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Abstract: We investigate the stability and stabilization concepts for infinite dimensional time
fractional differential linear systems in Hilbert spaces with Caputo derivatives. Firstly, based on
a family of operators generated by strongly continuous semigroups and on a probability density
function, we provide sufficient and necessary conditions for the exponential stability of the considered
class of systems. Then, by assuming that the system dynamics are symmetric and uniformly elliptical
and by using the properties of the Mittag–Leffler function, we provide sufficient conditions that
ensure strong stability. Finally, we characterize an explicit feedback control that guarantees the strong
stabilization of a controlled Caputo time fractional linear system through a decomposition approach.
Some examples are presented that illustrate the effectiveness of our results.

Keywords: fractional differential equations; fractional diffusion systems; Caputo derivative; stability
and stabilization in Hilbert spaces; decomposition method
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1. Introduction

Fractional order calculus is a natural generalization of classical integer order calculus. It deals with
integrals and derivatives of an arbitrary real or complex order. Fractional order calculus has become
very popular in recent years, due to its demonstrated applications in many fields of applied sciences and
engineering, such as the spread of contaminants in underground water, charge transport in amorphous
semiconductors, and diffusion of pollution in the atmosphere [1–3]. Because it generalizes and includes
in the limit the integer order calculus, fractional calculus has the potential to accomplish much more
than what integer order calculus achieves [4]. In particular, it has proved to be a powerful tool to
describe long-term memory and hereditary properties of various dynamical complex processes [5];
diffusion processes, such as those found in batteries [6]; and electrochemical and control processes [7],
to model and control epidemics [8,9] and mechanical properties of viscoelastic systems and damping
materials, such as stress and strain [10].

One can find in the literature several different fractional calculuses. Here we use the fractional
calculus of Caputo, which was introduced by Michele Caputo in his 1967 paper [11]. Such calculus
has appeared, in a natural way, for representing observed phenomena in laboratory experiments
and field observations, where the mathematical theory was checked with experimental data. Indeed,
the operator introduced by Caputo in 1967, and used by us in the present work, represents an observed
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linear dissipative mechanism phenomenon with a time derivative of order 0.15 entering the stress-strain
relation [11]. More recently, a variational analysis with Caputo operators has been developed,
which provides further mathematical substance to the use of Caputo fractional operators [12,13].

In the analysis and design of control systems, the stability issue always has an important
role [14,15]. For a dynamical system, an equilibrium state is said to be stable if said system remains
close to this state for small disturbances, and for an unstable system the question is how to stabilize
it, especially by a feedback control law [16]. The stabilization concept for integer order systems and
related problems has been considered in several works; see, e.g., [17–20] and references cited therein.
In [17], the relationship between the asymptotic behavior of a system, the spectrum properties of its
dynamics, and the existence of a Lyapunov functional is provided. Several techniques are considered
to study different kinds of stabilization; for example, the exponential stabilization was studied via a
decomposition method [19], and the strong stabilization was developed using the Riccati approach
[20].

Similarly to classical dynamical systems, stability analysis is a central task in the study of fractional
dynamical systems, which has attracted the increasing interest of many researchers [9,21]. For finite
dimensional systems, the stability concept for fractional differential systems equipped with the Caputo
derivative was investigated in many works [22]. In [23], Matignon studies the asymptotic behavior for
linear fractional differential systems with the Caputo derivative, where their dynamics A are a constant
coefficient matrix. In this case, the stability is guaranteed if the eigenvalues of the dynamics matrix A,

λ ∈ σ(A), satisfy |arg(λ)| > πα

2
[23]. Since then, many scholars have carried out further studies on the

stability for different classes of fractional linear systems [24,25]. In [24], stability theorems for fractional
differential systems, which include linear systems, time-delayed systems, and perturbed systems,
are established, while in [25], Ge, Chen, and Kou provide results on the Mittag–Leffler stability and
propose a Lyapunov direct method, which covers the power law stability and the exponential stability.
See also [26], where the Mittag–Leffler and the class-K function stability of fractional differential
equations of order α ∈ (1, 2) are investigated. In 2018, the notion of regional stability was introduced
for fractional systems in [27], where the authors study the Mittag–Leffler stability and the stabilization
of systems with Caputo derivatives, but only on a sub-region of its geometrical domain. More recently,
fractional output stabilization problems for distributed systems in the Riemann–Liouville sense were
studied [28–30], where feedback controls, which ensure exponential, strong, and weak stabilization of
the state fractional spatial derivatives, with real and complex orders, are characterized.

An analysis of the literature shows that existing results on stability of fractional systems
are essentially limited to finite-dimensional fractional order linear systems, while results on
infinite-dimensional spaces are a rarity. In contrast, here we investigate global stability and stabilization
of infinite dimensional fractional dynamical linear systems in the Hilbert space L2(Ω) with Caputo
derivatives of fractional order 0 < α < 1. In particular, we characterize exponential and strong stability
for fractional Caputo systems on infinite-dimensional spaces.

The remainder of this paper is organized as follows. In Section 2, some basic knowledge of
fractional calculus and some preliminary results, which will be used throughout the paper, are given.
In Section 3, we prove results on the global asymptotic and exponential stability of Caputo-time
fractional differential linear systems. In contrast with available results in the literature, which are
restricted to systems of integer order or to fractional systems in the finite dimensional state space Rn,
here we study a completely different class of systems: we investigate fractional linear systems where
the state space is the Hillbert space L2(Ω). We also characterize the stabilization of a controlled Caputo
diffusion linear system via a decomposition method. Section 4 presents the main conclusions of the
work and some interesting open questions that deserve further investigations.

2. Preliminaries and Notation

In this section, we introduce several definitions and results of fractional calculus that are used in
the sequel.
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Definition 1 ([2]). Let 0 < α < 1 and T > 0. The Caputo derivative of fractional order α for an absolutely
continuous function y(·) on [0, T] can be defined as follows:

CDα
t y(t) =

1
Γ(1− α)

∫ t

0
(t− s)−α d

ds
y(s)ds,

where Γ(1− α) is the Euler Gamma function.

Lemma 1 ([31]). For any given function g ∈ L2(0, T, L2(Ω)), we say that function y ∈ C(0, T, L2(Ω)) is a
mild solution of the system {

CDα
t y(t) = Ay(t) + g(t) t ∈]0,+∞[

y(0) = y0 y0 ∈ L2(Ω)
(1)

if it satisfies

y(t) = Sα(t)y0 +
∫ t

0
(t− s)α−1Kα(t− s)g(s)ds, (2)

where
Sα(t) =

∫ +∞

0
Ψα(θ)S(tαθ)dθ (3)

and
Kα(t) = α

∫ +∞

0
θΨα(θ)S(tαθ)dθ (4)

with
Ψα(θ) =

1
α

θ−1− 1
α Tα(θ

− 1
α ), (5)

(S(t))t≥0 the strongly continuous semigroup generated by operator A, and Tα the probability density function
defined on (0, ∞) by

Tα =
1
π

+∞

∑
n=1

(−1)nθαn−1 Γ(nα + 1)
n!

sin(nπα).

Remark 1 ([32]). The probability density function Tα defined on (0, ∞) satisfies

Tα(θ) ≥ 0, θ ∈ (0, ∞), and
∫ +∞

0
Tα(θ)dθ = 1.

Definition 2 ([33]). The Mittag–Leffler function of one parameter is defined as

Eη(z) =
+∞

∑
n=0

zn

Γ(ηn + 1)
with Re(η) > 0, z ∈ C.

Definition 3 ([33]). The Mittag–Leffler function of two parameters is defined as

Eη,β(z) =
+∞

∑
n=0

zn

Γ(ηn + β)
with Re(η) > 0, β > 0, z ∈ C.

Remark 2. The Mittag–Leffler function appears naturally in the solution of fractional differential equations
and in various applications: see [33] and references therein. The exponential function is a special case of the
Mittag–Leffler function [34]: for β = 1 one has Eη,1(z) = Eη(z) and E1,1(z) = ez.

Lemma 2 ([35]). The Mittag–Leffler function Eα(−tα) is completely monotonic: for all 0 < α < 1, and for all
n ∈ N and t > 0, one has

(−1)n dn

dtn Eα(−tα) ≥ 0.
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Lemma 3 ([36]). The generalized Mittag–Leffler function Eη,β(−x), x ≥ 0, is completely monotonic for
η, β > 0 if and only if η ∈ (0, 1] and β ≥ η.

Lemma 4 ([37]). Let β > 0, 0 < η < 2, and µ be an arbitrary real number such that πη
2 < µ < min{π, πη}.

Then, the following asymptotic expressions hold:

• If |arg(z)| ≤ µ and |z| > 0, then

|Eη,β(z)| ≤ M1(1 + |z|)(1−β)/ηeRe(z
1
η ) +

M2

1 + |z| ; (6)

• If µ < |arg(z)| ≤ π and |z| ≥ 0, then

|Eη,β(z)| ≤
M2

1 + |z| , (7)

where M1 and M2 are positive constants.

3. Main Results

Our main goal is to study the stability and provide stabilization for a class of abstract Caputo-time
fractional differential linear systems.

3.1. Stability of Time Fractional Differential Systems

Let Ω be an open bounded subset of Rn, n = 1, 2, 3, . . ., and let us consider the following abstract
time fractional order differential system:{

CDα
t z(t) = Az(t), t ∈ ]0,+∞[,

z(0) = z0, z0 ∈ L2(Ω),
(8)

where CDα
t is the left-sided Caputo fractional derivative of order 0 < α < 1; the second order operator

A : D(A) ⊂ L2(Ω) −→ L2(Ω) is linear with a dense domain, is such that the coefficients do not
depend on time t, and is also the infinitesimal generator of the C0-semi-group (S(t))t≥0 on the Hilbert
state space L2(Ω) endowed with its usual inner product < ·, · > and the corresponding norm ‖ · ‖.
The unique mild solution of system (8) can be written, from Lemma 1, as

z(t) = Sα(t)z0,

where Sα(t) is defined by (3).
We begin by proving the following lemma, which will be used thereafter.

Lemma 5. Let A be the infinitesimal generator of a C0-semi-group (S(t))t≥0 on the Hilbert space L2(Ω).
Assume that there exists a function h(·) ∈ L2(0,+∞;R+) satisfying

‖Sα(t + s)z‖ ≤ h(t)‖Sα(s)z‖, ∀ t, s ≥ 0, ∀ z ∈ L2(Ω). (9)

Then the operators (Sα(t))t≥0 are uniformly bounded.

Proof. To prove that (Sα(t))t≥0 are bounded, we have to show that

∀z ∈ L2(Ω) sup
t≥0
‖Sα(t)z‖ < ∞. (10)
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By reductio ad absurdum, let us suppose that (10) does not hold, which means that there exists a sequence
(ts + τn), ts > 0 and τn −→ +∞, satisfying

‖Sα(ts + τn)z‖ −→ +∞ as n −→ +∞. (11)

From relation ∫ +∞

0
‖Sα(s + τn)z‖2 ds =

∫ +∞

τn
‖Sα(s)z‖2 ds, 0 ≤ s < +∞,

it follows that the right-hand side goes to 0 as n −→ +∞. Using Fatou’s Lemma yields

lim inf
n−→+∞

‖Sα(s + τn)z‖ = 0 ∀ s > 0.

Therefore, for some s0 < ts, we may find a subsequence τnk such that

lim
k−→+∞

‖Sα(s0 + τnk )z‖ = 0.

By virtue of condition (9), one obtains

‖Sα(ts + τnk )z‖ ≤ h(ts − s0)‖Sα(s0 + τnk )z‖ −→ 0
k−→+∞

,

which contradicts (11). The intended conclusion follows from the uniform boundedness principle.

Definition 4. Let z0 ∈ L2(Ω). System (8) is said to be exponentially stable if there exist two strictly positive
constants, M > 0 and ω > 0, such that

‖z(t)‖ ≤ Me−ωt‖z0‖, ∀t ≥ 0.

The next theorem provides necessary and sufficient conditions for exponential stability of the
abstract fractional order differential system (8).

Theorem 1. Suppose that the operators (Sα(t))t≥0 fulfill assumption (9) and

∀z ∈ L2(Ω) ‖Sα(t + s)z‖ ≤ ‖Sα(t)z‖ · ‖Sα(s)z‖, ∀t, s ≥ 0. (12)

Then, system (8) is exponentially stable if, and only if, for every z ∈ L2(Ω) there exists a positive constant
δ < ∞ such that ∫ +∞

0
‖Sα(t)z‖2 dt < δ. (13)

Proof. One has

t‖Sα(t)z‖2 =
∫ t

0
‖Sα(t)z‖2 ds

=
∫ t

0
‖Sα(t− s + s)z‖2 ds.

Combining assumption (9), Lemma 5, and condition (13), one gets

t‖Sα(t)z‖2 ≤
∫ t

0
‖Sα(s)z‖2‖Sα(t− s)z‖2 ds

≤ Nδ‖z‖2
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for some N > 0. Therefore, for t sufficiently large, it follows that

‖Sα(t)‖ < 1.

Then, there exists t1 > 0 such that

ln ‖Sα(t)‖ < 0, ∀t ≥ t1.

Thus,

ω0 = inf
t≥0

ln ‖Sα(t)‖
t

< 0.

Now, let us show that

ω0 = lim
t−→+∞

ln ‖Sα(t)‖
t

. (14)

Let ts > 0 be a fixed number and N
′
= sup

t∈[0,ts ]

‖Sα(t)‖. Thus, for each t > ts, there exists m ∈ N such

that mts ≤ t ≤ (m + 1)ts. From (12), it follows that

‖Sα(t)‖ = ‖Sα(mts + (t−mts))‖
≤ ‖Sα(mts)‖‖Sα(t−mts)‖,

which yields
ln ‖Sα(t)‖

t
≤ ln ‖Sα(mts)‖

t
+

ln ‖Sα(t−mts)‖
t

.

Using again (12), it results that

ln ‖Sα(t)‖
t

≤ mts

t
ln ‖Sα(ts)‖

ts
+

ln ‖N
′‖

t
.

Since
mts

t
≤ 1 and ts is arbitrary, one obtains

lim sup
t−→+∞

ln ‖Sα(t)‖
t

≤ inf
t>0

ln ‖Sα(t)‖
t

≤ lim inf
t−→+∞

ln ‖Sα(t)‖
t

.

Consequently, (14) holds. Hence, we conclude that for all ω ∈ ]0,−ω0[, there exists M > 0 such that

∀z ∈ L2(Ω) ‖Sα(t)z‖ ≤ Me−ωt‖z‖, ∀t ≥ 0,

which means that system (8) is exponentially stable. The converse is obvious.

Remark 3. When α = 1, the conditions (9) and (12) are verified, and we retrieve from our Theorem 1 the results
established in [17,18] about the exponential stability of system (8) on Ω, which is equivalent to∫ +∞

0
‖S(t)z‖2 dt < ∞, ∀z ∈ L2(Ω).

Definition 5. Let z0 ∈ L2(Ω). System (8) is said to be strongly stable if its corresponding solution z(t) satisfies

‖z(t)‖ −→ 0 as t −→ +∞.

In our next theorem, we provide sufficient conditions that guaranty the strong stability of the
fractional order differential system (8). The result generalizes the asymptotic result established by
Matignon for finite dimensional state spaces, where the dynamics of the system A are considered to be
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a matrix with constant coefficients in Rn [23]. In contrast, here we tackle the stability for a different
class of systems. Precisely, we consider fractional systems where the system dynamics A are a linear
operator generating a strongly continuous semigroup in the infinite dimensional state space L2(Ω).

Theorem 2. Let (λp)p≥1 and (φp)p≥1 be the eigenvalues and the corresponding eigenfunctions of operator A
on L2(Ω). If A is a symmetric uniformly elliptical operator, then system (8) is strongly stable on Ω.

Proof. Since A is a symmetric uniformly elliptical operator, it follows that system (8) admits a weak
solution defined by

z(t) =
+∞

∑
p=1

Eα(λptα)〈z0, φp〉φp ∀ z0 ∈ L2(Ω),

where (λp)p≥1 satisfy
0 > λ1 ≥ λ2 ≥ · · · ≥ λj ≥ · · · , lim

j−→∞
= −∞,

and (φp)p≥1 forms an orthonormal basis in L2(Ω) [38,39]. Using the fact that function Eα(−tα) is
completely monotonic, for all α ∈ (0, 1) and t > 0 (Lemma 2), yields

‖z(t)‖ =
wwwww+∞

∑
p=1

Eα(λptα)〈z0, φp〉φp

wwwww
≤ |Eα(λ1tα)|‖z0‖.

Moreover, from Lemma 4, it follows that

‖z(t)‖ ≤ M2

1− λ1tα
‖z0‖ −→ 0 as t −→ +∞

for some M2 > 0. Hence, system (8) is strongly stable on Ω.

Example 1. Let us consider, on Ω =]0, 1[, the following one-dimensional fractional diffusion system defined by
CD0.5

t z(x, t) =
∂2z
∂x2 (x, t), x ∈ Ω, t ∈ ]0,+∞[,

z(0, t) = z(1, t) = 0, ∀t > 0,
z(x, 0) = z0, x ∈ Ω,

(15)

where the second order operator A =
∂2

∂x2 has its spectrum given by the eigenvalues λp = −(pπ)2, p ≥ 1,

and the corresponding eigenfunctions are φp(x) =
√

2
1+(pπ)2 sin(pπx), p ≥ 1. Operator A generates a

C0-semi-group (S(t))t≥0 defined by

S(t)z0 =
+∞

∑
p=1

eλpt〈z0, φp〉φp.

Moreover, the solution of system (15) is given by

S0.5(t)z0 =
+∞

∑
p=1

E0.5(λpt0.5)〈z0, φp〉φp.

One has that operator A is symmetric and uniformly elliptical. Consequently, from our Theorem 2, we deduce
that system (15) is strongly stable on Ω. This is illustrated numerically in Figure 1 for z(x, 0) = sin(πx),
t = 0.1, t = 0.15, t = 0.2, and t = 1.0.
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Figure 1. The state of system (15) for z(x, 0) = sin(πx), t = 0.1, t = 0.15, t = 0.2, and t = 1.0,
illustrating the fact that (15) is strongly stable on Ω =]0, 1[.

3.2. Stabilization of Time Fractional Differential Systems

Let Ω be an open bounded subset of Rn, n = 1, 2, 3, . . . We consider the following Caputo-time
fractional differential linear system:{

CDα
t z(t) = Az(t) + Bu(t), t ∈]0,+∞[, 0 < α < 1,

z(0) = z0, z0 ∈ L2(Ω),
(16)

with the same assumptions on A as in Section 3.1 and where B is a bounded linear operator from U
into L2(Ω), where U is the space of controls, assumed to be a Hilbert space. By Lemma 1, the unique
mild solution z(·) of system (16) is defined by

z(t) = Sα(t)z0 +
∫ t

0
(t− s)α−1Kα(t− s)Bu(s)ds, (17)

where Sα(t) and Kα(t) are given, respectively, by (3) and (4) .

Definition 6. System (16) is said to be exponentially (respectively strongly) stabilizable if there exists a bounded
operator K ∈ L(L2(Ω), U) such that the system{

CDα
t z(t) = (A + BK)z(t), t ∈ ]0,+∞[,

z(0) = z0, z0 ∈ L2(Ω),
(18)

is exponentially (respectively strongly) stable on Ω.

Remark 4. It is clear that the exponential stabilization of system (16) implies the strong stabilization of (16).
Note that the concept is general: when α = 1, we obtain the classical definitions of stability and stabilization.
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Let (Sk(t))t≥0 be the strongly continuous semi-group generated by A + BK,
where K ∈ L(L2(Ω), U) is the feedback operator. The unique mild solution of system (16) can
be written as

z(t) = Sk
α(t)z0

with
Sk

α(t) =
∫ +∞

0
Ψα(θ)Sk(tαθ)dθ,

where Ψα(θ) is defined by (5).

Theorem 3. Let A + BK generate a strongly continuous semi-group (Sk(t))t≥0 on L2(Ω). If the operator
(Sk

α(t))t≥0 satisfies conditions (9) and (12) and if

∀z ∈ L2(Ω)
∫ +∞

0
‖Sk

α(t)z‖2 dt < ∞

holds, then system (16) is exponentially stabilizable on Ω.

Proof. The proof is similar to the proof of Theorem 1.

Theorem 4. Let (λk
p)p≥1 and (φk

p)p≥1 be the eigenvalues and the corresponding eigenfunctions of operator
A + BK on L2(Ω). If A + BK is a symmetric uniformly elliptical operator, then system (16) is strongly
stabilizable on Ω.

Proof. The proof is similar to the proof of Theorem 2.

Example 2. Let us consider, on Ω =]0, 1[, the following fractional differential system of order α = 0.2:
CD0.2

t z(x, t) =
1

100
∂2z
∂x2 (x, t) +

1
2

z(x, t) + BKz(x, t), (x, t) ∈ Ω×]0,+∞[,

z(0, t) = z(1, t) = 0, ∀t > 0,

z(x, 0) = z0, x ∈ Ω,

(19)

with the linear bounded operator B = I and where we take K = −B∗ = −I. The operator

A + BK =
1

100
∂2

∂x2 −
1
2

,

with spectrum given by the eigenvalues λk
p = − 1

2 −
1

100 (pπ)2, p ≥ 1, and the corresponding eigenfunctions

φk
p(x) =

√
2

1+(pπ)2 cos(pπx), p ≥ 1, generates a C0-semi-group (Sk(t))t≥0 defined by

Sk(t)z0 =
+∞

∑
p=1

eλk
pt〈z0, φk

p〉φk
p.

Furthermore, the solution of system (19) can be written as

z(t) = Sk
0.2(t)z0 =

+∞

∑
p=1

E0.2(λ
k
pt0.2)〈z0, φk

p〉φk
p.
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It is clear that A + BK is a symmetric and uniformly elliptical operator. Hence, from Theorem 4, we deduce that
system (19) is strongly stabilizable on Ω, i.e., the system

CD0.2
t z(x, t) =

1
100

∂2z
∂x2 (x, t) +

1
2

z(x, t) + Bu(t), (x, t) ∈ Ω×]0,+∞[,

z(0, t) = z(1, t) = 0, ∀t > 0,

z(x, 0) = z0, x ∈ Ω,

is strongly stabilizable by the feedback control u(t) = −B∗z(t). Figure 2 shows, for z(x, 0) = x(x− 1), that
the state z(x, t) of system (19) is unstable at t = 0. Moreover, we see that the state evolves close to 0 at t = 10.
Numerically, the state is stabilized by u(t) = −B∗z(t) with an error equal to 1.75× 10−04.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

z
(x

,t
)

t=10

t=0

Figure 2. The state of system (19) for z(x, 0) = x(x− 1), t = 0, and t = 10, illustrating the fact that (19)
is unstable at t = 0 but it is stabilized at t = 10 on Ω =]0, 1[.

3.3. Decomposition Method

Now, we study the stabilization of system (16) using the decomposition method, which consists
of decomposing the state space and the system using the spectral properties of operator A.

Let ξ > 0 be fixed and assume that there are at most finitely-many nonnegative eigenvalues of A,
each with finite-dimensional eigenspace. In other words, assume there exists l ∈ N such that

σ(A) = σu(A) ∪ σs(A), (20)

where σu(A) = σ(A) ∩ {λp, p = 1, 2, . . . , l}, σs(A) = σ(A) ∩ {λp, p = l + 1, l + 2 . . .} with λl ≥ 0
and λl+1 ≤ −ξ. Because the sequence (φp)p≥1 forms a complete and orthonormal basis in H = L2(Ω),
it follows that the state space H can be decomposed as

H = Hu ⊕ Hs, (21)

where Hu = PH = span{φ1, φ2, . . . , φl} and Hs = (I − P)H = span{φl+1, φl+2, . . .} with P ∈ L(H)

the projection operator [40]. Hence, system (16) can be decomposed into the following two sub-systems:{
CDα

t zu(t) = Auzu(t) + PBu(t),

z0u = Pz0,
(22)
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and {
CDα

t zs(t) = Aszs(t) + (I − P)Bu(t),

z0s = (I − P)z0,
(23)

where As and Au are the restrictions of A on Hs and Hu, respectively, and are such that σ(As) = σs(A),
σ(Au) = σu(A), and Au is a bounded operator on Hu.

Our next result asserts that stabilization of system (16) is equivalent to the one of system (22).

Theorem 5. Let the spectrum σ(A) of A satisfy the above spectrum decomposition assumptions (20) for some
ξ > 0 and As be a symmetric uniformly elliptical operator. If system (22) is strongly stabilizable by the control

u(t) = Duzu(t) (24)

with Du ∈ L(H, U) such that
‖zu(t)‖ ≤ C t−µ, µ, C > 0, (25)

then system (16) is strongly stabilizable using the feedback control v(t) = Duzu(t).

Proof. Using the fact that system (22) is strongly stabilizable by control (24), and inequality (25) yields

‖zu(t)‖ −→ 0 as t −→ +∞ (26)

and
‖u(t)‖ ≤ C‖Du‖t−µ, (27)

the unique weak solution of system (23) can be written in the space Hs as

zs(t) =
+∞

∑
p=l+1

Eα(λptα)〈z0s, φp〉φp +
+∞

∑
p=l+1

∫ t

0
(t− s)α−1Eα,α(λp(t− s)α)〈(I − P)Bu(s), φp〉φp ds

since As is a symmetric uniformly elliptical operator [38]. Using the spectrum decomposition
relation (20), Lemma 2, and Lemma 3, one has that

Eα(λptα) ≤ Eα(−ξtα) for all p ≥ l + 1 (28)

and
Eα,α(λp(t− s)α) ≤ Eα,α(−ξ(t− s)α) for all p ≥ l + 1. (29)

Then, feeding system (23) by the same control u(t) = Duzu(t) and using (27)–(29), it follows that

‖zs(t)‖ ≤ Eα(−ξtα)‖z0s‖+ C‖Du‖‖I − P‖‖B‖
∫ t

0
(t− s)α−1s−µEα,α(−ξ(t− s)α)ds

≤ Eα(−ξtα)‖z0s‖+ C‖Du‖‖I − P‖‖B‖
+∞

∑
n=1

∫ t

0

(−ξ)n(t− s)αn+α−1s−µ ds
Γ(αn + α)

≤ Eα(−ξtα)‖z0s‖+ C‖Du‖‖I − P‖‖B‖
+∞

∑
n=1

(−ξ)ntαn+α−µ

Γ(αn + α− µ− 1)Γ(1− µ)−1

≤ Eα(−ξtα)‖z0s‖+ CΓ(1− µ)‖Du‖‖I − P‖‖B‖tα−µEα,α−µ+1(−ξtα).

Lemma 4 implies that

‖zs(t)‖ ≤
M1

1 + ξtα
‖zs0‖+ CΓ(1− µ)‖Du‖‖I − P‖‖B‖M2tα−µ

1 + ξtα



Mathematics 2020, 8, 353 12 of 14

for some M1, M2 > 0. Therefore,

‖zs(t)‖ −→ 0 as t −→ +∞. (30)

On the other hand, we have that

‖z(t)‖ = ‖zs(t) + zu(t)‖ ≤ ‖zs(t)‖+ ‖zu(t)‖. (31)

Combining (26), (30), and (31), we deduce the strong stabilization of system (16).

4. Conclusions and Future Work

We investigated the stability problem of infinite dimensional time fractional differential linear
systems under Caputo derivatives of order α ∈ (0, 1), where the state space is the Hillbert space L2(Ω).
We proved necessary and sufficient conditions for exponential stability and obtained a characterization
for the asymptotic stability, which is guaranteed if the system dynamics are symmetric and uniformly
elliptical. Moreover, some stabilization criteria were also proved. Finally, we investigated the strong
stabilization of the system via a decomposition method; an explicit feedback control was obtained.
Illustrative examples were given, showing the effectiveness of the theoretical results. As future work,
we intend to extend our work to the class of infinite dimensional time fractional differential nonlinear
systems. Various other questions are still open and deserve further investigations, such as studying
boundary stability and gradient stability for time fractional differential linear systems or considering
the more recent notion of Λ-fractional derivative [41], and thus obtaining a geometrical interpretation.
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