal displacement at nodes 1 and 9 using elements Q4

and Qi6 (left column) and elements Q6 and QM6 (right column). 66

vi

Chapter 1

Introduction

1.1 Overview and motivation

Engineering problems often involve complicated domains, loads and nonlinearities that
hinder the use of analytical solutions. Numerical methods provide an alternative means
of �nding solutions in these cases. Over the last decades, the use of computers and
numerical methods made it possible to solve mechanical problems in many di�erent �elds.
Numerical simulation is cost-e�ective and saves time and resources when compared to
physical experiments. Additionally, it can be used to predict defects and re�ne production
parameters [27, 35, 36].

The Finite Element Method (FEM) is a powerful numerical method that has been
playing an essential role in the �elds of engineering design and manufacturing, being
extensively used for the study of solids, structures, heat transfer, �uids, electricity and
magnetism [3, 27, 36]. Graduate engineers will most likely encounter advanced com-
mercial �nite element analysis (FEA) software in their future o�ces. These programs
are capable of simulating complex problems involving nonlinearities, whether material or
geometrical, contact conditions, among others, besides o�ering advanced pre- and post-
processing abilities [17]. When using these programs, it is extremely important for the
user to have a deep understanding of the physical and mechanical processes involved and
to be aware of the speci�c characteristics of FEM when applyed to a particular model.
Moreover, by studying a virtual model of the real physical system approximation errors
can compromise the results. Therefore, the user has to cautiously evaluate the limitations
of each used model [36].

The motivation for this work came from the fact that during undergraduate studies
the training given to students on FEA is often accompanied by the use of commercial
software. The three most common examples used in our department are Abaqus, FEMAP
and ANSYS, whose general capabilities are far superior to those seen in classes. Although
the complexities and capabilities of these programs are unquestionable, the learning
process is tipically focused on the pre- and post-processing parts and overlooks the core
part in-between, the FEA itself. Pro�ciency in FEA certainly only comes after several
years of training and experience. However, during undergraduate studies a better way
for students to gain a deeper understanding about FEA is to study and implement the
formulations by themselves, by means of developing their own �nite element codes, which
could be used as complementary tools for the teaching of FEA, alongside the commercial
software already in use.

1

2 1.Introduction

1.2 Objectives

The primary objective of this Dissertation is to develop a FEM program for pedagogical
and research purposes that could be used as a base platform to test and implement
di�erent �nite element formulations. To do so, the idea was to create a modular and open-
source software that could serve as an auxiliary tool for engineering students learning
FEA or for researchers in order to study, implement and validate more advanced �nite
element formulations.

Beyond the implementation and development of a software product, the scienti�c
part of this Dissertation is dedicated to the implementation of several �nite element
formulations, based on the two-dimensional bi-linear quadrilateral element. The aim was
to study and learn about di�erent approaches available to deal with problems arising
from the analysis of incompressible media, such as selective reduced integration, B-bar
method, compatible and incompatible modes and mixed methods.

1.3 Methodology

The implementation of all the �nite element formulations shown in this work was per-
formed through the development of a in-house �nite element code, from scratch. The
chosen programming language was MATLAB, a modern high-level programming lan-
guage specially designed for dealing with matrices and arrays. The vectorization cap-
abilities make it particularly suitable for programming the FEM. The high-level nature
of this language makes it easier to read and write, allowing the user to focus on the
implementation rather than on the programming aspects. The integrated devolopment
environment allows the user to type and execute commands at a command prompt, mak-
ing program debugging easier [10, 14, 17]. MATLAB also o�ers sophisticated libraries
for matrix operations, symbolic calculus, general numeric methods and data plotting.
These reasons made this programming platform an excellent tool for the development of
this work.

The decision of focusing on the �nite element formulations did not allow for the
implementation of a mesh generation algorithm. Therefore, it was decided that this step
would be performed using Abaqus student version, a commercial general purpose �nite
element software available at the department. Abaqus allows the user to store the model
parameters and export them to an input �le. Given this possibility, the work started
with the development of a module which would allow the program to import and read
the contents of the input �le related with mesh de�nition. Further attention was given to
the development of simple user-interface elements to facilitate the introduction of other
input data and de�nition of the boundary conditions.

Code development then proceeded with the implementation of sub-routines for ana-
lyses of plane stress/strain states, using the traditional formulation of the four-node
bi-linear quadrilateral element. The necessary debug tests and model validations were
conducted by comparing the program results with those obtained using Abaqus. Upon
verifying the results agreeing between both softwares, development proceeded with the
implementation of the necessary routines for incompressibility analysis. Further debug
testing was performed to ensure the program was working correctly.

Finally, several �nite element benchmarking problems were performed. The main
purpose was to assess the quality and behavior of the implemented element formula-

Rúben Miguel Borges Lourenço Dissertation Report

1.Introduction 3

tions under di�erent circumstances. For comparison and validation purposes, the same
benchmarks were also performed using di�erent elements available in Abaqus software.

1.4 Reading guide

This Dissertation report is composed of six chapters.

In Chapter 2, the general concepts behind the FEM are presented and a review of the
fundamental concepts is conducted regarding classical FEM formulations, applied to lin-
ear elasticity analyses. Focus is posed on the isoparametric four-node quadrilateral �nite
element formulation.

Chapter 3 presents a review on the problems behind the numerical analysis of incompres-
sibility. The fundamental formulation of the incompressible problem is presented and a
brief reference to the problem of locking, in this context, is done. A detailed literature
review of several �nite element formulations, aimed at the analysis of incompressible
problems, is carried out.

In Chapter 4 computational implementation aspects are discussed, aimed at the de-
velopment of a MATLAB-based, in-house �nite element code. The scope of application
and program architecture are reviewed with important software features and sub-routines
being analyzed in detail, with the help of code examples.

In Chapter 5 a series of benchmark problems, available in the literature, are used in
order to validate the developed code, with the results for the di�erent implemented for-
mulations being compared to those obtained with a commercial software.

In Chapter 6 a general overview of the Dissertation work and the obtained results is
conducted. Some concluding remarks are given regarding future developments.

Rúben Miguel Borges Lourenço Dissertation Report

.

Intentionally blank page.

Chapter 2

The Finite Element Method

2.1 General concept

Mechanical problems are modelled using partial di�erential equations (PDEs) for the
conservation of mass and momentum and additional material laws. These problems usu-
ally do not have analytical solution, requiring the use of approximate methods. One such
method is the Finite Element Method (FEM), which consists of a piecewise application
of a variational method. The term �variational� refers to the so called weak formulation,
where a di�erential equation is rewritten as an equivalent integral form [27, 35].

The underlying concept of the FEM is to model a generic problem involving con-
tinuous media by means of analyzing discrete parts of it (called �nite elements), inter-
connected by a set of points (called nodes), as depicted in the example from Fig. 2.1.
An element is de�ned by nodes located at the border or inside the element itself. For
two-dimensional analysis, quadrilateral or triangular elements are normally used [27, 36].

Elements
Nodes

x

y

Figure 2.1: Spatial discretization of a given domain, using �nite elements.

The calculation of a certain variable inside an element is performed by interpola-
ting the corresponding nodal values. This is accomplished by approximation functions
(known as shape functions), based on the idea that any continuous function can be re-
presented by a linear combination of, for instance, Lagrangian polynomials. The order
of the interpolation functions depends on the number of nodes in the element. The vari-
ational formulation describing the problem is applied to each individual element. At the
end of the process, the e�ects of each element are properly combined in order for the
discretization to represent the continuous medium as a whole [22, 27, 36].

5

6 2.The Finite Element Method

2.2 Linear elasticity

Despite the nonlinear nature of continuum mechanics' laws governing mechanical pro-
blems, linearization is possible under the assumption of small deformations. The most
common material law is the Hooke's law that states a linear dependence between stress
σ and strain ε �elds, using a variable as constant of proportionality, dependent on the
material. For a one-dimensional relationship, it holds that [35, 36]:

σ = E ε , (2.1)

where (E) stands for the elasticity modulus (Young's modulus) of the material.

Under linear elasticity, it is common to employ a pure displacement formulation where
the stress tensor is eliminated, as it can be calculated using the displacement [3, 35].
Therefore, considering a three-dimensional body with an arbitrary geometry subjected
to surface and body forces along its surface (Γ) and volume (Ω) respectively (Fig. 2.2),
for the given set of boundary conditions and material laws the �rst variable of interest
becomes the displacement �eld u(x, y, z) [23, 36].

F1

F2

δu1 δu2

Ω

F3

δu3

Fi

δui
δu4

F4

Γ

x

y

z

Figure 2.2: Solid elastic body of volume Ω and surface Γ, subjected to body and surface
loads under static equilibrium.

The linear stress state of the three-dimensional body is based on Hooke's law from
Eq. (2.1), but now rewritten using tensor notation in the form:

σ = D : ε , (2.2)

where σ and ε are the stress and strain tensors respectively, and D is the elasticity tensor
for an isotropic material, related to the elastic Lamé constants (λ) and (µ) as:

D =



λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 , (2.3)

Rúben Miguel Borges Lourenço Dissertation Report

2.The Finite Element Method 7

which in turn can be written in terms of the Young's modulus (E) and the Poisson's
ratio (ν), in the form [17, 23]:

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (2.4)

Recallling that the strains are obtained by di�erentiating the displacements, it is possible
to de�ne a matrix di�erentiation operator ∇s to be applied to the displacement �eld
vector u, such that [23, 36]:

ε = ∇su , (2.5)

thus, obtaining the linear strain �eld ε for the body.

2.2.1 Finite element approximation

Under the assumption of linear elasticity, the weak formulation is equivalent to �nd such
displacement �eld that minimizes a quadratic functional, called the total potential energy
(Π) de�ned as:

Π =
1

2

∫
Ω
εTσ dΩ−

∫
Ω

uTb dΩ−
∫

Γ
uT t̄ dΓ , (2.6)

where b and t̄ are the external loads distributed along the domain (Ω) and the surface
(Γ), respectively. Prescribed displacements are speci�ed on the parts of the body surface
which are not subjected to surface loads [23, 27, 36].

The weak formulation describing the problem is applied to each individual element.
At the element level, the real displacement �eld is approximated by means of the the
nodal displacements de and a set of shape functions, organized into matrix Ne [22, 36]:

ue = Nede , (2.7)

de =
{
ui vi wi ...

}T
, i = 1, ..., nnodes , (2.8)

Ne =

 Ni(x, y, z) 0 0
· · · 0 Ni(x, y, z) 0 · · ·

0 0 Ni(x, y, z)

 , i = 1, ..., nnodes . (2.9)

The strain �eld described on Eq. (2.5) is now rewritten in the equivalent form [36]:

εe = ∇su
e = ∇s(N

ede) = Bede , (2.10)

where Be is the element strain-displacement matrix, given by [36]:

Be =
[
Be

1 Be
2 · · · Be

nnodes

]
, (2.11)

Rúben Miguel Borges Lourenço Dissertation Report

8 2.The Finite Element Method

with each component Be
i de�ned as:

Be
i =



∂Ni
∂x 0 0

0 ∂Ni
∂y 0

0 0 ∂Ni
∂z

∂Ni
∂y

∂Ni
∂x 0

∂Ni
∂z 0 ∂Ni

∂x

0 ∂Ni
∂z

∂Ni
∂y


, i = 1, ..., nnodes . (2.12)

The principle of virtual work states that if a system is under static equilibrium, the work
done by internal loads should be equal to that resulting from the external loads. In this
case, the displacement and strain �elds are calculated by means of considering a virtual
displacement �eld δde, such that its components are small enough for the whole set of
loads to remain unchanged, thus obtaining [3, 36]:{

δue = Neδde

δεe = Beδde
. (2.13)

Therefore, the total work done by internal and external loads distributed along the
element domain (Ωe) and the surface (Γe), respectively, is given by [23, 36]:

W e
int = (δde)T

∫
Ωe

(Be)Tσe dΩe , (2.14)

W e
extΩ = (δde)T

∫
Ωe

(Ne)Tbe dΩe , (2.15)

W e
extΓ = (δde)T

∫
Γe

(Ne
Γ)̄te dΓe . (2.16)

With virtual displacements being very small quantities, the total potential energy will
experiment a small variation thus, substituting the above into Eq. (2.6), one can obtain
[23, 36]:

δΠe = (δde)T

∫
Ωe

(Be)Tσe dΩe − (δde)T

[∫
Ωe

(Ne)Tbe dΩe +

∫
Γe

(Ne
Γ)̄te dΓe

]
. (2.17)

Given that the nodal displacements corresponding to the minimum of the total potential
energy are determined by employing the condition: δΠe

δde = 0, the equilibrium for each
element is described by the relation [3, 23, 36]:

kede = f e , (2.18)

where ke is the element sti�ness matrix and f e the nodal load vector, de�ned as:

ke =

∫
Ωe

(Be)TDeBe dΩe , (2.19)

f e =

∫
Ωe

(Be)Tbe dΩe +

∫
Γe

(Ne)T t̄e dΓe . (2.20)

Rúben Miguel Borges Lourenço Dissertation Report

2.The Finite Element Method 9

Finally, the element sti�ness matrices are assembled into a global sti�ness matrix K and
the nodal load vectors into a global load vector f , such that [3, 36]:

K =

ne∧
e=1

ke , (2.21)

f =

ne∧
e=1

f e , (2.22)

resulting in a global system of equations of the form: Kd = f .

2.2.2 Plane stress and plane strain

The structural analysis of a three-dimensional body can be carried out in the two-
dimensional space if the body is under a state of plane stress or plane strain [17, 36].

A solid with one dimension relatively small compared to the others, and loaded in its
plane, can be analyzed using a plane stress approach, common examples can be seen in
Fig. 2.3 (a). The surfaces (z = ± t/2) are not under load, therefore one can reasonably
assume that the stress components along the z-direction are equal to zero, while the other
stress components remain constant. Nonetheless, it is important to note that under plane
stress: εzz 6= 0 [17, 36, 38].

z

x y

F

F

F ′

F ′

x

y

z

w

(a) (b)

Figure 2.3: Representation of states of (a) plane stress and (b) plane strain.

Consequently, the stress �eld only has three cartesian coordinates and is characterized
by the relation [17, 36]: 

σxx
σyy
σxy

 = D


εxx
εyy
γxy

 , (2.23)

with the elasticity matrix D being written in terms of the Young's modulus (E) and the
Poisson's ratio (ν) as:

D =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 . (2.24)

Rúben Miguel Borges Lourenço Dissertation Report

10 2.The Finite Element Method

States of plane strain usually refer to structures with one dimension signi�cantly bigger
than the others, such as the example from Fig. 2.3 (b). In this case, the strain components
along the z-direction are equal to zero, however (σzz) is not negligible. As such, the strain
�eld is formed by the three cartesian components obtained by inverting the relation from
Eq. (2.23) and writing the elasticity matrix D as [17, 38]:

D =
E

(1 + ν)(1− 2ν)

1− ν ν 0
ν 1− ν 0
0 0 1−2ν

2

 . (2.25)

2.2.3 Isoparametric four-node quadrilateral element

Consider an analysis carried out in the two-dimensional space using quadrangular �nite
elements. The simplest available element is the Lagrangian bi-linear four-node quadrila-
teral, referred to as the Q4 element throughout this document. The Q4 element employs
an isoparametric formulation which states that the nodal displacements are interpolated
in the same way as the geometry. The concept is commonly used in the FEM imple-
mentation as it provides an e�cient and systematic way to obtain higher-order elements,
useful for the accurate representation of irregular domains [3, 27].

The domain of the Q4 element is de�ned by the coordinates (xi, yi) of its four corner
nodes. It is assumed that the nodes are numbered in ascending order on the counter-
clockwise direction as shown in Fig. 2.4 (a). Respecting an isoparametric approach,
the coordinates (x, y) at any given point of the element are approximated as follows
[3, 15, 27]:


x =

nnodes∑
i=1

Ni(ξ, η)xi

y =

nnodes∑
i=1

Ni(ξ, η)yi

, (2.26)

where Ni(ξ, η) are the element interpolation functions, de�ned in the natural coordinate
system (Oξη). In the global (Oxy) plane, the element has degrees of freedom (u) and
(v), thus the displacement �eld can be obtained by interpolating the nodal displacements
(ui) and (vi), such that [3, 15]:


u(x, y) =

nnodes∑
i=1

Ni(ξ, η)ui

v(x, y) =

nnodes∑
i=1

Ni(ξ, η)vi

. (2.27)

The isoparametric shape functions for the Q4 element are based on the corresponding
Lagrange polynomials, de�ned in the natural coordinate system (Oξη) and written for

Rúben Miguel Borges Lourenço Dissertation Report

2.The Finite Element Method 11

η

ξ

(−1,−1) (1,−1)

(1, 1)(−1, 1)

x

y

O

1 2

34

1

2

3
4

O

(x1, y1)

(x2, y2)

(x3, y3)
(x4, y4)

(a) (b)

Figure 2.4: Con�guration of the Q4 element in the (a) global Oxy coordinate system and
(b) in the natural Oξη coordinate system.

each node as [3, 12, 15]:



N1 =
1

4
(1− ξ)(1− η)

N2 =
1

4
(1 + ξ)(1− η)

N3 =
1

4
(1 + ξ)(1 + η)

N4 =
1

4
(1− ξ)(1 + η)

. (2.28)

The strain �eld of the element is determined by adapting Eq. (2.10) to a two-dimensional
plane stress/strain problem. The strain-displacement matrix Be looses the terms associ-
ated with the third dimension, being now de�ned as [15, 36]:

Be =



∂Ni

∂x
0

· · · 0
∂Ni

∂y
· · ·

∂Ni

∂y

∂Ni

∂x


, i = 1, ..., nnodes . (2.29)

The strain �eld of the real distorted element is described by the in�nitesimal variations
of the displacements in the (Oxy) plane. This makes it di�cult to compute the element
equations in terms of the global (x) and (y) coordinates. Such limitation can be overcome
by mapping the real distorted element to a reference element de�ned in the natural
coordinate system (Oξη) with: ξ, η ∈ [−1, 1]. The mapping is de�ned by the coordinate
transformation [3, 27, 38]:

x = x(ξ, η) y = y(ξ, η), (2.30)

Rúben Miguel Borges Lourenço Dissertation Report

12 2.The Finite Element Method

from which, using the chain rule of di�erentiation, holds:
∂Ni(ξ, η)

∂ξ

∂Ni(ξ, η)

∂η

 = Je


∂Ni(ξ, η)

∂x

∂Ni(ξ, η)

∂y

 , (2.31)

where Je is the jacobian matrix of the transformation, obtained as:

Je =

nnodes∑
i=1


∂Ni

∂ ξ
xi

∂Ni

∂ ξ
yi

∂Ni

∂ η
xi

∂Ni

∂ η
yi

 . (2.32)

In order to transform from natural coordinates to global coordinates, Eq. (2.31) needs
to be inverted requiring the inverse of Je to exist. A necessary condition for the jacobian
matrix to be invertible is that its determinant be nonzero at every point (ξ, η) [27, 36].

Under linear elasticity and assuming small deformations, the principle of minimum
potential energy is applied. Thus, the sti�ness matrix for an element under a plane
stress/strain state in global coordinates is given by [12, 36]:

ke =

∫∫
Ae

(Be)TDeBete dxdy , (2.33)

or, in natural coordinates as:

ke =

∫ +1

−1

∫ +1

−1
(Be)TDeBete det Je dξdη , (2.34)

where (te) is the element thickness. The integration is numerically carried out using a
recommended second order Gauss quadrature rule and replacing the integral by a double
summation, such that [3, 27]:

ke =

nr∑
r=1

ns∑
s=1

[
(Be)T(ξr, ηs)D

eBe(ξr, ηs) det Je(ξr, ηs)t
e
]
r,s
wrws , (2.35)

where (nr, ns) are the number of integration points along each natural coordinate, (ξr, ηs)
are the natural coordinates of the integration point and (wr, ws) are the corresponding
weighting coe�cients. The coordinates of the integration points are listed in Table 2.1,
for �rst and second order quadrature rules, and their distribution inside the element are
shown in Fig. 2.5. Regarding the four-node quadrilateral, if the integral is evaluated
using a second order quadrature the solution will be exact. A one-point Gauss rule
corresponds to a uniform reduced integration and will not yield in an exact solution for
the integral.

Rúben Miguel Borges Lourenço Dissertation Report

2.The Finite Element Method 13

Table 2.1: Natural coordinates and weights for Gauss rules of order 1× 1 and 2× 2.

Quadrature rule Point ξr ηs wr ws

1× 1 1 0 0 2 2

1 −0.57735 −0.57735 1 1

2× 2
2 +0.57735 −0.57735 1 1
3 +0.57735 +0.57735 1 1
4 −0.57735 +0.57735 1 1

η

ξ1

(a) (b)

η

ξ
1 2

34

Figure 2.5: Natural coordinates of the integration points for Gauss rules of order (a)
2× 2 and (b) 1× 1.

Rúben Miguel Borges Lourenço Dissertation Report

.

Intentionally blank page.

Chapter 3

Incompressibility

3.1 Introduction

Many problems of physical relevance often involve displacement �elds preserving the ini-
tial volume of the continuum being analyzed. Media that behave following this pattern
are termed incompressible. Starting from the compressible isotropic case, these materials
follow the equations for linear elasticity that can be described in terms of the displace-
ments u and the stress tensor σ, by the following constitutive relation [3, 4, 15]:

σ = 2µ ε︸︷︷︸
deviatoric

+λ(div u)I︸ ︷︷ ︸
volumetric

, (3.1)

essentially dividing the stress tensor in its hydrostatic and deviatoric part, where I is the
identity matrix and (div u) is the divergence operator applied to the displacement vector
u with components (u, v, w), such that [7, 38]:

div u =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= ε11 + ε22 + ε33 = εkk , (3.2)

with (εkk) being the volumetric strain. If the given material is subjected to hydrostatic
pressure, the relationship between the pressure (p) and volumetric strain (εkk) is linear,
resulting in the de�nition of the bulk modulus (K) as follows [7]:

K = −
p

εkk
=

E

3(1− 2ν)
. (3.3)

Mathematically, incompressibility is achieved by imposing a constraint enforcing the
volumetric part of the strain �eld to be zero or extremely small, when compared to
its deviatoric counterpart. Assuming only small deformations, the assumption that the
volume of the body will remain constant is respected if the displacements normal to the
body surface are considered to be zero, hence [1, 4, 15]:

div u = εkk = 0 . (3.4)

This condition causes the bulk modulus to grow towards in�nity and the same e�ect will
happen as the Poisson's ratio (ν) approaches 0.5. For elasticity problems the incompres-
sibility conditon is ensured by the latter [15].

15

16 3.Incompressibility

3.2 Volumetric locking

The displacement based FEM provides a robust approach to solve most problems, but
encounters di�culties when incompressible materials are analyzed. Low-order elements
may su�er from severe volumetric locking under incompressibility conditions, inasmuch
as bi-linear elements are not able to ensure the nullity of the volumetric strain [1, 29].

According to the classical formulation of the FEM described in Section 2.2.1 the
element sti�ness matrix can be determined by the integral de�ned in Eq. (2.19) as
follows:

ke =

∫
Ωe

(Be)TDeBe dΩe .

As the incompressibility limit is reached, the Lamé parameter (λ) increases towards
in�nity. As a result, some coe�cients of the elasticity tensor De become excessively
high. This causes the element sti�ness matrix ke to be highly ill-conditioned, further
contributing to the singularity of the global sti�ness matrix. Naturally, if the coe�cients
of the global matrix are excessively high, the inverse will tend to zero when solving
the global system of equations, inducing a near-zero displacement �eld and causing the
stresses to be underestimated [22, 38]. The e�ect of locking can be explained as illustrated
in Fig. 3.1, where a quadrangular domain is discretized using linear triangular elements.
The structure is assumed to be under a plane strain state. In order for the elements
deformation to be isocoric (thus respecting Eq. (3.2)) their area has to necessarily remain
constant.

1

2

A

A

A

uA ≡ 0

1

2

Figure 3.1: Locking of a mesh of linear triangles under incompressibility and possible
displacements for elements 1 and 2.

Analyzing Fig. 3.1, it can be seen that element 1 respects this condition if node A
only moves vertically. On the other hand, for element 2 the same node is only allowed
to move horizontally. This con�ict enforces the displacement at node A to be zero.
The same conclusion may be drawn from analyzing the remaining elements of the mesh,
resulting in a zero-displacement �eld for the structure. Since stresses are calculated from
the displacements, the stress �eld will be underpredicted as well [15, 29, 38].

Low-order elements o�er simpler implementation allowing for straightforward mesh
operations and computational e�ciency. For these reasons, it is of great importance
to devise and implement strategies to avoid locking and improve the accuracy of the
solutions provided by these elements.

Rúben Miguel Borges Lourenço Dissertation Report

3.Incompressibility 17

3.3 Mixed (u/p) formulation

In the nearly-incompressible case a very small change in displacement can cause extremely
large changes in pressure, rendering displacement-based solution too sensitive to be useful
numerically. Therefore, it is desirable to devise a formulation of isotropic elasticity valid
for both the compressible and incompressible cases. This purpose may be accomplished
by the following constitutive relations [15, 34]:

σ = 2µ ε− p I

divu +
p

λ
= 0

, (3.5)

where the pressure (p) is treated as an independent variable. It can be seen that if
(ν = 0, 5), the second equation becomes the incompressibility condition, with (p) being
the hydrostatic pressure. On the other hand, if (ν < 0, 5), the pressure (p) may be
eliminated from the relations to obtain the constitutive law from Eq. (3.1). The solution
to element locking in the case of incompressibility is to break the strain �eld down to its
deviatoric and volumetric parts, εdev and εvol, such that [15, 29]

ε = εdev + εvol

εvol =
1

3
εkk I

. (3.6)

The mixed displacement/pressure (u/p) approach determines the shape change from
the deviatoric strains and the pressures from the volumetric strains, by employing the
following system of equilibrium equations, at the element level [15, 29, 38]:[

kedd kedp

kepd kepp

]{
de

pe

}
=

{
f e

0

}
, (3.7)

with the corresponding sti�ness matrices computed as:

kedd =

∫
Ωe

(Be
dev)TDe

µB
e
dev dΩe , (3.8)

kedp = −
∫

Ωe
(Be

vol)
THe

p dΩe , (3.9)

kepp = −
∫

Ωe
(He

p)T 1

K
He

p dΩe , (3.10)

where Be
dev and Be

vol are the deviatoric and volumetric strain-displacement matrices.
Matrix He

p incorporates a set of shape functions used to interpolate the pressure degrees
of freedom pe to the pressure �eld (p). Under full incompressibility the system is solved
for de and pe. For the nearly-incompressible cases, there is no inter-element continuity
requirement for the pressure terms and these may be eliminated at the element level, by
static condensation of the system of equations which can be solved for de, similarly to
the described in Eq. (2.18), using [15, 29]:

ke = kedd − kedp(kepp)−1kepd . (3.11)

Rúben Miguel Borges Lourenço Dissertation Report

18 3.Incompressibility

3.4 Selective reduced integration

3.4.1 Overview

According to Malkus and Hughes [19], the concept of selective reduced integration was
�rst employed by Doherty, Wilson and Taylor [8] to obtain improved bending behavior
with the 4-node quadrilateral elements under plane stress/strain states. A Gauss quad-
rature rule with only one point was used on the shear strain term, with a rule of order
(2× 2) being used to integrate the remaining terms. Malkus and Hughes later extended
this method to the analysis of incompressible problems, successfully attenuating the vo-
lumetric locking e�ects. The same authors also demonstrated the equivalence between
mixed methods and reduced and selective integration [15, 19].

Uniform reduced and selective reduced integration techniques were the �rst succes-
sful forms of dealing with locking problems. The great advantage of uniform reduced
integration is the computational cost-e�ectiveness of the element formulation. The dis-
advantage, on the other hand, is that it can cause the element sti�ness matrix to be
rank-de�cient, leading to spurious deformation patterns. Selective reduced integration
successfully minimizes the e�ects of locking, while keeping the global sti�ness matrix
rank-e�cient. Moreover, this procedure is a very simple way of attaining the perform-
ance of the mixed formulation without having to deal with additional complications
[1, 15, 18].

The key to the implementation of the selective reduced integration is the separation
of the stress �eld in the volumetric and deviatoric parts. Thus, for a plane strain state,
the constitutive relation from Eq. (3.1) can be rewritten as [13, 22]:

σ = De
µ ε+ De

λ ε , (3.12)

or in the equivalent matrix form:
σxx
σyy
τxy

 = µ

2 0 0
0 2 0
0 0 1


︸ ︷︷ ︸

De
µ


εxx
εyy
γxy

+ λ

1 1 0
1 1 0
0 0 0


︸ ︷︷ ︸

De
λ


εxx
εyy
γxy

 , (3.13)

with the elasticity tensors De
µ and De

λ verifying the following relation [13, 15]:

De = De
µ + De

λ . (3.14)

From the classical formulation of the FEM, one may recall that the element internal load
vector is de�ned as [23, 36]:

f eint =

∫
Ωe

(Be)Tσe dΩe . (3.15)

Given the stress decomposition stated in Eq. (3.12), its possible to write the internal
load vector in terms of the elasticity tensors De

µ and De
λ:

f eint =

∫
Ωe

(Be)T(De
µ ε+ De

λ ε) dΩe . (3.16)

Rúben Miguel Borges Lourenço Dissertation Report

3.Incompressibility 19

Provided that the strain-displacement matrix Be remains constant, the element sti�ness
matrix can be established by the variation of the internal loads such that [13, 22]:

δf eint =

[∫
Ωe

(Be)TDe
µ Be dΩe +

∫
Ωe

(Be)TDe
λ Be dΩe

]
δde = (kµ

e + kλ
e) δde , (3.17)

with the element sti�ness matrices kµ
e and kλ

e verifying the following relation [15]:

ke = kµ
e + kλ

e . (3.18)

Due to the growth of the parameter (λ) towards in�nity in the incompressible limit, the
coe�cients of keλ become dominant and the matrix will be singular, whereas keµ will not.
However, integrating keλ with one-point Gauss quadrature rule helps on alleviating the
oversti� response of the volumetric term [15, 19].

3.4.2 Selective integration of hydrostatic component

The incompressible limit (where ν = 0.5) creates problems in the equations of compressi-
ble elasticity. The Lamé parameter λ becomes unbounded, and an alternative formulation
is needed. In this formulation the constitutive law from Eq. (3.1) is rewritten to obtain
the stress �eld in terms of the hydrostatic pressure and the Lamé parameter (µ) as [15]:

σ = 2µ ε− p I . (3.19)

The bulk modulus can be expressed in terms of the Lamé parameter (λ) and the Poisson's
ratio (ν) as follows:

K =
λ(1 + ν)

3ν
, (3.20)

which yields (K = λ) for the incompressible case. Recalling the relation from Eq. (3.3)
it means that the hydrostatic pressure (p) is now obtained by [15]:

p = −λεkk . (3.21)

It is worth noting that Eq. (3.19) only holds for (ν = 0.5) and needs to be modi�ed in
order to represent the more general case. For this end, the deviatoric stress s may be
introduced [15, 22]:

s = σ − p I , (3.22)

which results in:

σ = p I + s , (3.23)

therefore, obtaining the stress �eld in terms of the strain �eld as the sum of two parts
[22]:

σ = De
p ε+ De

s ε , (3.24)

Rúben Miguel Borges Lourenço Dissertation Report

20 3.Incompressibility

where the elasticity tensors De
p and De

s relate the strain �eld with the hydrostatic pressure
and the deviatoric stress, respectively. For a plane strain state these elastic tensors are
given by [13, 22]:

De
p = K

1 1 0
1 1 0
0 0 0

 , (3.25)

De
s =

E

3(1 + ν)

 2 −1 0
−1 2 0
0 0 3

2

 , (3.26)

with both tensors respecting the relationship:

De = De
p + De

s . (3.27)

The element sti�ness matrix may then obtained by the sum of the hydrostatic and
deviatoric terms [13, 22]:

ke = kep + kes , (3.28)

with kep and kes being written as:

kep =

∫
Ωe

(Be)TDe
p Be dΩe , (3.29)

kes =

∫
Ωe

(Be)TDe
s Be dΩe . (3.30)

3.4.3 Selective integration of shear components

In his thesis, Natal Jorge [22] proposes to combine the selective integration of the shear
strain term with the selective integration of the hydrostatic pressure. For this purpose,
the elastic tensors De

p and De
s are reformulated as follows:

De
p =

E

3



1

(1− 2ν)

1

(1− 2ν)
0

1

(1− 2ν)

1

(1− 2ν)
0

0 0
3

2(1 + ν)


, (3.31)

De
s =

E

3(1 + ν)

 2 −1 0
−1 2 0
0 0 0

 . (3.32)

The element sti�ness matrices are calculated in the same way as in Eqs. (3.29) and
(3.30), applying an uniform reduced integration to kep, while integrating exactly kes.

Rúben Miguel Borges Lourenço Dissertation Report

3.Incompressibility 21

3.5 B-bar method

3.5.1 Overview

The ease of implementation toghether with a performance similar to that of mixed meth-
ods made the selective reduced integration a popular approach to deal with incompres-
sible problems, albeit with some drawbacks [9].

The equivalence theorems with mixed formulations are not valid in the axisymmetric
case and the extension to anisotropic and orthotropic materials is ambiguous due to the
splitting of the sti�ness matrix, which is not clear in these cases. Additionally, the com-
putational implementation is harder to achieve in non-isotropic materials. Generalization
of the mixed formulation to these cases also tends to be complicated [9, 15].

These di�culties were overcame by a strain projection approach introduced by Hughes,
generalizing the selective integration and mean-dilational formulations to the anisotropic
case [15], a technique that became known as the B-bar method. Simo and Hughes [31]
established the equivalence between the B-bar method and the variational three-�eld
principle of Hu-Washizu.

3.5.2 B-bar formulation

Recalling the �nite element formulation from Section 2.2.1, the strain-displacement ma-
trix Be can be expanded in terms of sub-nodal matrices in the form:

Be =
[
Be

1 Be
2 · · · Be

nnodes

]
,

where (nnodes) is the number of element nodes. A sub-matrix Be
i is written as shown

in Eq. (2.12) however, for the sake of simplicity of representation, let us consider the
following set of substitutions:



B1 =
∂Ni

∂x

B2 =
∂Ni

∂y

B3 =
∂Ni

∂z

⇒ Bi =



B1 0 0
0 B2 0
0 0 B3

B2 B1 0
B3 0 B1

0 B3 B2

 .

The main idea in the B-bar method is to split the strain-displacement matrix into its
deviatoric and dilatational (volumetric) parts such that [9, 33]:

Bi = Bdil
i + Bdev

i , (3.33)

where Bdil
i and Bdev

i are the dilational and deviatoric matrices, respectively, de�ned as
follows:

Bdil
i =

1

3



B1 B2 B3

B1 B2 B3

B1 B2 B3

0 0 0
0 0 0
0 0 0

 , (3.34)

Rúben Miguel Borges Lourenço Dissertation Report

22 3.Incompressibility

Bdev
i =

1

3



2B1 −B2 −B3

−B1 2B2 −B3

−B1 −B2 2B3

3B2 3B1 0
3B3 0 3B1

0 3B3 3B2

 . (3.35)

For nearly incompressible applications it is necessary to weaken the contribution of the
volumetric part. To that end, Hughes proposed the replacement of matrix Bdil

i by an
improved dilatational matrix B̄dil

i [15]:

B̄dil
i =

1

3



B̄1 B̄2 B̄3

B̄1 B̄2 B̄3

B̄1 B̄2 B̄3

0 0 0
0 0 0
0 0 0

 . (3.36)

The sub-matrix de�ned in Eq. (3.33) is then replaced by the following matrix:

B̄i = B̄dil
i + Bdev

i . (3.37)

Concerning the four-node bi-linear quadrilateral, one way of weakening the contribution
of the volumetric term is to employ a selective reduced integration technique. Hence,
matrix B̄dil

i is integrated using a one-point Gauss quadrature rule and the deviatoric
matrix Bdev

i is integrated using the recommended Gauss rule for the given element [15].
Based on the mean dilatation introduced by Nagtegaal, Parks and Rice [21], Hughes
proposed another way of calculating the dilatational contribution using the mean value
of Bi, such that [15, 33]:

B̄i =

∫
Ωe
Bi dΩe∫

Ωe
dΩe

(3.38)

3.5.3 Plane strain state

The B-bar method applied to plane strain problems originates a strain-displacement
sub-matrix of dimensions (4× 2), in the form [22]:

B̄i =
1

3


2B1 + B̄1 −B2 + B̄2

−B1 + B̄1 2B2 + B̄1

−B1 + B̄1 −B2 + B̄2

B2 B1

 . (3.39)

Employing the generalized selective reduced integration, the matrix is calculated in the
same way, but the coe�cients B̄i are then integrated using a one-point Gauss quadrature
rule [22].

Rúben Miguel Borges Lourenço Dissertation Report

3.Incompressibility 23

3.6 The enhanced strain method

3.6.1 Overview

Before the introduction of the enhanced strain method, an alternative approach to the
development of low-order elements with enhanced performance in coarse meshes was the
classical method of incompatible modes, introduced in 1973 by Wilson, Taylor, Doherty
and Ghaboussi in the context of plane elasticity [32]. Usually, element formulations
adopt shape functions that are continuous over the whole element, even at its boundary,
although the same may not happen to their derivatives. The class of (C0) continuity
elements refers to elements whose �rst derivatives of the degree of freedom variables are
not continuous. Violation of the (C0) continuity does not ensure convergence, nonetheless
the incompatible modes approach employed discontinuous shape functions at the element
boundaries, generating the so-called nonconforming or incompatible elements [15, 36,
38]. In this context, Wilson and his co-workers proposed the incompatible modes Q6
element. Studies showed the element was capable of attaining good results in bending-
dominated problems. However, these results only held for rectangular-shaped elements
and, consequently, the Q6 element did not pass the patch test for arbitrarly shaped
quadrilaterals. The element was later reformulated by Taylor, Beresford and Wilson in
order to correct this de�ciency and respect the patch test, resulting in the QM6 element,
suitable for more general analyses [15, 20].

In 1986, Simo and Hughes [31] had established that the class of assumed strain �nite
element procedures could be systematically formulated within a three-�eld variational
framework of Hu-Washizu. In this context, Simo and Hughes showed that the independ-
ent stress �eld could be eliminated from the �nite element equations provided a certain
orthogonality condition on the assumed strain �eld was satis�ed. Hence, the three-�eld
formulation collapsed to a two-�eld mixed method in terms of the displacements and the
enhanced strain �eld. Based on this principle, Simo and Rifai [32] introduced, in 1990,
the enhanced strain method. The technique became popular for providing a means of
overcoming the poor performance of standard low-order elements in bending-dominated
problems, using coarse meshes. Futhermore, these elements were able to circumvent the
problems associated with locking in the near incompressibility range [1, 2]. Simo and
Rifai also stated that the procedure could be extended to plasticity problems, with the
capability of incorporating inelastic e�ects without modi�cation of the strain-driven re-
turn mapping algorithms. The same authors demonstrated that the incompatible modes
Q6 element of Wilson, and its extension by Taylor to arbitrarly shaped quadrilaterals,
arise as special cases within the context of the enhanced strain formulation [24, 32].

The enhanced strain method consists in augmenting the strain �eld with the inclusion
of extra internal �eld variables, resulting in additional deformation modes [1]. These
variables, termed generalized displacements, are not associated with the element nodes
and may be thought of as internal degrees of freedom. The generalized displacements have
no physical meaning, despite being used to calculate the strain �eld [15]. The procedure
is formulated based on the following three-�eld Hu-Washizu variational functional [32]:

Π(u, ε̃,σ) =
1

2

∫
Ω
εTDε dΩ−

∫
Ω

uTb dΩ−
∫

Ω
σTε̃dΩ−

∫
Γ

uTt̄ dΓ , (3.40)

where the strain tensor ε is expressed as the sum of the symmetric gradient of the

Rúben Miguel Borges Lourenço Dissertation Report

24 3.Incompressibility

displacement vector ∇su and the enhanced strains ε̃:

ε = ∇su + ε̃ . (3.41)

Hence, at the element level, the strain tensor is written as:

εe = Bede + B̃eαe , (3.42)

where αe is the vector of the generalized displacements. The enhanced strain �eld ε̃ is
interpolated for a given point in the element by means of the generalized displacements
and properly de�ned shape functions, organized into matrix B̃e. The admissible choices of
shape functions must satisfy the orthogonality condition in order to successfully eliminate
the assumed stresses. Considering the generalized displacements are constant over the
element domain, this yields [31, 32]:

αe
∫

Ωe
(B̃e)Tσe dΩe = 0 ⇔

∫
Ωe

(B̃e)TDe [Bede + B̃eαe] = 0 . (3.43)

Referring to the above and recalling that for a small variation of the nodal displace-
ments, the internal loads will change, such that:

δf eint =

∫
Ωe

(Be)TDe [Beδde + B̃eδαe] , (3.44)

the equilibrium of the enhanced strains element, for the linear-elastic case, may be ex-
pressed in the following system of equations [32]:[

kedd kedα

keαd keαα

]{
de

αe

}
=

{
f e

0

}
, (3.45)

where kedd is the sti�ness matrix de�ned in Eq. (2.19) and the remaining matrices are
computed as follows [32]:

keαα =

∫
Ωe

(B̃e)TDB̃e dΩe , (3.46)

keαd =

∫
Ωe

(B̃e)TDBe dΩe . (3.47)

The generalized displacements are unique to each element, thus may be eliminated on
the element level by way of applying the static condensation of the system of equations
de�ned earlier [15, 32]:

αe = −(keαα)−1keαdde , (3.48)

hence, obtaining the equilibrium at the element level in terms of the nodal displacements:

k̃ede = f e , (3.49)

with k̃e given as:

k̃e = kedd − kedα(keαα)−1keαd . (3.50)

Rúben Miguel Borges Lourenço Dissertation Report

3.Incompressibility 25

Assembly of the element sti�ness matrices is performed analogously to the described in
Eqs. (2.21) and (2.22) from Section 2.2.1.

According to Simo and Hughes [31], one drawback of the variational framework of Hu-
Washizu is precisely the stress recovery. Since the stresses are eliminated from the mixed
formulation, the method does not generate equations to compute the stress parameters.
Simo and Rifai [32] propose a least squares projection to obtain the stress. In 2000, based
on his earlier work with Taylor in 1995, Piltner [24] proposes a modi�ed version of the
enhanced strains method that provides a systematic way of obtaining the equations for
stress computation. As an alternative, the stress �eld may be computed, at the element
level, by employing the relation [15]:

σ̃e = De(Bede + B̃eαe) . (3.51)

3.6.2 The Q6 element formulation

The motivation that prompted Wilson and his co-workers to propose the incompatible
modes method was not originally related with incompressibility problems. They noted
the Q4 element would respond in shear rather than bending, when subjected to a bending
moment (see Fig. 3.2). This spurious shear was responsible for an overly sti� behavior
[15].

MM

u

uu

u

2b

2a

Figure 3.2: Discretization of a beam subjected to a bending moment and spurious shear
response of the Q4 element.

The idea was to impose the element a certain curvature at its boundaries, without
adding new nodes. The authors observed that one way of attaining this was to add
quadratic modes of deformation. These observations led to the proposal of the Q6 element
with the following displacement interpolation [22]:

ũe =

[
Ni(ξ, η) 0

· · · 0 Ni(ξ, η) · · ·

]
de +

[
Nj(ξ, η) 0

· · · 0 Nj(ξ, η) · · ·

]{
α5

α6

}
, (3.52)

Rúben Miguel Borges Lourenço Dissertation Report

26 3.Incompressibility

with: {
i = 1, n

j = n, n+ nmodes

.

The �rst part of Eq. (3.52) is the standard bi-linear interpolation of the nodal displace-
ments and the second part is the new interpolation where the vectors α5 and α6 contain
the generalized displacements, de�ned as [22]:

αT
5 =

{
α15 α25

}
, αT

6 =
{
α16 α26

}
. (3.53)

The generalized displacements are interpolated with the shape functions (N5) and (N6)
depicted in Fig. 3.3. These are the quadratic functions leading to the incompatible modes
of deformation that disrupt the inter-element continuity, thus generating a discontinuous
displacement �eld [15].

N5 = (1− ξ2)

ξ

η

N6 = (1− η2)

ξ

η

Figure 3.3: Shape functions for the enhanced strain �eld of the element Q6.

Considering only small deformations under plane strain, the Q6 formulation results
in the following strain �eld [22]:


εxx
εyy
γxy

 =

Ni,x 0
0 Ni,y · · ·
Ni,y Ni,x i=1,n




ui
vi
...
un
vn


+

N5,x 0 N6,x 0
0 N5,y 0 N6,y

N5,y N5,x N6,y N6,x



α15

α25

α16

α26

 , (3.54)

or in a more condensed form:

ε = Bede + B̃eαe . (3.55)

The indexes (i, x), for instance, indicate the �rst derivative of the shape function (i)
in respect to the cartesian coordinate (x). The shape functions are �rst evaluated in
the natural coordinate system and then mapped to the global coordinate system by
means of the jacobian matrix, similarly to the described earlier in Section 2.2.3. The
element sti�ness and subsequent assembly process is analogous to the one described in
Eqs. Equations (3.45) to (3.50) for the enhanced strain method.

With the use of quadratic shape functions to interpolate the enhanced strain �eld,
the Q6 element was capable of attaining good results in bending-dominated problems
but only for rectangular elements, thus failing the patch test for the more general case
of arbitrarily shaped quadrilaterals [15].

Rúben Miguel Borges Lourenço Dissertation Report

3.Incompressibility 27

3.6.3 The QM6 element formulation

In order to solve the incompatibility of the Q6 element formulation with the patch test,
Taylor, Beresford and Wilson proposed a modi�ed incompatible modes version, called
QM6 element. They stated that if the displacements were set according to a given linear
polynomial, the incompatible modes need not be activated, that is αe = 0. From the
�rst equation of (3.45), this condition only holds if [15]:

keαdde = 0 . (3.56)

Recalling Eq. (3.47), one concludes that for a constant stress �eld the condition given
above is equivalent to [15]:

σe
∫

Ωe
(B̃e)T dΩe = 0 , (3.57)

for which it is su�cient to prove that:∫
Ωe

(B̃e)T dΩe = 0 . (3.58)

Recalling the de�nition of B̃e from Eq. (3.54), and using a Gauss quadrature rule, one
obtains:

∫
Ωe

(B̃e)T dΩe =
2

det Je

∫ +1

−1

∫ +1

−1


−ξy,η 0 ξx,η

0 ξx,η −ξy,η
ηy,ξ 0 −ηx,ξ

0 −ηx,ξ ηy,ξ

det Je dξ dη , (3.59)

The above equation will integrate to zero if the derivatives of (x) and (y) in respect to
the natural coordinates are constants. This is true if the element is a rectangle or a
parallelogram, but linear terms will appear for general quadrilaterals. Taylor and his
co-workers proposed replacing the derivatives by their values at (ξ = η = 0) [15]. Later
Simo and Rifai [32] proposed an equivalent procedure for the enhanced strains element
design, resulting in the following de�nition for the enhanced strain-displacement matrix
B̃e:

B̃e =
det Je

det Je(0)
F−T

0

N5,x 0 N6,x 0
0 N5,y 0 N6,y

N5,y N5,x N6,y N6,x

 , (3.60)

with matrix F de�ned as follows:

F0 =

 J2
11 J21J12 2J11J12

J12J21 J2
22 2J21J22

J11J21 J12J22 J11J22 + J12J21


ξ=η=0

, (3.61)

where the coe�cients (Jij) are the terms of the jacobian matrix of the transformation
from natural to global coordinates, evaluated at the center of the element.

These modi�cations allow the element to pass the patch test, thus making it suitable
for general use. The Q6 element, on the other hand, should be used only for rectangular
or parallelogram-shaped elements [15].

Rúben Miguel Borges Lourenço Dissertation Report

28 3.Incompressibility

3.6.4 The Q4/6I element formulation

Based on the incompatible modes element of Wilson and Taylor, Natal Jorge [22] proposes
in his thesis the element Q4/6I with six extra deformation modes. The respective shape
functions are presented in table 3.1.

Table 3.1: Shape functions for the six incompatible modes.

Modes Nαi

α5
1
2 η(η − 1)(1− ξ2)

α6
1
2 ξ(ξ + 1)(1− η2)

α7
1
2 η(η + 1)(1− ξ2)

α8
1
2 ξ(ξ − 1)(1− η2)

Following the enhanced strain procedure, the strain �eld at the element level is in-
terpolated as:

ε = Bede + B̃eαe , (3.62)

where the �rst part is the standard bi-linear interpolation of the nodal displacements,
already described in previous sections, whereas the second part is the augmented com-
ponent of the strain �eld, with the vector of generalized displacements de�ned as:

αe =
{
α51 α57 α68 α62 α71 α82

}
. (3.63)

The enhanced strain-displacement matrix B̃e is written as follows:

B̃e =

 N5,ξ 0 N6,ξ +N8,ξ 0 N7,ξ 0
0 N5,η +N7,η 0 N6,η 0 N8,η

N5,η +N7,η N5,ξ N6,η N6,ξ +N8,ξ N8,η N7,ξ

 . (3.64)

The respective shape function derivatives for the extra modes of deformation are presen-
ted in table 3.2. The author further demonstrates that the proposed modes of deformation
agree with the orthogonality condition.

Table 3.2: Shape function derivatives for the six incompatible modes

Modes Nαi,ξ Nαi,η

α5 −ξη(η − 1) 1
2 (2η − 1)(1− ξ2)

α6
1
2 (2ξ + 1)(1− η2) −ξη(ξ + 1)

α7 −ξη(η + 1) 1
2 (2η + 1)(1− ξ2)

α8
1
2 (2ξ − 1)(1− η2) −ξη(ξ − 1)

Rúben Miguel Borges Lourenço Dissertation Report

3.Incompressibility 29

3.6.5 The Q4/4I element formulation

In order to reduce the number of of incompatible modes of the element Q4/6I, Natal
Jorge [22] proposes the following enhanced strain-displacement matrix B̃e:

B̃e =

N5,ξ +N7,ξ 0 N6,ξ +N8,ξ 0
0 N5,η +N7,η 0 N6,η +N8,η

N5,η +N7,η N5,ξ +N7,ξ N6,η +N8,η N6,ξ +N8,ξ

 . (3.65)

According to the author this con�guration for the enhanced modes respects the ortho-
gonality condition. The enhanced strain �eld is calculated as follows:

ε̃ = B̃e


α51

α52

α61

α62

 . (3.66)

The element has four extra modes of deformation, the same number as the Q6 element,
however Natal Jorge states that the modes proposed in his work are responsible for a
linear variation of the strain.

3.6.6 The Qi5 element formulation

The compatible modes Qi5 element was proposed by César de Sá and Natal Jorge [6].
The element is constructed by the addition of two extra modes of deformation, similarly
to the Wilson-Taylor element. The shape function leading to the compatible modes of
deformation agrees with the displacement �eld and is written as:

Nα = (1− ξ2)(1− η2) , (3.67)

which leads to the following derivatives in respect to the local coordinates:{
Nα,ξ = −2ξ(1− η2)

Nα,η = −2η(1− ξ2)
. (3.68)

At the element level the strain �eld is de�ned as follows:


εxx
εyy
γxy

 =

Ni,x 0
0 Ni,y · · ·
Ni,y Ni,x i=1,n




ui
vi
...
un
vn


+

N5,x 0
0 N5,y

N5,y N5,x

{α51

α52

}
. (3.69)

The shape functions derivatives are �rst evaluated in the natural coordinates and then
mapped to the global coordinates by means of the jacobian matrix.

The authors further state that the use of compatible modes leads the element to
respect the orthogonality condition, without being necessary to evaluate the jacobian at
the center of the element.

Rúben Miguel Borges Lourenço Dissertation Report

30 3.Incompressibility

3.6.7 The Qi6 element formulation

Inspired by the works of Simo and Rifai [32] and Simo and Armero, César de Sá and
Natal Jorge [6] propose the compatible modes Qi6 element based on their Qi5 element
described in the previous section.

The element contains four compatible modes of deformation using the same shape
functions as the Qi5 element. By respecting the orthogonality condition, the shape
function derivatives need not be evaluated at the center of the element. The strain �eld,
at the element level is de�ned such that:


εxx
εyy
γxy

 =

Ni,x 0
0 Ni,y · · ·
Ni,y Ni,x i=1,n




ui
vi
...
un
vn


− 2

Nα,x 0 0 0
0 Nα,y 0 0
0 0 Nα,y Nα,x



α51

α52

α61

α62

 (3.70)

Rúben Miguel Borges Lourenço Dissertation Report

Chapter 4

Computational implementation

4.1 Overview

The importance of numerical simulation justi�es the development of software solutions
that take advantage of computational resources to solve distinct problems in various
�elds of engineering. There are several commercial solutions available in the market, for
simulation and structural analysis, based on the FEM.

During undergraduate studies, the training given to engineering students on FEA
often makes use of commercial software. However, these solutions are aimed at the pro-
fessional practice of engineering, o�ering a set of features with capabilities far superior
to those seen in classes. Moreover, the use of commercial software in this training envi-
ronment leads the learning process to be heavily focused in the pre- and post-processing
parts, overlooking the FEA itself.

For the undergraduate student an excellent alternative to gain a deeper understanding
into the FEM is to develop its own �nite element code. A successful implementation not
only requires the student to understand and carefully review the classical FEM formula-
tion, but also often confronts him with speci�c topics not approached in class, requiring
further scienti�c literature review. This work-�ow renders the student with the necessary
knowledge about the speci�cities of the method, its advantages and limitations. Addi-
tionally, a deeper insight into the purpose and behavior of many element formulations
may be gained through the benchmark tests used to validate the code.

Given this motivation, during this dissertation a software solution was developed for
the study and implementation of several �nite element formulations aimed at the analysis
of incompressible problems. Although focused in this particular topic during this work,
the development of this program was targeted at the higher purpose of serving as the base
for a �nite element analysis platform, open to further development inside our department.
The idea was not only to create a means for students and/or researchers to implement
and test di�erent �nite element formulations, but also allow them to contribute with
added functionalities to the software, in subsequent years.

31

32 4.Computational implementation

4.2 Program architecture

The constraints imposed by a short time period available to �nish a dissertation work,
forced the development to focus more on understanding and implementation of di�erent
�nite element formulations and the necessary underlying infra-structure in order on make
them work. Given this limitation, little attention was given to more pure programming
and architecture aspects.

Nonetheless, due to the open-source nature of the software and to facilitate its growth
over time with the introduction of code from di�erent users, there was no doubt that a
modular architecture should be privileged during development. This could be achieved
by means of a structured programming approach, relying heavily on subroutines and
structured control �ow constructs. This philosophy was employed to a certain extent
during this work, however, the code has room to be optimized in the future, by other
students/researchers. For example, many functions are still too big or have duplicate
code that could otherwise be transformed into smaller simpler functions.

Another important aspect to keep in mind is to maintain the code as dynamic as
possible, avoiding hard-coded elements at all cost. Although this is achievable, it may
be di�cult to follow and presents some drawbacks. For example, in the current code the
shape functions for the quadrilateral elements are generated dynamically and may be
systematically obtained for higher-order serendipity elements. In order to facilitate this
implementation, symbolic calculus had to be used, however, manipulation of symbolic
expressions is slower than usual. An alternative is to hard code the matrices into the
program as formulas. Although this may be faster in terms of program execution, it
overpopulates the code and it is more prone to introduction errors.

At the current state of development, the program is composed of one main routine
called planeStress and a total of seventeen sub-routines or functions. Some important
sub-routines are:

� readInput - reads and parses model information from an Abaqus .inp �le;

� intPoints - provides the natural coordinates of the Gaussian integration points
and corresponding weights;

� shapeFunctions - provides the nodal shape functions for quadrilateral elements;

� nodeSelection - provides user interface elements for the user to de�ne boundary
conditions;

� elementStiffnessMatrix - computes element sti�ness matrices and executes their
assembly into the global matrix;

� computeStress - provides the stress parameters at the nodal points;

� postProcessing - provides user interface elements for the user to analyze the re-
sults.

These functions are reviewed in more detail over the next sections. In Appendix A, an
uni�ed modeling language (UML) diagram is shown, depicting the interactions between
various sub-routines during a normal program execution.

Rúben Miguel Borges Lourenço Dissertation Report

4.Computational implementation 33

4.3 Pre-processing

4.3.1 Model de�nition

Given the time constraints imposed for this work, automatic mesh generation algorithms
were not implemented. Instead, the idea was to use a commercial software to de�ne the
model and export all the input data to a �le, which could be imported into MATLAB
and read by the program. To accomplish such task, the software had to be able to read
the input �le and parse the necessary data into appropriate variables. For the model
de�nition, the choice fell on Abaqus student version, mainly because it is widely used in
our department and during our course. Moreover, the CAD capabilities and the graphical
user interface facilitate drawing the geometry and mesh generation. All these parameters
can also be exported to an input �le (.inp) that follows a speci�c format. An excerpt of
an input �le generated for a simple two-dimensional problem is shown in Appendix B.

Observing the example, one can immediately notice the data is organized into blocks
inside labels. Such labels are identi�ed by certain keywords, for example:

1 **PARTS

2 ** ASSEMBLY

3 *Node

4 *Element

A mesh is de�ned by the nodal coordinates and the connectivity information. Thus,
essentially we are interested in extracting the data inside the labels *Nodes and *Element.
The nodal coordinates are presented inside the �rst label in the format:

1 *Node

2 1, 0., 0.

3 2, 5., 0.

4 3, 10., 0.

5 4, 0., 2.

6 5, 5., 2.

7 6, 10., 2.

where the �rst column contains the node labels and the second and third columns con-
tain, respectively, the (x) and (y) coordinates of the nodal points. The connectivity
information is listed inside the second label as follows:

1 *Element , type=CPS4

2 1, 1, 2, 5, 4

3 2, 2, 3, 6, 5

where the �rst column lists the element labels and the remaining columns list the nodes
belonging to a given element, ordered in the counter-clockwise direction.

The function readInput provides the necessary algorithm to access the input �le and
read its contents in order to extract the information described above. When the function
is called, a �le explorer dialog is presented to the user to select the desired �le to import.
This is accomplished by the command uigetfile such that:

1 [fileName ,pathName ,~]= uigetfile ({'*.inp';'*.txt'},'Select input file');

Rúben Miguel Borges Lourenço Dissertation Report

34 4.Computational implementation

whose output variables are the �le name and the �le path. Essentially, this information is
used for the program to know what �le should be opened when executing the command
fopen. Once the �le is opened the routine uses the command textscan to read its
content into a variable and closes the �le afterwards, as follows:

1 fid=fopen(strcat(pathName ,'/',fileName),'r');

2 fileContent=textscan(fid ,'%[^\n]');

3 fclose(fid);

The �le data is stored into the variable fileContent, which is a (1 × 1) cell array. Its
contents need to be extracted to a di�erent cell array, called fileLines which in turn will
be a single column cell with as many lines as the �le contents. At this point, the function
searches for the labels *Node and *Element to know their respective line indexes, using
the command find:

1 idxNode=find(contains(fileLines ,'*Node'));

2 idxElement=find(contains(fileLines ,'*Element '));

Based on the indexes, the routine proceeds to read the nodal coordinates, retrieving all
the numerical data appearing after the label *Node until it reaches the next label, marked
by an asterisk *:

1 i=idxElement +1;

2 while ~contains(fileLines(i,1),'*')

3 i=i+1;

4 end

5

6 elementRead=fileLines(idxElement +1:i-1,1);

With the nodal coordinates successfully extracted, the routine needs to parse the
information into matrix. It can be seen that the raw data is stored in the form of
numerical strings separated by commas. The command regexp is used to split the data
at commas, obtaining a cell array with one column and as many lines as the number of
nodes, which is later converted into a matrix by using the command vertcat, as follows:

1 parseNodes=regexp(nodeRead , ',', 'split ');

2 nodes = str2double(vertcat(parseNodes {:}));

The same procedure is employed to extract the connectivity info. The code was
further enhanced to deal with geometries composed of several parts. The end result is a
structure array with the name model organized as follows:

model

Part

Name: "Part-1"

Node: [6x3 double]

Connect:

Type: "quad"

Nodes: 4

Elements: [2x5 double]

Rúben Miguel Borges Lourenço Dissertation Report

4.Computational implementation 35

4.3.2 Boundary conditions

In order to facilitate the introduction of the boundary conditions, a simple graphical user
interface was developed for the purpose. After the program execution, at certain point
the user is prompted to de�ne the boundary conditions of the model by means of the
sub-routine nodeSelection. A �gure window is launched and a representation of the
meshed geometry with the nodal points is presented to the user via a plot object. The
mesh representation is achieved by means of the patch command, as follows:

1 patch(ax ,'faces ',connectInfo (:,2:end) ,...

2 'vertices ',[xData (:) yData (:)],...

3 'facecolor ' ,[0.9 0.9 0.9],'facealpha ' ,0.65);

where xData and yData are column vectors containing the cartesian coordinates of the
nodal points. The patch command accepts nodal coordinates and connectivity info in
the same format as the information extracted from the input �le. For example, the
code snippet above results in the following representation of (6× 6) mesh for the cook's
membrane shown in Fig. 4.1. The user is also allowed to select di�erent nodes, using a
brush tool, in order to de�ne the boundary conditions.

(a) (b)

Figure 4.1: Meshed geometry representation with (a) node selection using data brush
and (b) boundary condition representation.

The data brush tool outputs a logical row vector of length equal to the number of
nodes, with the value one at the indexes of the selected nodes. Using the command find

is possible to use this information in order to obtain the node labels, as follows:

1 fixed=find(nodes.BrushData);

The interactions with the graphic interface are interpreted by nested callback func-
tions de�ned within the main sub-routine. A nested function is invisible outside of its
immediately enclosing function, but can access all local variables of the enclosing function.
This particularity allowed to easily add these features to the software, while managing
to convert the user graphical input into useful data variables. A callback is de�ned as

Rúben Miguel Borges Lourenço Dissertation Report

36 4.Computational implementation

any normal function, the only di�erence is that it is pointed out to the object handler as
the routine that will trigger upon certain interaction.

After de�ning the boundary conditions, the sub-routine originates three output vari-
ables: fixedNodes, sSnodes and loads. The �rst output is a simple row vector contain-
ing the labels of the pinned nodes. The second output is a structure array containing
information in order to identify which degree of freedom is �xed for the simply supported
nodes. The last output is also a structure array but contains information about which
nodes have applied forces. The variable also holds data about the direction of the forces
and their magnitudes. The last two data structures are de�ned as follows:

sSnodes

BC

FixedDir: "x"

Nodes: [nx1 double]

FixedDir: "y"

Nodes: [nx1 double]

loads

Xdirection

Value: 100

Nodes: [nx1 double]

Ydirection

Value: 0

Nodes: [nx1 double]

...

These structures are later handled by the functions setNodalForces and setFreeNodes.
The �rst function outputs the external force vector to be used in the global system of
equations. The second function outputs a vector containing the active degrees of free-
dom. The �xed degrees of freedom corresponding to the pinned nodes are stored in the
vector dofs and are determined from the node labels in the vector nodeOrder:

1 nodeOrder =1: numNodes;

2 dofs =[];

3 for k=1: dOf

4 nodes=nodeOrder(fixedNodes);

5 dofs=[dofs ,(nodes -1).*dOf+k];

6 end

where dOf is the number of nodal degrees of freedom. For the simply supported nodes,
a similar process is conducted with the only di�erence being the fact that the code
needs to navigate inside the structure array sSnodes. Near the end of execution, the
routine de�nes a vector of global degrees of freedom and detects the active ones using the
command setdiff, essentially setting the di�erence between the vectors and globalDofs
and dofs:

1 globalDofs =1: dOf*numNodes;

2 activeDoF=setdiff(globalDofs ,dofs);

The output is used as a mask in order to solve the global system of equations for the
active degrees of freedom only.

Rúben Miguel Borges Lourenço Dissertation Report

4.Computational implementation 37

4.4 Finite element formulas

4.4.1 Shape functions generation

The software is capable of dynamically generating the nodal shape functions for quadrila-
teral elements only. In theory, the algorithm is capable of generating correct expressions
for two-dimensional serendipity rectangular elements of any order. Further tests need to
be conducted in order to con�rm this.

The sub-routine shapeFunctions literally follows the theoretical procedure described
in [36] and [15], among others, to obtain the shape functions for the quadrilateral elements
based on the one-dimensional Lagrange polynomial family in natural coordinates. For
this end, the use of symbolic expressions was essential, allowing for the treatment of
mathematical equations with unknown variables. The sub-routine starts by de�ning the
necessary symbolic variables and matrices:

1 syms csi eta

2

3 nCsiI=zeros(dim ,1);

4 nEtaI=zeros(dim ,1);

5 nCsiI=sym(nCsiI);

6 nEtaI=sym(nEtaI);

The variable dim is related to the number of nodes per side of the element. This is used
to determine the natural coordinates of the nodes along these segments such that:

1 nodeCoord=linspace(-1,1,dim);

The sub-routine then proceeds to calculate the shape functions of the one-dimensional
segments of the quarilateral element, for both natural coordinates, such that [36]:

Ni(ξ) =

nnodes∏
j=1(j 6=i)

(ξ − ξj)
(ξi − ξj)

, (4.1)

Ni(η) =

nnodes∏
j=1(j 6=i)

(η − ηj)
(ηi − ηj)

. (4.2)

For that end, the sub-routine evaluates the one-dimensional segment at each node co-
ordinate, along the ξ-direction and then creates the corresponding function along the
η-direction by means of the command subs to substitute the variable csi by the variable
eta in the symbolic expressions. This accomplished by the following loop:

1 for i=1: length(nodeCoord)

2 N=1;

3 csiI=setdiff(nodeCoord ,nodeCoord(i));

4 %Constructing one -dimensional shape function over csi

5 for j=1: length(csiI)

6 N=N*(csi -csiI(j))/(nodeCoord(i)-csiI(j));

7 end

8

9 nCsiI(i,1)=N;

10 %Constructing one -dimensional shape function over eta

11 nEtaI=subs(nCsiI ,csi ,eta);

12 end

Rúben Miguel Borges Lourenço Dissertation Report

38 4.Computational implementation

The end result for a four-node quadrilateral are the one-dimensional Lagrange polyno-
mials de�ned as [36]: 

N1(ξ) =
1

2
(1− ξ)

N1(η) =
1

2
(1− η)

N2(ξ) =
1

2
(1 + ξ)

N2(η) =
1

2
(1 + η)

. (4.3)

Afterwards, the sub-routine proceeds to calculate the bi-dimensional expressions. The
underlying concept is that a given node connects two one-dimensional segments, thus
the corresponding shape function results from the combination of the expressions from
both segments [36]. This is achieved by multiplying the one-dimensional shape functions
de�ned in the expression above, such that:

N1(ξ, η) = N1(ξ)N1(η)

N2(ξ, η) = N2(ξ)N1(η)

N3(ξ, η) = N2(ξ)N2(η)

N4(ξ, η) = N1(ξ)N2(η)

, (4.4)

which is accomplished by the sub-routine by the executing the following code:

1 %Constructing nodal bi -dimensional shape functions (csi ,eta)

2 k=1;

3 for i=1: length(nodeCoord)-1

4 nodeFun(k,1)=nCsiI(i,1)*nEtaI (1,1);

5 k=k+1;

6 end

7

8 for i=1: length(nodeCoord)-1

9 nodeFun(k,1)=nCsiI(end ,1)*nEtaI(i,1);

10 k=k+1;

11 end

12

13 for i=length(nodeCoord):-1:2

14 nodeFun(k,1)=nCsiI(i,1)*nEtaI(end ,1);

15 k=k+1;

16 end

17

18 for i=length(nodeCoord):-1:2

19 nodeFun(k,1)=nCsiI (1,1)*nEtaI(i,1);

20 k=k+1;

21 end

The expressions are consecutively stored into the matrix nodeFun which is given as out-
put. This matrix has one column and as many lines as the number of nodes of the
element. For the case of a bi-linear quadrilateral element, this results essentially in the
same structure of expressions of Eq. 2.28, but now in matrix form. These expressions
are later used for computing the sti�ness matrices and the strain and stress �elds.

Rúben Miguel Borges Lourenço Dissertation Report

4.Computational implementation 39

4.4.2 Gauss points generation

The numerical integration procedure employed by the program is based in the Gauss-
Legendre quadrature. The number of quadrature points and their locations is de�ned
by the element order, which is related to the number of nodes. Using a Gauss-Legendre
quadrature rule, the integral of a given function f(x) can be approximated as follows
[15, 36] ∫ +1

−1
f(x) dx =

∫ +1

−1
g(x)W (x) dx ≈

p∑
i=1

g(xi)w(xi) , (4.5)

where g(x) is a polynomial approximation of f(x) and W (x) is an appropriate weighting
function, which in turn are approximated by a sum of function values at speci�c points
(xi) multiplied by some weights (wi). The coordinates of the quadrature points and
the values of the associated weights are determined to attain maximum accuracy while
integrating the function numerically. The integration points are the roots of the n-th
order Legendre polynomials, which may be de�ned by the recursively as [15, 28]:

Pn(x) =
(2n− 1)xPn−1(x)− (n− 1)Pn−2(x)

n
. (4.6)

The �rst derivative of the polynomial may also be de�ned recursively:

P ′n(x) =
n

x− 1
[xPn(x)− Pn−1(x)] . (4.7)

The polynomial roots are not solvable analytically and have to numerically approxi-
mated. This can be achieved by the Newton-Raphson method, such that:

xn+1 = xn −
f(xn)

f ′(xn)
, (4.8)

using the �rst-guess (x0) for the i-th root of a n-order polynomial given by:

x0 =

(
π
i− 0.25

n+ 0.5

)
. (4.9)

The corresponding weights are computed by employing:

wi =
2

(1− x2
i) [P ′n(xi)]

2 . (4.10)

The procedure described above is available in [28] and is employed by the software by
means of the sub-routine gaussLegQ. The code can be consulted in Appendix C. The
output variable q is a matrix with as many lines as the number of roots of the polynomial
and two columns. The �rst column contains the said polynomial roots and the second
column contains the corresponding weights.

Rúben Miguel Borges Lourenço Dissertation Report

40 4.Computational implementation

4.4.3 Assembly algorithm

The element sti�ness matrices are calculated and assembled by executing the sub-routine
elementStiffnessMatrix. The code follows the theoretical procedure already described
in previous sections. The process starts by initializing the necessary matrices and sym-
bolic variables. Afterwards, the routine computes the derivatives of the shape functions,
in respect to the natural coordinates (ξ) and (η), applying the command diff to the
symbolic expressions, as follows:

1 dNCsiEta =[diff(nodeShapeFun ,csi).';diff(nodeShapeFun ,eta).'];

At this point, the sub-routine iterates over the elements, starting by �nding the degrees
of freedom associated with the current element and storing them in the vector indexB.
This is accomplished in the following inner-loop:

1 elConnect=connectInfo(i,:); %Reading connectivity

2 idx =1; %Auxiliary counter

3

4 for x=1: length(elConnect)

5 for y=1: dOf

6 indexB(idx)=(elConnect(1,x) -1)*dOf+y;

7 idx=idx +1;

8 end

9 end

Following this operation, another inner-loop is initiated in order to iterate over the integ-
ration points. For each iteration the derivatives of the shape functions are computed at
the natural coordinates of the current integration point using, once again, the command
subs, such that:

1 for j=1: size(intPts ,1)

2 dN=dNCsiEta;

3 %Computing derivatives in the integration point

4 dN=subs(dN ,[csi ,eta],[intPts(j,1),intPts(j,2)]);

5

6 %Converting from symbolic to double

7 dN=double(dN);

8

9 J=dN*elNodeCoord (:,:,i); %Jacobian

10 dNdXdY=J\dN; %Converting to global coordinates

The symbolic expressions are then converted to the numeric data type double and the
execution then proceeds to compute the jacobian matrix based on the nodal coordinates
of the element, stored in a multidimensional array called elNodeCoord, of dimensions
(nnodes;elem × 2 × nelem). In subsequent operations, the derivatives are converted to
global coordinates and the strain-displacement matrix B is constructed. In the end of
the iteration, the element sti�ness is calculated and directly assembled into the global
sti�ness matrix K, using the vector indexB as mask, such that:

1 K(indexB ,indexB)=K(indexB ,indexB)+B'*D*B*wCsi*wEta*det(J)*elThick;

Rúben Miguel Borges Lourenço Dissertation Report

4.Computational implementation 41

where elThick is the element thickness, wCsi and wEta are the weighting coe�cients of
each natural coordinate. The vector indexB indicates which degrees of freedom along
the lines and columns of the global matrix should be populated. The loop then proceeds
to repeat the process for the subsequent integration points. Once all the points are eval-
uated, the outer-loop proceeds to the next element. The process can be easily visualized
by referring to the �owchart shown in Appendix D.

4.5 Post-processing

4.5.1 Stress recovery

The stress recovery algorithm is employed in the sub-routine computeStress. Recalling
the classical �nite element formulation, the stress computation procedure begins with
strain computations. Part of this routine is similar to the one employed for computing
the sti�ness matrices, described in the previous section, the only di�erence is that we are
only interested in the necessary variables to compute the strains. This means reusing
the most part of the elementStiffness routine, except the lines related with sti�ness
computation. As such, after the global displacement �eld is determined, the strain is
computed at the element level, for each integration point, by means of:

1 e=B*U(indexB);

where e is the element strain �eld corresponding to the global degrees of freedom of the
element stored in the vector U(indexB). The stress parameters are then calculated at
each integration point due to higher accuracy, applying the Hooke's law:

1 S(i,j,:)=D*e;

where the variable S is a multidimensional array with dimensions (nelem × nintpts × 3).
The third dimension of the array refers to the number of stress components for a plane
stress/strain problem, stored and ordered from the �rst stack to the third stack as follows:
σxx, σyy and τxy.

For visualization purposes, there is a special interest in representing the stress values
in the nodal points because their representation is easier if they are associated to the
nodal coordinates. However, the stresses computed at the same nodal point from adjacent
elements are, generally, not the same because stresses are not required to be continuous
in displacement-based �nite elements. Therefore, some form of stress averaging has to be
performed in order to improve the accuracy. The method used here is the extrapolation
of the stress values from the integration points to the nodal points. The underlying
concept is that the integration points are themselves the nodes of a inner-element, a
so-called Gauss element, as shown in Fig. 4.2. The Gauss point numbering follows the
element node numbering in the counterclockwise direction, with the point (i′) being near
the node (i) [11].

The advantage of this method is that the same shape functions that were used to
interpolate a given value inside the element may now be used to extrapolate the values
of stress components to outside the Gauss element. One only need to recall the Gauss

Rúben Miguel Borges Lourenço Dissertation Report

42 4.Computational implementation

η

ξ

1′ 2′

3′4′

1 2

34

Figure 4.2: Idealized Gauss element for a bi-linear quadrilateral.

point coordinates from Table 2.1 and consider the following coordinate relations [11]:
ξ =

ξ′
√

3

η =
η′
√

3

,

{
ξ′ = ξ

√
3

η′ = ξ
√

3
, (4.11)

where (ξ′,η′) are the natural coordinates of the nodes of the Gauss element, which is
also a four-node quadrilateral. Any given variable w whose values (w′i) are known at
the Gauss element nodes can be extrapolated to the element corners using the shape
functions from Eq. (2.28), but now in terms of (ξ′) and (η′), such that [11]:

w1

w2

w3

w4

 =


1 + 0.5

√
3 −0.5 1− 0.5

√
3 −0.5

−0.5 1 + 0.5
√

3 −0.5 1− 0.5
√

3

1− 0.5
√

3 −0.5 1 + 0.5
√

3 −0.5

−0.5 1− 0.5
√

3 −0.5 1 + 0.5
√

3



w′1
w′2
w′3
w′4

 , (4.12)

with the (wi) being the values of w at the element corners. The sub-routine computeStress
accomplishes this by �rst transposing the �rst two dimensions of the multidimensional
array S by means of the command permute and applying Eq. (4.12) to each stack, as
follows:

1 S=permute(S,[2 1 3]);

2

3 for i=1: size(S,3)

4

5 S(:,:,i)=[1+0.5*3^0.5 -0.5 1 -0.5*3^0.5 -0.5;

6 -0.5 1+0.5*3^0.5 -0.5 1 -0.5*3^0.5;

7 1 -0.5*3^0.5 -0.5 1+0.5*3^0.5 -0.5;

8 -0.5 1 -0.5*3^0.5 -0.5 1+0.5*3^0.5]*S(:,:,i);

9

10 end

Once the stress values are extrapolated there is the need to compute the mean value at
each node. For the purpose, the routine needs to know what are the adjacent elements
to a given node by applying the inverse connectivity in the form of a mask that can be
applied to each stress component to determine its mean value from those points:

Rúben Miguel Borges Lourenço Dissertation Report

4.Computational implementation 43

1 Sx=S(:,:,1) ';

2 Sy=S(:,:,2) ';

3 Sz=S(:,:,3) ';

4 Svm=(Sx.^2+Sy.^2-Sx.*Sy+3.* Sxy .^2) .^0.5;

5

6 meanStress=zeros(numNodes ,4);

7

8 for i=1: numNodes

9

10 mask=ismember(connectInfo ,i);

11 meanStress(i,:)=mean([Sx(mask) Sy(mask) Sz(mask) Svm(mask)],1);

12

13 end

The output is the meanStress variable, a matrix with as many lines as the total number
of nodes of the problem with each column containing an averaged stress component,
including the von Mises stress.

4.5.2 Results visualization

The post-processing part regarding results visualization and contour plotting is carried
out by the sub-routine postProcessing. This function works in a way similar to the
nodeSelection routine, but employs some di�erent functionality. When an analysis is
�nished the user is presented with a representation of the deformed structure associated
to a contour plot. This is achieved by means of the command patch, by summing the
displacements to the nodal coordinates, in order to apply the deformation, and de�ning
the parameter 'FaceVertexCData' which will contain, in the following example, the
horizontal displacement:

1 data=U(((1: numNodes) '-1)*2+1);

2 contour = patch(ax ,'faces ',connectInfo (:,2:end) ,...

3 'vertices ',[xData (:)+u1 yData (:)+u2],...

4 'facecolor ','interp ','FaceVertexCData ',data);

Before presenting the deformed structure there is the need to de�ne a color map and
associate it to a color bar, which will serve as the contour legend. This purpose is
achieved with the commands colormap and colorbar:

1 c=colormap(ax,jet (12));

2 h=colorbar(ax,'Location ','eastoutside ');

For instance, with these commands the sub-routine produces contour plots and presents
deformed states as the ones shown in Fig. 4.3, for the case of the example from Section
5.5. The user also has a set of radiobuttons at his disposal to cycle through the desired
contour plot. For the selected plot the user is allowed to probe the nodal values, by means
of selecting the nodes with a brush, in a similar way as in the routine nodeSelection.
When a set of nodes is selected, the parameter 'ActionPostCallBack' of the brush
object orders the execution of the callback function onBrushData. The routine extracts
the brush data from the plot object called nodes and detects which plot contour the
user had selected, by inspecting the corresponding radiobutton 'Tag' parameter. The
function then proceeds to populate a table with the variable data by means of the
uitable command. In Listing 4.1 a code snippet that executes this sequence is shown.

Rúben Miguel Borges Lourenço Dissertation Report

44 4.Computational implementation

(a)

(b)

(c)

(d)

(e)

Figure 4.3: Visual representation of the deformed state for the example from Section 5.5.
Countour plot representation for (a) the horizontal and (b) vertical displacement �elds
and the stress �elds (c) σxx, (d) σyy and (e) τxy.

Rúben Miguel Borges Lourenço Dissertation Report

4.Computational implementation 45

(a) (b)

Figure 4.4: Probing node values by means of (a) the data brush tool and (b) table
populated with the corresponding information, in this example the (σxx) stresses.

Listing 4.1: Code excerpt of the function onBrushData, providing node probing func-
tionality and results representation in a table.

1 nodeLabels =(1: numNodes) ';

2 selectedNodes=find(nodes.BrushData);

3

4 switch bg.SelectedObject.Tag

5

6 case '1'

7 var=u1(selectedNodes);

8 case '2'

9 var=u2(selectedNodes);

10 case '3'

11 var=S(selectedNodes ,1);

12 case '4'

13 var=S(selectedNodes ,2);

14 case '5'

15 var=S(selectedNodes ,3);

16 case '6'

17 var=S(selectedNodes ,4);

18 end

19

20 data=[nodeLabels(selectedNodes),var];

21 t =uitable(fPost ,'Data',data);

Rúben Miguel Borges Lourenço Dissertation Report

.

Intentionally blank page.

Chapter 5

Benchmark analyses

In this chapter, a series of numerical examples is presented. All the examples were
analyzed under states of plane stress or strain, assuming linear elastic and linear geometry
behaviors. The mesh generation was limited to models with no more than one thousand
nodes, a limit imposed by Abaqus student version used for pre-processing.

For problems in the incompressibility range, the hybrid versions of the elements avail-
able in Abaqus had to be used. According to Abaqus Theory Manual [34], these elements
follow a mixed (u/p) formulation, where the displacement �eld is augmented with a pres-
sure �eld. Still in the context of incompressibility, the Theory Manual also states that
for the reduced integration formulation, Abaqus employs a selective integration, where
reduced integration is used for the volumetric strain and full integration for the deviato-
ric strain, in what seems to be the formulation described in Section 3.4.1. In this case,
the stresses and strains are calculated at the points that provide optimal accuracy, the
so-called Barlow points that, according to Prathap [26], may or may not coincide with
the Gauss points. The reduced integration elements also incorporate hourglass control
mechanisms, whose formulation is described in more depth in Abaqus Theory Manual
[34]. For all the analyses in this chapter, the reduced integration element from Abaqus
was used with the default hourglass control option. The linear incompatible modes for-
mulation used by Abaqus is based in the work of Simo and Rifai [32, 34].

The analyses were conducted with the goal of validating and assess the quality of
implementation, by comparing the results coming from the developed program against
the well-established Abaqus commercial software. The study was further extended to the
evaluation of the performance of the �nite element formulations presented in this work,
for the compressible and incompressible cases.

47

48 5.Benchmark analyses

Implemented �nite element formulations

The �nite element formulations implemented within the software developed during this
Dissertation work:

� Q4 - Classical four-node bi-linear quadrilateral �nite element;

� Q4SRI - Selective reduced integration element, as described in Section 3.4.3;

� Q6 - Incompatible modes element of Wilson [15];

� QM6 - Generalized version of the incompatible modes Q6 element, as proposed by
Taylor [15];

� Q4/6I - Incompatible modes element with six extra modes of deformation, as
described in Section 3.6.4 [22];

� Q4/4I - Incompatible modes element with four extra modes of deformation, as
described in Section 3.6.5 [22];

� Qi5 - Compatible modes element with two extra modes of deformation, as described
in Section 3.6.6 [6];

� Qi6 - Compatible modes element with four extra modes of deformation, as de-
scribed in Section 3.6.7 [6];

Abaqus �nite element formulations

The �nite element formulations available in Abaqus and used for the comparison analyses
within the context of this work were:

� CPS4 - Plane stress bi-linear quadrilateral from Abaqus;

� CPE4H - Abaqus hybrid plane strain four-node bi-linear quadrilateral with con-
stant pressure;

� CPE4RH - Abaqus hybrid plane strain four-node bi-linear quadrilateral with re-
duced integration and constant pressure (allows hourglass control);

� CPE4IH - Abaqus hybrid incompatible modes plane strain four-node bi-linear
quadrilateral with linear pressure.

In the following sections the results obtained using the implemented �nite element
formulations are presented and discussed, within the context of di�erent numerical ex-
amples.

Rúben Miguel Borges Lourenço Dissertation Report

5.Benchmark analyses 49

5.1 Rectangular plate with concentrated load

A rectangular thin-plate of thickness 1.0 mm is subjected to a concentrated in-plane load
as depicted in Fig. 5.1. The structure is analyzed under plane stress or plane strain. It
is considered that the concentrated load (F) acting on the plate has a magnitude of 100
N and the structure is made of a material with elastic properties: E = 210 GPa and
ν = 0.3.

F

11

1

x

y

1 2 3

4 5 6

7 8 9

Figure 5.1: Thin rectangular plate subjected to concentrated load on its top-right corner.
Structure dimensions are in meters.

The original problem can be found in [36] using a �nite element model based on a
mesh of 2×1 elements. For this work, the problem was adapted to be analyzed using
square meshes starting from two elements per side to a maximum of sixteen elements
per side. The aim of this test was to evaluate the quality of the results regarding the
displacements obtained with the developed program and validate them by taking the
results obtained with Abaqus as reference. For this purpose, the horizontal and vertical
displacements (U1, U2) of the top-right corner of the plate were evaluated. For ease
of comparison, the values were logarithmized and plotted against the logarithm of the
number of degrees of freedom (DOF) in order to quantify the mesh re�nement. The
results are shown in Figs. 5.2 and 5.3 for plane stress and strain, respectively.

Analyzing the data, we observe that the trendlines have similar slopes for the case
of plane stress, indicating that our implementation of the Q4 element under plane stress
was able to perform at the same level of the CPS4 element from Abaqus. However, a
disparity is observed for the case of plane strain using coarse meshes. In this context,
our implementation of the Q4 element revealed a sti�er behavior, when compared to
the CPE4 element from Abaqus. Nonetheless, the results start to converge with the
increase of degrees of freedom. From the data presented in Table 5.1 it can be seen that
the relative deviation in respect to the CPE4 element rapidly decreases when doubling
the number of elements per side, but �ner meshes would be needed to con�rm if the
deviation would decrease. Nonetheless, for meshes using eight or sixteen elements per
side, the deviation is already within an acceptable range. The disparity is attributed to
the fact that Abaqus uses a di�erent elasticity tensor for plane strain analysis, according
to several discussions in some online scienti�c forums.

Rúben Miguel Borges Lourenço Dissertation Report

50 5.Benchmark analyses

m1 = 0,134
m2 = 0,134

-5,40

-5,35

-5,30

-5,25

-5,20

-5,15

-5,10

1,0 1,5 2,0 2,5 3,0

lo
g(

U
1)

 -
Pl

an
e

st
re

ss

log(DOF)

Q4
CPS4
Linear (Q4)
Linear (CPS4)

(a)

m2 = 0,1307
m1 = 0,1308

-4,90

-4,85

-4,80

-4,75

-4,70

-4,65

-4,60

1,0 1,5 2,0 2,5 3,0

lo
g(

U
2)

 -
Pl

an
e

st
re

ss

log(DOF)

Q4
CPS4
Linear (Q4)
Linear (CPS4)

(b)

Figure 5.2: Linearized results obtained for (a) the horizontal and (b) vertical displace-
ments of the top-right corner node of the beam under plane stress.

m2 = 0,1317
m1 = 0,0913

-5,45

-5,40

-5,35

-5,30

-5,25

-5,20

-5,15

1,0 1,5 2,0 2,5 3,0

lo
g(

U
1)

 -
Pl

an
e

st
ra

in

log(DOF)

Q4
CPE4
Linear (Q4)
Linear (CPE4)

(a)

m2 = 0,1285
m1 = 0,0927

-4,95

-4,90

-4,85

-4,80

-4,75

-4,70

-4,65

1,0 1,5 2,0 2,5 3,0

lo
g(

U
2)

 -
Pl

an
e

st
ra

in

log(DOF)

Q4
CPE4
Linear (Q4)
Linear (CPE4)

(b)

Figure 5.3: Linearized results obtained for (a) the horizontal and (b) vertical displace-
ments of the top-right corner node of the beam under plane strain.

Table 5.1: Relative deviation of the results for the horizontal and vertical displacements
using di�erent mesh sizes.

Elements
per side

Relative error (%)

U1 U2

2 17.23 15.84
4 7.29 7.39
8 4.63 4.74
16 3.75 3.92

Rúben Miguel Borges Lourenço Dissertation Report

5.Benchmark analyses 51

5.2 Rectangular plate with distributed load

A rectangular thin-plate of thickness 25 mm is subjected to a distributed load in one
side as depicted in Fig. 5.4. The structure is analyzed under a plane stress state and
condidered to be made of a material with elastic properties: E = 210 GPa and ν = 0.3.
Considering linear elastic material and geometry, the con�guration is equivalent to a uni-
axial tensile test, where necking of the structure is expected to occur due to the Poisson's
e�ect.

F

0.2500.250

0.2
50

x

y

1 2 3

4 5 6

F

F =
18.75

2nelem
kN if corner node F =

18.75

nelem
kN if interior node

Neutral axis

Figure 5.4: Thin rectangular plate subjected to distributed load on its right side (struc-
ture dimensions are in meters).

The original problem can be found in [16], using a mesh of 2×1 elements. However,
the analysis was carried out using a square mesh of 16 elements per side, using the CPS4
and Q4 elements. The main purpose of this test was to assess the accuracy of the dis-
placement and stress �elds produced by the developed program. A visual comparison of
the displacements and stress contour plots is established in Figs. 5.5 and 5.6, respectively.

(a) (b)

Figure 5.5: Contour plots of (a) the horizontal and (b) vertical displacement �elds (top
images come from Abaqus, bottom images come from the developed program).

Regarding the displacement �elds we observe the contours are very similar between
the two programs, indicating that the displacements are calculated correctly and the

Rúben Miguel Borges Lourenço Dissertation Report

52 5.Benchmark analyses

post-processing module is capable of reproducing the correct distribution. In the case of
the vertical displacements (see Fig. 5.5b) the contour clearly depicts the Poisson's e�ect,
which results in a symmetry of the displacement �eld in relation to the neutral axis.

(a) (b)

Figure 5.6: Contour plots of the normal stress �elds (a) σxx and (b) σyy (top images
come from Abaqus, bottom images come from the developed program).

Observing Fig. 5.6, we conclude that the developed program is capable of generating
stress distributions similar to Abaqus. This means the stress recovery algorithm is well
implemented with the extrapolation of the stress components computing the correct
values. This is further validated by the excellent stress results presented in Table 5.2,
measured along the bottom-half of the left side of the plate. Due to the symmetry of
displacements the stress �eld is also symmetrical in relation to the neutral axis.

Table 5.2: Stress results, in MPa, measured along the left bottom-half of the plate.

Nodes
Developed code Abaqus

σxx σyy τxy σxx σyy τxy

1 3.972 1.192 0.789 3.972 1.192 0.789
18 3.340 1.002 0.590 3.339 1.002 0.590
35 3.124 0.937 0.453 3.124 0.937 0.453
52 3.023 0.907 0.350 3.023 0.907 0.350
69 2.970 0.891 0.265 2.970 0.891 0.265
86 2.940 0.882 0.191 2.940 0.882 0.191
103 2.923 0.877 0.124 2.923 0.877 0.124
120 2.914 0.874 0.061 2.914 0.874 0.061
137 2.912 0.873 0.000 2.911 0.873 0.000

For this case, the stress recovery algorithm needs to be revised in order to accom-
modate the necessary changes to compute the stress parameters based in the enhanced
strain �eld, as described in Section 3.6.1.

Rúben Miguel Borges Lourenço Dissertation Report

5.Benchmark analyses 53

5.3 In�nite plate with circular hole

An in�nite plate with a circular hole is subjected to a uniform in-plane traction on both
ends. The exact solution is obtained by employing the Kirsch equations such that [5]:

σrr(r, θ) =
Tx

2

(
1−

R2

r2

)
+
Tx

2

(
1− 4

R2

r2
+ 3

R4

r4

)
cos 2θ , (5.1)

σθθ(r, θ) =
Tx

2

(
1 +

R2

r2

)
−
Tx

2

(
1 + 3

R4

r4

)
cos 2θ , (5.2)

τrθ(r, θ) = −
Tx

2

(
1 + 2

R2

r2
− 3

R4

r4

)
sin 2θ , (5.3)

where (Tx) is the magnitude of the applied stress for the in�nite plate case, (R) is the
radius of the hole and (r) is the radial coordinate of a given arbitrary point P (r, θ) in the
plate. The stress tensor can further be transformed from the polar coordinate system to
the Cartesian coordinate system as follows [37]:


σxx
σyy
τxy

 =

 cos2 θ sin2 θ − sin2 2θ
sin2 θ cos2 θ sin 2θ

sin θ cos θ − sin θ cos θ cos 2θ


σrr
σθθ
τrθ

 . (5.4)

The stress (Tx) has magnitude 10 and the hole has a radius (R) measuring 1. The
structure is considered to be made of linear elastic material with Young's modulus (E)
of 105 and Poisson's ratio (ν) of 0.3. This problem may be simpli�ed so that a quarter
plate need only be analyzed, following the con�guration shown in Fig. 5.7a [5, 37].

y

x
θ

P (r, θ)

r

R

W

Tx

Symm.

S
y
m
m
.

(a)

y

x
θ

1

4Tx

σmax

(b)

Figure 5.7: Elastic plate with circular hole: problem de�nition for R/W = 0.25.

Rúben Miguel Borges Lourenço Dissertation Report

54 5.Benchmark analyses

The stress concentration is measured at the edge of the hole, where (see Fig. 5.7b):

r = R ∧ θ =
3

2
π . (5.5)

For this location, Kirsch's solution contains the well known factor-of-three stress concen-
tration for the in�nite plate under uni-axial loading, with the radial and shear stresses
(σrr) and (τrθ) equal to zero and the hoop stress (σθθ) respecting the following relation
[5]:

σθθ = σxx = σmax = 3Tx , (5.6)

e�ectively demonstrating a stress concentration factor (Kt) of 3. However, the quarter
plate has a �nite width and an additional term needs to be considered: the nominal stress
(σnom), which is the average stress at the hole due to the reduction in cross-section, related
to (Tx) as follows [30]:

σnom = Tx
W

W −R
. (5.7)

In this case, the stress concentration factor will be a fraction of the original analytical
solution and is de�ned in terms of the width (W) of the plate and the radius (R) of the
hole by the empirical relation [30]:

Kt = 3− 3.14

(
R

W

)
+ 3.667

(
R

W

)2

− 1.527

(
R

W

)3

, (5.8)

resulting in the graphical representation depicted in Fig. 5.8. The maximum stress at
the edge of the hole may then be obtained as follows [30]:

σmax = Kt σnom . (5.9)

3.0

2.8

2.6

2.4

2.2

2.0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R/W

Kt

Figure 5.8: Stress concentration factor Kt in terms of the ratio R/W (adapted from [30]).

The quarter plate was analyzed under plane strain conditions, using the mesh shown
in Fig. 5.9 for the case of R/W=0.25, with the necessary symmetry boundary conditions

Rúben Miguel Borges Lourenço Dissertation Report

5.Benchmark analyses 55

being applied to the right and bottom edges. The values obtained for the normal stress
(σxx) at the edge of the hole, the relative error and the analytical solution, according to
[30], for this particular problem are shown in Table 5.3.

Figure 5.9: Elastic plate with circular hole: mesh de�nition for R/W = 0.25.

Table 5.3: Normal stress σxx at the edge of the hole and relative error with respect to
the analytical solution for R/W = 0.25.

Element σxx Relative error Analytical solution

Q4 36.5554 13.27%

σnom = 13.333

σmax = 32.271

Kt = 2.42

Q4SRI 34.5313 7.00%
Q6 35.1586 8.95%
QM6 34.2934 6.27%
Q4/4I 35.1586 8.95%
Qi5 32.4032 0.41%
Qi6 32.0781 0.60%

CPE4H 34.6948 7.51%
CPE4RH 33.9036 5.06%
CPE4IH 36.0201 11.62%

Results show that the classical formulation produces the higher stress value corres-
ponding to an error of 13.27%. The compatible mode elements Qi5 and Qi6 were capable
of attaining excellent results here corresponding to an error less than 1%, with the �rst
showing the smallest error. The remaining elements registered errors between 6% and
and 9%, with the Q6 and Q4/4I elements obtaining exactly the same values. The ele-
ment Q4/6I was excluded from the analysis due to low quality results. The deformed
con�guration of the quarter plate with the representation of the displacement and stress
distributions, using the Qi5 element, are shown in Fig. 5.10. Regarding Abaqus' for-
mulations, the incompatible mode element CPE4IH produces the highest stress value,
corresponding to an error of 11.62%, on the other hand the selective integration element
CPE4RH shows the smallest error.

Rúben Miguel Borges Lourenço Dissertation Report

56 5.Benchmark analyses

(a) (b)

(c)
(d)

(e) (f)

Figure 5.10: Deformed con�guration of the quarter plate for R/W = 0.25 using the Qi5
element, with contour plots of: (a) horizontal displacement, (b) vertical displacement,
(c) normal stress σxx, (d) normal stress σyy, (e) shear stress τxy and (f) von Mises stress.

Rúben Miguel Borges Lourenço Dissertation Report

5.Benchmark analyses 57

5.4 One-element test

A squared structure with a side dimension of 2 units is subjected to two di�erent con-
�gurations of loads and boundary conditions, as depicted in Fig. 5.11. The structure
is discretized using a single-element mesh and the nodal forces have magnitude 1000.
The material is considered linear elastic, with a Young's modulus of 5000 units. The
analysis is carried out for both con�gurations, considering compressible (ν = 0.3) and
incompressible material (ν = 0.4999999).

F

1 2

43

FF

2

(a)

1 2

3 4

FF

2

(b)

Figure 5.11: Di�erent con�gurations of loads and boundary conditions.

The test is used by Natal Jorge [22] to show the e�ects of locking and e�ectively com-
pare the sti�ness of di�erent element formulations. For con�guration (a), it is expected
that nodes 1 and 4 will have the same horizontal displacement, while node 2 will not
move. Additionally, for con�guration (b), nodes 1 and 2 should have the same horizontal
displacement. The results are presented in Table 5.4 for all the element formulations im-
plemented in this work and three elements from Abaqus. The element CPE4RH marked
with (*) refers to the reduced integration element with hourglass control option set to
�enhanced�.

Referring to the compressible case, all the elements show the same results when
employing con�guration (b), except the selective integration element Q4SRI. However,
the same does not apply for con�guration (a). In this context, although the e�ects of
locking are not noticeable, it can be seen that the Q4 and Q6 elements are sti�er than
the rest. Between these two formulations, one can clearly see the advantageous e�ect of
the incompatible modes on allowing the Q6 element to deform better than the classical
bi-linear formulation. The deformed states of the Q4 element, in the compressible case,
for both con�gurations are depicted in Fig. 5.12.

Still in the context of the compressible case, the square geometry e�ectively elim-
inates the e�ect of the coordinate mapping by the jacobian matrix. Therefore, it was
expected for the Q6 and QM6 elements to originate the same results. The selective in-
tegration elements Q4SRI and CPE4RH are capable of sustaining the highest degrees of
deformation, with the latter showing much larger values, which may indicate a tendency
for the CPE4RH to originate spurious deformation. Switching the hourglass control op-
tion of the CPE4RH element to �enhanced� avoids this problem and allows the element
to obtain the same results as the incompatible and compatible mode formulations.

Rúben Miguel Borges Lourenço Dissertation Report

58 5.Benchmark analyses

Table 5.4: Horizontal displacement at node 1.

Element
Con�guration (a) Con�guration (b)

ν = 0.3 ν = 0.4999999 ν = 0.3 ν = 0.4999999

Q4 0.69333 7.2E-7 1.04 1.2
Q4SRI 2.2797 2.1294 1.1721 1.2
Q6 0.82588 0.6 1.04 1.2
QM6 1.092 0.9 1.04 1.2
Q4/6I 1.0833 0.9 1.04 1.2
Q4/4I 1.092 0.9 1.04 1.2
Qi5 1.0029 0.9 1.04 1.2
Qi6 1.092 0.9 1.04 1.2

CPE4H 1.56 1.8 1.04 1.2
CPE4RH 416 480 1.04 1.2
CPE4RH* 1.092 0.9 1.04 1.2
CPE4IH 1.092 0.9 1.04 1.2

Analyzing the results for the incompressible case, all the elements show the same
values for con�guration (b). Employing con�guration (a), locking of the Q4 element is
evident, e�ectively demonstrating the inability of the classical formulation to perform
well in such restricted cases (see Fig. 5.12c). Both incompatible and compatible modes
formulations have no issues in this case, although the Q6 element is slightly sti�er (see
Fig. 5.12d). Worthy of reference is the di�erence between the Q4 and CPE4H elements,
with the latter demonstrating the e�ectiveness of the mixed (u/p) formulation on avoiding
locking.

(a) (b)

(c) (d)

Figure 5.12: Deformation using the Q4 element in the compressible case, for both test
con�gurations (top); deformation using (c) the Q4 element and (d) the QM6 element,
for ν = 0.4999999 (con�guration of Fig. 5.11a).

Rúben Miguel Borges Lourenço Dissertation Report

5.Benchmark analyses 59

5.5 Beam under bending

This numerical example is used by Malkus and Hughes [15, 19] and also by César de Sá
and Natal Jorge [6, 22], using a �nite element mesh of (4× 8) elements in order to study
the performance of di�erent element formulations under bending, in the compressible
and incompressible cases.

A rectangular beam is subjected to a distributed load at the free-end. The structure
has dimensions (16 × 4) and only one half need be modelled since the x-axis is a line
of anti-symmetry. A representative discretization of the domain is depicted in Fig. 5.13
using a (4× 4) elements model. The problem is analyzed in plane strain, respecting the
following boundary conditions:

� displacements: {
u(0, 0) = v(0, 0) = 0

u(0,±c) = 0
(5.10)

� traction:

σyy(x,±c) = τxy(x,±c), x ∈ [0, L] (5.11)

σxx(L, y) = 0

τxy(L, y) =
3

4c 3
(c2 − y2)

 , y ∈]− c,+c[(5.12)

σxx(0, y) = −
3L

2c 3
y

τxy(0, y) =
3

4c 3
(c2 − y2)

 , y ∈]− c, 0[∪]0,+c[(5.13)

F =
0.5

2nelem
N if corner node F =

0.5

nelem
N if interior node

F

16

2

y

x

Figure 5.13: Finite element model of the beam under bending.

In this work, the problem was analyzed using square meshes starting from two ele-
ments per side to a maximum of thirty elements per side. Convergence of the vertical
displacement at the tip bottom node was evaluated. Similar to Natal Jorge [22], the

Rúben Miguel Borges Lourenço Dissertation Report

60 5.Benchmark analyses

vertical displacement at the reference node was also evaluated in terms of the following
relation between the Lamé parameters:

log

(
λ

µ

)
= log

(
2ν

1− 2ν

)
, (5.14)

from where it's possible to retrieve the Poisson's ratio ν. Natal Jorge advances that the
analytical solution for the vertical displacement at the reference node with coordinates
(16, 0) is given by:

v(16, 0) =
(1− ν2)L3

2Ec3

(
c2

2L2

(
4 + 5

ν

1− ν

)
+ 1

)
, (5.15)

with the Young's modulus (E) of the material given by:

E =
(1− ν2)L3

2c3

(
c2

2L2

(
4 + 5

ν

1− ν

)
+ 1

)
. (5.16)

The results obtained for the vertical displacement at the reference node are presented
in Fig. 5.14 for di�erent mesh sizes and in Fig. 5.15, in terms of log (λ/µ) for the
elements Q4, QM6, Qi6, CPE4H and CPE4IH. For the compressible case, we observe
that all formulations tend to converge to the analytical solution. The elements Q4SRI,
Q4 and Qi5 show weak results using coarse meshes, with the selective integration element
evidencing the same overrelaxed behavior from the previous example. Finer meshes
contribute to stabilize the Q4SRI, however, it seems that a further mesh re�nement would
still be needed in order to con�rm full convergence. Worthy of reference is the excellent
behavior of the compatible and incompatible modes elements (Qi6, Q4/6I, Q4/4I, QM6
and Q6), e�ectively demonstrating the advantages of the enhanced strain formulation
in a bending-dominated problem. The use of structured meshes of rectangular elements
renders the Q6 and QM6 elements the same results, as it would be expected, contrarily
to the previous example. The compatible modes Qi5 element does not behave well
using coarse meshes, attaining the same results as the classical Q4 formulation, a rather
poor performance for an enhanced strain formulation, albeit already predicted by Natal
Jorge [22]. For the incompressible case, the Q4 element converges much slower than
other formulations and shows the weakest results using coarse meshes, mainly due to
the combined e�ects of locking and spurious shear response of bending. The enhanced
strains formulations continue to reproduce the excellent results already veri�ed for the
compressible case, with the exception of the Qi5 element.

Concerning the data obtained with Abaqus, all the formulations converge to the
solution, attaining essentially the same results for both cases. Here, the element CPE4H
clearly outperforms the classical bi-linear quadrilateral, with the mixed (u−p) formula-
tion playing an important role in eliminating locking in the incompressible case, although
it still su�ers from the same spurious shear response of its counterpart due to bending.
It can be seen that the results for incompatible modes CPE4IH are equivalent to the
implemented enhanced strain elements, as already con�rmed in previous example. The
CPE4RH e�ectively outperforms the Q4SRI in both cases by showing a surprisingly
stable behavior, especially after the spurious response obtained in the previous example
without hourglass control (�default� option enabled).

Rúben Miguel Borges Lourenço Dissertation Report

5.Benchmark analyses 61

Analyzing the data from Fig. 5.15, a noticeable degration of the classical bi-linear
quadrilateral starts to occur for values of log (λ/µ) higher than 1. The enhanced strain
elements QM6 and Qi6 are capable of sustaining the excellent results from previous tests
through the most part of the incompressible range, for values of log (λ/µ) less than 10.
Beyond this limit, both formulations start to become unstable. These results are in
line with the ones already obtained by Natal Jorge [22]. The CPE4H and CPE4IH show
consistent results through the whole incompressibility range with no signs of instabilities,
due to the e�ects of the mixed formulation.

0,0

0,3

0,5

0,8

1,0

1,3

1,5

1,8

2,0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

U
2

on
 re

fe
re

nc
e

no
de

 (ν
=0

,3
)

elements per side (NxN)

Solu�on Q4 Q4SRI
Q4/6i Q4/4i Qi5
Qi6 Q6 QM6

(a)

0,0
0,3
0,5
0,8
1,0
1,3
1,5
1,8
2,0
2,3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

U
2

on
 re

fe
re

nc
e

no
de

 (ν
=0

,4
99

)

elements per side (NxN)

Solu�on Q4 Q4SRI
Q4/6i Q4/4i Qi5
Qi6 Q6 QM6

(b)

0,0

0,3

0,5

0,8

1,0

1,3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

U
2

on
 re

fe
re

nc
e

no
de

 (ν
=0

,3
)

elements per side (NxN)

Series4 CPE4H
CPE4RH CPE4IH

(c)

0,0

0,3

0,5

0,8

1,0

1,3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

U
2

on
 re

fe
re

nc
e

no
de

 (ν
=0

,4
99

)

elements per side (NxN)

Solu�on CPE4H
CPE4RH CPE4IH

(d)

Figure 5.14: Results of the mesh convergence analysis for the bending problem, using
the implemented formulations (top) and those from Abaqus (bottom).

0,5

0,6

0,7

0,8

0,9

1,0

1,1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

U
2

on
 re

fe
re

nc
e

no
de

Log(λ/μ)

Solu�on
Q4
QM6
Qi6
CPE4H
CPE4IH

Figure 5.15: Vertical displacement at the reference node for di�erent values of log (λ/µ).

Rúben Miguel Borges Lourenço Dissertation Report

62 5.Benchmark analyses

5.6 Cook's membrane

The Cook's membrane problem has been widely used in literature to test nearly incom-
pressible formulations under combined bending and shear [2, 6, 9, 22, 24, 25, 29, 38]. All
the authors use the same geometry, but consider di�erent load conditions and material
parameters. The variable of interest is the vertical displacement of the top right corner of
the free-end. Convergence of this value as a function of the number of elements per side
is usually used as a criterion to assess the robustness of a given �nite element formulation
against the skewed topology.

A trapezoidal panel is clamped on one side and subjected to a uniform in-plane shear
load on the free-end side. The geometry, loading and boundary conditions are given in
Fig. 5.16, for a representative (2 × 2) elements model. The problem was analyzed in
plane strain using the same elastic properties as Natal Jorge [6, 22]: E = 240.565 and
ν = 0.4999. The results for the vertical displacement at the reference node are plotted in
Fig. 5.17 with mesh sizes varying from two elements per side to thirty elements per side,
for all formulations, except the incompatible modes Q4/6I element which demonstrated
very weak results. In his thesis, Natal Jorge [22] presents results for this problem with
increasing mesh sizes until a maximum size of (65× 65) elements.

44
16

48
F

y

x

1

2

3

4

5

6

7

8

9

F =
100

nnodes

Figure 5.16: Cook's membrane problem: geometry, boundary and load conditions.

Analysing the data plotted in Fig. 5.17b, we observe that the classical bi-linear
quadrilateral formulation does not converge to the solution, at least for the maximum
mesh size considered in this work. Natal Jorge [22] also con�rms the poor performance of
the Q4 element using �ner meshes. In this example, the incapacity of the Q4 to deform is
aggravated because, apart from having to deal with the e�ects of locking due to bending
and incompressibility, the e�ects of mesh distortion also come into play.

The selective integration element Q4SRI, once again, shows its overrelaxed behavior
using coarse meshes, albeit in a smaller extent. The stabilizing e�ect of mesh re�nement
is not as evident in this case as in the previous example, further re�nement would be
needed to con�rm converge of the Q4SRI element. Natal Jorge's [22] analysis of the
Q4SRI element, shows higher quality results than the ones obtained in the present work,
an indication that this implementation may have to be corrected. The compatible modes
element Qi5 continues to show the weakest results from all the enhanced strain formu-
lations, considering smaller mesh sizes. The QM6 and Qi6 elements manage to perform

Rúben Miguel Borges Lourenço Dissertation Report

5.Benchmark analyses 63

just a little better than the Qi5. The elements Q4/4I and Q6 show excellent results here,
although it was expected for the Wilson's formulation not to perform better than its
counterpart revised by Taylor, the QM6, due to the skewed geometry. Distortion tests
were performed to evaluate this issue.

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

U
2

on
 re

fe
re

nc
e

no
de

 (v
=0

,4
99

9)

elements per side (NxN)

Solu�on

CPE4H

CPE4RH

CPE4IH

(a)

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

U
2

on
 �

p
to

p
no

de
 (v

=0
,4

99
9)

elements per side (NxN)

Solu�on Q4
Q4SRI Q4/4i
Qi5 Q6
QM6 Qi6

(b)

Figure 5.17: Vertical displacement at the reference node for increasing mesh sizes.

Concerning the formulations from Abaqus (Fig. 5.17a), unsurprisingly all the ele-
ments converge to the solution. The CPE4RH initially shows a spurious response, but
rapidly stabilizes and manages to outperform the Q4SRI. The CPE4RH was used here
with the default hourglass control option enabled. Both the CPE4H and CPE4IH have
similar performances in this case, mainly due to the advantages of using a mixed formu-
lation in a incompressible problem. The incompatible modes formulation shows slightly
better results in coarse meshes due to the bene�cial e�ect of the enhanced strain �eld in
bending.

A computational cost analysis was performed for the Cook's membrane problem using
three �nite element formulations and increasing mesh sizes. The elapsed time of the main
routine planeStress was measured by means of the tic/toc commands in MATLAB.
Although this kind of analysis is not precise, the objective was demonstrate the di�erence
in execution time between the classical formulations and the enhanced strain formulation.
The results are plotted in Fig. 5.18 for the main routine and the machine speci�cations
are presented in Table 5.5. It can be seen that increasing the number of elements, the
elapsed time does not increase linearly. The performance is directly proportional to the
square of the size of the input data set. Following the Big O notation used in Computer
Science to describe the performance of an algorithm, this is common with algorithms that
involve nested iterations over the data set. That is the case of the assembly and stress
calculation algorithms. As expected, the enhanced strain formulation is computationally
more demanding due to the additional degrees of freedom that require more sti�ness
matrices to be calculated and additional operations in order to calculate the stresses.
The classical formulation and selective integration elements show similar results. The
assembly and stress calculation routines were also evaluated and each of them consume
approximately 50% of the total execution time.

Rúben Miguel Borges Lourenço Dissertation Report

64 5.Benchmark analyses

Table 5.5: Speci�cations for the machine running the computational analysis.

Processor Intel i5-4690K @ 3.50 GHz
Memory 2x8 GB DDR3 @ 1600MHz Dual-Channel
Graphics GeForce GTX 980M 8GB
Storage 256GB SSD

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

El
ap

se
d
�m

e
(s

)

Elements per side (NxN)

Q4 - main rou�ne
Q4SRI - main rou�ne
QM6 - main rou�ne

Figure 5.18: Execution time for the Cook's membrane analysis.

Rúben Miguel Borges Lourenço Dissertation Report

5.Benchmark analyses 65

5.7 Distortion test

The example is used by Natal Jorge [22] to evaluate the robustness of a given �nite
element formulation to distortion. The problem was used here to compare the classical
bi-linear quadrilateral with the compatible modes Qi6 element and to evaluate the quality
of the implementation of the Wilson-Taylor incompatible modes element QM6 against
its predecessor, the Q6 element.

A square structure is discretized using a (2× 2) square-element mesh and is analyzed
under a plane strain state using a material with elastic parameters: E = 5000 and
ν = 0.3. The geometry, load and boundary conditions are presented in Fig. 5.19. The
distortion is imposed by translating the central node point (d) units into one of the four
quadrants, as also depicted in Fig. 5.19. The horizontal displacement at nodes 1 and
9 is evaluated and the error for the corresponding values is calculated in relation to the
values obtained for the undistorted con�guration. The results are plotted in Fig. 5.20,
where the error related to node 9 being represented in the negative axis for the ease of
representation.

F

a = 1.0
F = 1.0× 105

1 2 3

4 5 6

7 8 9

F

50 50

F

d

1 2 3

4 5 6

7 8 9

1Q2Q

3Q 4Q

50
50

Figure 5.19: Finite element model used for the distortion test (left) and geometry, load
and boundary conditions (right).

Analyzing the results plotted in Fig. 5.20, we conclude that the classical bi-linear
quadrilateral element has a higher sensitivity to distortion than the compatible modes
formulation. For the cases were the central nodal point is translated to the �rst or
fourth quadrant, both formulations show similarly good results at node 1, however the
performance of the Q4 element rapidly degrades for higher degrees of distortion. The
Qi6 element behaves in a consistent manner through all the cases.

Concerning the incompatible modes formulations of Wilson and Taylor, we can see
that the original Q6 formulation performs much better than its revised version for all
cases. Additionally, the QM6 shows an erratic behavior with the error not increasing
steadily through the analyses. The results obtained here for the QM6 element are not
entirely in line with the ones obtained by Natal Jorge [22], indicating this implementation
may have to be corrected.

Rúben Miguel Borges Lourenço Dissertation Report

66 5.Benchmark analyses

-30%

-20%

-10%

0%

10%

20%

0 10 20 30

Er
ro

r (
%

)

Distor�on 1Q (d)

Q4 (node 1) Q4 (node 9)
Qi6 (node 1) Qi6 (node 9)

(a)

-35%

-25%

-15%

-5%

5%

15%

25%

35%

0 10 20 30

Er
ro

r (
%

)

Distor�on 1Q (d)

Q6 (node 1) Q6 (node 9)
QM6 (node 1) QM6 (node 9)

(b)

-30%

-20%

-10%

0%

10%

20%

30%

0 10 20 30

Er
ro

r (
%

)

Distor�on 2Q (d)

Q4 (node 1) Q4 (node 9)
Qi6 (node 1) Qi6 (node 9)

(c)

-35%

-25%

-15%

-5%

5%

15%

25%

35%

0 10 20 30

Er
ro

r (
%

)

Distor�on 2Q (d)

Q6 (node 1) Q6 (node 9)
QM6 (node 1) QM6 (node 9)

(d)

-20%

-10%

0%

10%

20%

30%

0 10 20 30

Er
ro

r (
%

)

Distor�on 3Q (d)

Q4 (node 1) Q4 (node 9)
Qi6 (node 1) Qi6 (node 9)

(e)

-25%

-15%

-5%

5%

15%

25%

0 10 20 30

Er
ro

r (
%

)

Distor�on 3Q (d)

Q6 (node 1) Q6 (node 9)
QM6 (node 1) QM6 (node 9)

(f)

-20%

-10%

0%

10%

20%

30%

0 10 20 30

Er
ro

r (
%

)

Distor�on 4Q (d)

Q4 (node 1) Q4 (node 9)
Qi6 (node 1) Qi6 (node 9)

(g)

-25%

-15%

-5%

5%

15%

25%

0 10 20 30

Er
ro

r (
%

)

Distor�on 4Q (d)

Q6 (node 1) Q6 (node 9)
QM6 (node 1) QM6 (node 9)

(h)

Figure 5.20: Error for the horizontal displacement at nodes 1 and 9 using elements Q4
and Qi6 (left column) and elements Q6 and QM6 (right column).

Rúben Miguel Borges Lourenço Dissertation Report

Chapter 6

Conclusions and future works

The main objective of this dissertation was to develop an in-house software based on the
�nite element method for pedagogical (teaching/training) and research purposes, and for
the structural analysis of incompressible problems. To these ends, a detailed literature
review was conducted in order to study the di�erent �nite element formulations available
and assimilate the underlying concepts necessary for their correct implementation. In a
�rst phase, a solid base platform for two-dimensional analysis was developed employing
the classical bi-linear quadrilateral formulation. After proper testing, the development
e�orts were directed at the implementation of seven �nite element formulations targeted
at the treatment of numerical anomalies arising from the analysis of incompressible pro-
blems, such as volumetric locking. These formulations included a selective integration
element, four incompatible mode elements and two compatible mode elements based on
the enhanced strain method.

To validate the implementation, a series of benchmark tests was carried out, compar-
ing the results coming from the in-house software with those from Abaqus software. The
results proved the poor performance of the classical bi-linear quadrilateral, as already
pointed out in some of the literature. In general, the incompatible mode Q6 element of
Wilson and the compatible mode Qi6 element proposed by Natal Jorge had demonstrated
excellent results, at the same level of the commercial software and e�ectively validating
the implementation (with the latter also demonstrating a good response under distor-
tion). In this context, surprisingly the QM6 element revised by Taylor registered a lower
performance than its counterpart, the Q6 element. With the exception of the Q4 ele-
ment, all the formulations somehow converged to the expected solutions, although �ner
meshes would be needed to achieve convergence of the selective integration element.

During this work we learned that the commercial software employs a mixed (u/p)
formulation in its hybrid elements for incompressibility analysis. This successfully treats
the volumetric locking e�ects but does not solve the shear locking for the CPE4H. In this
context, the superior results of the CPE4IH have shown that the inclusion of incompatible
modes can help in obtaining a better bending behavior, while the volumetric locking is
minimized by the hybrid formulation.

The post-processing capabilities are yielding excellent stress values, generating stress
distributions very similar to the commercial software, even after the extrapolation for the
classical formulations. Stress computation for the enhanced strain elements was added
based on the generalized displacements. Although the procedure is working well, the dis-
continuous nature of the generalized displacements shows a tendency to produce certain

67

68 6.Conclusions and future works

irregularities resulting in stress distributions not as smooth as the classical formulations.
Regarding future developments, on the short term and without making deep chances

to the software, it should be interesting to implement the B-bar and the mixed (u/p)
formulations and carry out the necessary changes to accomodate routines allowing for
the hourglass control of the selective reduced �nite element Q4SRI. It should also be
interesting to implement the least-squares projection method suggested by Simo and
Rifai for stress computation of the enhanced strain formulations and compare the results
with the procedure based on the generalized displacements. The implementation should
also focus on routines for two-dimensional axissymetric analysis. Additional benchmark
problems should also be performed to validate the implementation. In this context,
concerning the example of the beam under bending, the force and displacement boundary
conditions have to be revised. On a later phase and given that most of the �nite element
formulations reviewed and implemented in this work have direct application in non-linear
analysis, it would make sense to implement an elasto-plastic model and the necessary
iterative structure.

On the mid term and maintaining the scope of the software within the two-dimensional
domain, development e�orts should be directed to the implementation of routines tar-
geted at the analysis of contact problems. At this point it would also be wise to initiate
the implementation of automatic mesh generation algorithms and alternatively start
evaluating the possibility of importing CAD geometry from an external program. At
this point a uni�ed user interface should be implemented extending the pre- and post-
processing capabilities of the program. Another useful feature would be a test platform
that would allow to automate repetitive analysis (batch execution).

On the long term, the e�ort should be directed to extend the implemented features
to the 3D-space. In this context, the program would also be able to account for plates
and shells formulations.

Rúben Miguel Borges Lourenço Dissertation Report

Bibliography

[1] Alves de Sousa, R. J., Natal Jorge, R. M., Fontes Valente, R. A., and
César de Sá, J. M. A., A New Volumetric and Shear Locking-Free 3D Enhanced
Strain Element, Engineering Computations, 20 (2003), pp. 896�925.

[2] Arunakirinathar, K. and Reddy, B. D., Further Results for Enhanced Strain
Methods with Isoparametric Elements, Computer Methods in Applied Mechanics
and Engineering, 127 (1995), pp. 127�143.

[3] Bathe, K. J., Finite Element Procedures, Prentice Hall, 2006.

[4] Boffi, D. and Stenberg R., A Remark on Finite Element Schemes for Nearly
Incompressible Elasticity, Computers and Mathematics with Applications, 74 (2017),
pp. 2047�2055.

[5] Cotrell, J. A., Hughes, T. J. R., and Bazilevs, Y., Isogeometric Analysis -
Toward Integration of CAD and FEA, Wiley, 2009.

[6] César de Sá, J. M. A. and Natal Jorge, R. M., New enhanced strain ele-
ments for incompressible problems, International Journal for Numerical Methods in
Engineering, 44 (1999), pp. 229�248.

[7] Dias da Silva, V., Mecânica e Resistência dos Materiais, ZUARI, 3rd ed., 2004.

[8] Doherty, W. P., Wilson, E. L., and Taylor, R. L., Stress Analysis of Axisym-
metric Solids Utilising Higher Order Quarilateral Finite Elements, SESM Report
69-3, University of California, Barkeley, 1969.

[9] Elguedj, T., Bazilevs, Y., Calo, V. M., and Hughes, T. J. R., B-bar and F-
bar Projection Methods for Nearly Incompressible Linear and Non-Linear Elasticity
and Plasticity Using Higher Order NURBS Elements, Computer Methods in Applied
Mechanics and Engineering, 197 (2008), pp. 2732�2762.

[10] Fanghorn, H., A Comparison of C, MATLAB and Python as Teaching Languages
in Engineering, Lecture Notes in Computer Science, 3039 (2004), pp. 1210�1217.

[11] Felippa, Carlos A. , Introduction to Finite Element Method, Department of
Aerospace Engineering Sciences and Center for Aerospace Structures, University
of Colorado, 2004. Web: https://goo.gl/nAx1rK.

[12] Ferreira, A. J. M., Problemas de Elementos Finitos em MATLAB, Fundação
Calouste Gulbenkian, 2010.

69

https://goo.gl/nAx1rK

70 BIBLIOGRAPHY

[13] Griffiths, D. and Mustoe, G. G. W., Selective Reduced Integration of Four-
Node Plane Element in Closed Form, Journal of Engineering Mechanics, 121 (1995),
pp. 725�729.

[14] Houcque, D., Introduction to MATLAB for Engineering Students, Lecture notes,
Northwestern University, 2005.

[15] Hughes, T. J. R., The Finite Element Method - Linear Static and Dynamic Finite
Element Analysis, Prentice-Hall, 1987.

[16] Kattan, P. I., MATLAB Guide to Finite Elements, Springer, 2nd ed., 2008.

[17] Khennane, A., Finite Element Analysis Using MATLAB® and Abaqus, CRC
Press, 2013.

[18] Krysl, P., Novák, J., and Oberrecht, S., Generalized Selective Reduced Integ-
ration and B-bar Finite Element Methods for Anisotropic Elasticity, International
Journal for Numerical Methods in Engineering, 98 (2014), pp. 92�104.

[19] Malkus, D. S. and Hughes, T. J. R., Mixed Finite Element Methods - Reduced
and Selective Integration Techniques: A Uni�cation of Concepts, Computer Methods
in Applied Mechanics and Engineering, 15 (1978), pp. 63�81.

[20] Nagtegaal, J. C. and Fox, D. D., Using Assumed Enhanced Strain Elements
for Large Compressive Deformation, International Journal of Solids and Structures,
33 (1996), pp. 3151�3159.

[21] Nagtegaal, J. C., Parks, D. M., and Rice, J. R., On Numerical Accurate
Finite Element Solutions in the Fully Plastic Range, Computer Methods in Applied
Mechanics and Engineering, 4 (1974), pp. 153�177.

[22] Natal Jorge, R. M., Modelação de Problemas Incompressíveis pelo Método das
Deformações Acrescentadas baseado em Modos Compatíveis, PhD Thesis, Faculdade
de Engenharia da Universidade do Porto, 1998.

[23] Nikishkov, G. P., Introduction to the Finite Element Method, Lecture notes, Uni-
versity of Aizu, 2004.

[24] Piltner, R., An Implementation of Mixed Enhanced Finite Elements with Strains
Assumed in Cartesian and Natural Element Coordinates Using Sparse B̄-Matrices,
Engineering Computations, 17 (200), pp. 933�949.

[25] Piltner, R. and Taylor, R. L., A Quadrilateral Mixed Finite Element with Two
Enhanced Strain Modes, International Journal for Numerical Methods in Engineer-
ing, 38 (1995), pp. 1793�1808.

[26] Prathap, G., Barlow Points and Gauss Points and the Aliasing and Best Fit
Paradigms, Computers & Structures, 58 (1996), pp. 321�325.

[27] Reddy, J. N., An Introduction to the Finite Element Method, McGraw-Hill, 1984.

[28] Rosetta Code, Numerical integration/gauss-legendre quadrature, 2018. Web:
https://goo.gl/Gqg3RU.

Rúben Miguel Borges Lourenço Dissertation Report

https://goo.gl/Gqg3RU

BIBLIOGRAPHY 71

[29] Rupp, C., Howard, M., and Weickum, G., Incompressible Mixed (u/p) Elements
for the CAS FEM Code, 2006. Course material, Web: https://goo.gl/FiFGpQ.

[30] Shigley, J. E., Mischke, C. R., and Budynas, R. G., Mechanical Engineering
Design, McGraw-Hill, 7th ed., 2004.

[31] Simo, J. C. and Hughes, T. J. R., On the Variational Foundations of Assumed
Strain Methods, Journal of Applied Mechanics, 53 (1986), pp. 51�54.

[32] Simo, J. C. and Rifai, M. S., A Class of Mixed Assumed Strain Methods and
the Methods of Incompatible Modes, International Journal of Numerical Methods in
Engineering, 29 (1990), pp. 1595�1638.

[33] Simo, J. C., Taylor, R. L., and Pister, K. S., Variational and projection
methods for the volume constraint in �nite deformation elasto-plasticity, Computer
Methods in Applied Mechanics and Engineering, 51 (1985), pp. 177�208.

[34] SIMULIA Dassault Systèmes, Abaqus Theory Manual 6.14, 2014. Web: http:
//abaqus.software.polimi.it/v6.14/.

[35] Sinwel, A. S., A New Family of Mixed Finite Elements for Elasticity, PhD Thesis,
Institut für Numerische Mathematik, Johannes Kepler Universität, 2009.

[36] Teixeira-Dias, F., Pinho-da-Cruz, J., Fontes Valente, R. A., and Alves

de Sousa, R., Método dos Elementos Finitos - Técnicas de Simulação Numérica
em Engenharia, Editora ETEP, 2010.

[37] Zhang, W., Zhao, L., and Cai, S., Shape Optimization of Dirichlet Boundaries
based on Weighted B-Spline Finite Cell Method and Level-Set Function, Computer
Methods in Applied Mechanics and Engineering, 294 (2015), pp. 359�383.

[38] Zienkiewicz, O.C., Taylor, R.L., and Zhu, J.Z., The Finite Element Method:
its Basis and Fundamentals, Butterworth-Heinemann, 6th ed., 2013.

Rúben Miguel Borges Lourenço Dissertation Report

https://goo.gl/FiFGpQ
http://abaqus.software.polimi.it/v6.14/
http://abaqus.software.polimi.it/v6.14/

.

Intentionally blank page.

Appendix A

Program architecture

73

.

Intentionally blank page.

:planeStress

setNodalForces()

setFreeNodes()

:readInput :uigetfile :shapeFunctions

shapeFunctions()

return

:questdlg

Select analysis type

return

:intPoints

Click planeStress()

readInput()

return

Select .inp file

return

Select integration type

:materialPrompt

inputdlg()

materialPrompt()

Input material properties

return

intPoints()

return

:NodeSelection

Define boundary conditions

return

gaussLegQ()

:elementStiffnessMatrix

elementStiffnessMatrix()

return

:computeStress

computeStress()

return

:postProcessing

changeContourData()

onBrushData()

Select contour

plotContour()

Probe node values

Click close

A
.P
rogram

arch
itectu

re
75

R
ú
b
en

M
igu

el
B
orges

L
ou
ren

ço
D
isserta

tio
n
R
epo

rt

.

Intentionally blank page.

Appendix B

Abaqus input �le structure

77

.

Intentionally blank page.

B.Abaqus input �le structure 79

Listing B.1: Abaqus input �le example.

1 *Heading

2 ** Job name: Job -1 Model name: Model -1

3 ** Generated by: Abaqus/CAE Student Edition 2017

4 *Preprint , echo=NO, model=NO , history=NO , contact=NO

5 **

6 ** PARTS

7 **

8 *Part , name=Part -1

9 *Node

10 1, 0., 0.

11 2, 5., 0.

12 3, 10., 0.

13 4, 0., 2.

14 5, 5., 2.

15 6, 10., 2.

16 *Element , type=CPS4

17 1, 1, 2, 5, 4

18 2, 2, 3, 6, 5

19 *Nset , nset=Set -1, generate

20 1, 6, 1

21 *Elset , elset=Set -1

22 1, 2

23 *Nset , nset=fixed

24 1,

25 *Nset , nset=ss

26 4,

27 *Nset , nset=load1

28 6,

29 *Nset , nset=load2

30 3,

31 ** Section: Section -1

32 *Solid Section , elset=Set -1, material=Material -1

33 1.,

34 *End Part

35 **

36 **

37 ** ASSEMBLY

38 **

39 *Assembly , name=Assembly

40 **

41 *Instance , name=Part -1-1, part=Part -1

42 *End Instance

43 **

44 *End Assembly

45 **

46 ** MATERIALS

47 **

48 *Material , name=Material -1

49 *Elastic

50 1500. ,0.

51 (continues ...)

Rúben Miguel Borges Lourenço Dissertation Report

.

Intentionally blank page.

Appendix C

Gauss-Legendre quadrature

algorithm

81

.

Intentionally blank page.

C.Gauss-Legendre quadrature algorithm 83

Listing C.1: Algorithm employed for the generation of the Gauss quadrature points.

1 function [q] = gaussLegQ(N)

2

3 % Initial guess

4 x=cos(pi *((1:N) '-0.25)/(N+0.5));

5 % Legendre -Gauss Matrix

6 L=zeros(N,N+1);

7

8 x0=2;

9 while max(abs(x-x0))>eps

10 L(:,1)=1;

11 L(:,2)=x;

12

13 for k=2:N

14 % Legendre polynomial Pn defined by recursive rule

15 L(:,k+1) =((2*k-1)*x.*L(:,k)-(k-1)*L(:,k-1))/k;

16 end

17 % Derivative Pn'

18 Lp=N*(x.*L(:,N+1)-L(:,N))./(x.^2-1);

19 % Newton -Raphson method for the roots

20 x0=x;

21 x=x0 -L(:,N+1)./Lp;

22 end

23 %Computing weights

24 w=2./((1 -x.^2).*Lp.^2);

25 q=[-x w];

26

27 end

Rúben Miguel Borges Lourenço Dissertation Report

.

Intentionally blank page.

Appendix D

Element sti�ness assembly algorithm

85

.

Intentionally blank page.

Initialize symbolic variables

Initialize matrices

dNCsiEta, K, B, IndexB

START

csi, eta

i=1

≤

TRUE

j = 1

Compute indexB

i nelem

≤j nintPts

TRUE

Compute derivatives @
Compute Jacobian
Compute derivatives @ x, y
Compute B matrix
Compute
Assemble into

ξ,η

k
e

k
e K

j = j + 1

i = i + 1

FALSE

FALSE

STOP

K

Return

D.Element sti�ness assembly algorithm 87

Rúben Miguel Borges Lourenço Dissertation Report

	Introduction
	Overview and motivation
	Objectives
	Methodology
	Reading guide

	The Finite Element Method
	General concept
	Linear elasticity
	Finite element approximation
	Plane stress and plane strain
	Isoparametric four-node quadrilateral element

	Incompressibility
	Introduction
	Volumetric locking
	Mixed (u/p) formulation
	Selective reduced integration
	Overview
	Selective integration of hydrostatic component
	Selective integration of shear components

	B-bar method
	Overview
	B-bar formulation
	Plane strain state

	The enhanced strain method
	Overview
	The Q6 element formulation
	The QM6 element formulation
	The Q4/6I element formulation
	The Q4/4I element formulation
	The Qi5 element formulation
	The Qi6 element formulation

	Computational implementation
	Overview
	Program architecture
	Pre-processing
	Model definition
	Boundary conditions

	Finite element formulas
	Shape functions generation
	Gauss points generation
	Assembly algorithm

	Post-processing
	Stress recovery
	Results visualization

	Benchmark analyses
	Rectangular plate with concentrated load
	Rectangular plate with distributed load
	Infinite plate with circular hole
	One-element test
	Beam under bending
	Cook's membrane
	Distortion test

	Conclusions and future works
	Bibliography
	Program architecture
	Abaqus input file structure
	Gauss-Legendre quadrature algorithm
	Element stiffness assembly algorithm

